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1 Introduction

We study the fundamental problem of finding a route in a geometric graph from a given source vertex s

to a given target vertex t. In our context, a geometric graph G is a weighted graph whose vertex set is a

set P of n points in the plane, and whose edges are line segments joining pairs of points in P , where each

edge is weighted by its length (the Euclidean distance between its endpoints). When full knowledge of the

graph is provided, numerous algorithms exist for finding shortest paths in a weighted graph (e.g., Dijkstra’s

algorithm [10,12]). The problem is more challenging in the online setting, where a route is constructed

incrementally and a partial route from s to an intermediate node u is extended by selecting one of u’s

neighbours as a function of limited information available locally at u. Without knowledge of the full graph,

an online routing algorithm cannot identify a shortest path in general; the goal is to follow a path whose

length is as short as possible. A path between two vertices s and t in G is a c-spanning path if its length

is at most c times the length of the shortest path from s to t in G. An online routing algorithm is c-

competitive on a class G of geometric graphs if for any graph G ∈ G and any pair of vertices {s, t} in G, the

algorithm constructs a c-spanning path from s to t in G. When c is a constant, we say the online routing

algorithm is competitive. In this paper we examine the problem of designing an online routing algorithm

that is c-competitive on the Delaunay triangulation for the smallest value c possible.

The Delaunay triangulation, denoted DT(P ), of a point set P in the plane is a triangulation of P with

the property that the triangle 4abc is a face in DT(P ) if and only if {a, b, c} ⊆ P and ©abc ∩ P = {a, b, c},

where ©abc denotes the unique disk that has a, b, and c on its boundary1. The Delaunay triangulation and

its dual, the Voronoi diagram, are well studied; see [1,22] for comprehensive surveys of these structures. To

simplify the presentation we assume that points in P are in general position.

An online routing algorithm sends a message m together with a header h from a source vertex s to a

target vertex t in a graph G. Both the header and the message can be considered to be bit strings. Initially

the algorithm only has knowledge of s, t and N(s), where for each vertex v, N(v) denotes the set of vertices

directly adjacent to v in G (and their respective coordinates). Upon reception of a message m and its header

h, a node u must select one of its neighbours to which to forward the message as a function of h and N(u).

This procedure repeats until the message reaches the target node t. Different routing algorithms are possible

1 This property holds for the closed disk ©abc when P is any set of points in general position; it holds regardless of

general position on any point set P for the open disk ©abc.
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depending on the size of h and the fraction of G that is known to each node. In the setting considered

in this paper, the header h stores the coordinates of the node s from which the message originated, the

coordinates of the node t which is the final destination of the message, the coordinates of the neighbour

of u that last forwarded the message, and possibly one additional value that is computed from distances

between vertices visited by the message and may be modified by the algorithm during computation.

Online routing is also known as local geometric routing on geometric graphs, or simply as local routing

when geometric information is not provided (or does not exist). Previous work in online routing includes

results on triangulations [6,9,19,23], on more general planar or near-planar geometric graphs [7,9,14–17,19,

21], and on arbitrary (non-geometric) graphs [3,8]. When h stores only the coordinates of the destination

node t, we say an online routing algorithm is oblivious. That is, the forwarding decision at each node u is

made as a function of only u, N(u), and t. No competitive oblivious online routing algorithm exists [20], even

on Delaunay triangulations [2]. In this paper we focus on competitive online routing algorithms. Allowing

the header h to store slightly more information (some of which can be modified dynamically during routing)

enables an online routing algorithm to guarantee not only that each route reaches its destination, but that

it does so along a c-competitive path.

The spanning ratio of a graph G is the maximum ratio κ between the length of a shortest path σ on G

joining any pair of nodes s and t and the Euclidean distance between s and t. That is, for any two vertices

s and t in G there exists a path σ from s to t in G such that |σ| ≤ κ|st|, where |σ| denotes the sum of the

lengths of the edges in σ and |st| denotes the Euclidean distance from s to t in G. Several previous results

examine upper bounds on the spanning ratio κ of the Delaunay triangulation [4,11,13,18,24]. Dobkin et

al. [13] proved that κ ≤ (1+
√

5)π/2 in DT(P ). Using this bound, Bose and Morin [6] found a (9(1+
√

5)π/2)-

competitive online routing algorithm for Delaunay triangulations (where 9(1 +
√

5)π/2 ≈ 45.749). To the

authors’ knowledge, this was the smallest known competitive ratio for an online routing algorithm on

Delaunay triangulations prior to our results.

We show that for each known upper bound κ on the spanning ratio of the Delaunay triangulation

for every set of points P and every {s, t} ⊆ P , there exists a path σ from s to t that is contained on

the edges of the sequence of Delaunay triangles that intersects the line segment from s to t such that

|σ| ≤ κ|st|. We show that this property of the location of the path is true both for points in general position

and for points in convex position. This allows us to apply a hybrid of searching techniques developed in
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[5] with new techniques to define a corresponding online routing algorithm whose competitive ratio is at

most 9κ for each previous upper bound on κ. The current best upper bound is κ ≤ 1.998, resulting in

a corresponding competitive ratio of 9 · 1.998 ≈ 17.982. Although this technique yields two new online

routing algorithms for Delaunay triangulations, both of which improve on the previous best competitive

ratio, we apply a new strategy to define a third online routing algorithm that reduces the competitive

ratio further still to π(5π + 4)/4 ≈ 15.479. Therefore, we improve the previous best competitive ratio

for online routing on Delaunay triangulations by describing (4π
√

3)-competitive, 17.982-competitive, and

(π(5π+4)/4)-competitive online routing algorithms in Sections 2.1, 2.2, and 2.3, respectively, where 4π
√

3 ≈

21.766 and π(5π + 4)/4 ≈ 15.479. In Section 3.2 we examine Delaunay triangulations of sets of points

in convex position for which we present 20.926-competitive and (11 + 3
√

2)/2-competitive online routing

algorithms using new techniques, where (11 + 3
√

2)/2 ≈ 7.621.

2 Routing on Delaunay Triangulations of Points in General Position

The problem of designing a competitive online routing algorithm on DT(P ) is challenging, in large part,

because it seems difficult to compute a shortest path between two points in DT(P ) when complete knowledge

of the graph is unavailable. This difficulty is related to the fact that a small perturbation in P can cause

the shortest path from s to t to change drastically. By focusing on specific local triangles in DT(P ) to the

reduce the search space of candidate vertices to which to forward the message, and by exploiting geometric

properties of the Delaunay triangulation, we can design online routing algorithms with good competitive

ratios.

The search space is restricted by focusing on two specific paths that lie respectively above and below the

line segment from s to t, where s and t denote the respective source and target nodes in DT(P ). Consider

the ordered sequence of triangles that intersect the line segment st. Each triangle in this sequence has at

least one edge whose interior is either completely above or completely below the line segment st. Define

two ordered subsequences of triangles with one subsequence containing the triangles with an edge that lies

above st, and the other containing the triangles with an edge that lies below st. The subsequence of edges

lying above st determines a path from s to t in DT(P ). As is done by Bose and Morin [5], we refer to this

path as the upper chain from s to t and denote it by U . Similarly, the subsequence of edges lying below st

forms the lower chain from s to t and is denoted by L. Refer to Figure 1(a).
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Fig. 1 (a) A Delaunay triangulation with the upper and lower chains (in bold) with respect to s and t. (b) The upper

chain U (in bold) follows the sequence s, u1, u2, u3, u4, u2, u1, t. (c) The vertices `1 and u2 can be moved arbitrarily far

from st, implying that neither U nor L is a constant spanning path.

The upper chain is not necessarily a simple path since it may contain repeated edges or vertices (refer

to Figure 1(b)). Moreover, neither the upper chain nor the lower chain is necessarily a constant spanning

path (refer to Figure 1(c)). However, the subgraph of DT(P ) induced by U ∪ L contains a path whose

length is at most (1+
√

5)|st|π/2, which is the property used to provide the only competitive online routing

algorithm [6] with competitive ratio at most 9(1 +
√

5)|st|π/2.

Bose and Morin [5] generalized this approach slightly to triangulated weakly simple polygons. A polygon

is weakly simple provided that the graph defined by its vertices and edges is plane, the outer face is a cycle,

and one bounded face is adjacent to all vertices and edges. The weakly simple polygon is triangulated when

the bounded face is triangulated.

Theorem 1 (Bose and Morin [5]) Given a plane geometric graph G that is a triangulated weakly simple

polygon, and two vertices s, t in G, there exists an online competitive routing strategy that computes a path from

s to t in G whose competitive ratio is at most 9.

Notice that the subgraph of DT(P ) induced by U ∪ L is a triangulated weakly simple polygon since it

is the ordered sequence of triangles intersecting st in DT(P ). Therefore, showing the existence of a short

path in this subgraph immediately gives a competitive online routing algorithm whose ratio is at most 9

times the length of this short path. This approach was used in [6], where the proof of the constant spanning

ratio of the Delaunay triangulation by Dobkin et al. [13] was shown to construct a path of length at most

(1 +
√

5)|st|π/2 ≈ 5.083 in the subgraph induced by U ∪ L. On the other hand, Xia [24] proves that there

5



exists a path in the subgraph induced by U ∪ L whose length is at most 1.998|st|, which implies an online

routing algorithm whose ratio is at most 9 · 1.998 = 17.982.

In Section 2.1, we will use the proof by Keil and Gutwin [18] (showing an upper bound on the spanning

ratio of the Delaunay triangulation) to give a new online routing algorithm with competitive ratio at most

4π
√

3 ≈ 21.766. Note that Keil and Gutwin’s [18] inductive proof does not necessarily construct a path

in the subgraph induced by U ∪ L; however, we show that whenever their proof satisfies the inductive

hypothesis by including a vertex in a shortest path that lies outside the induced subgraph, there always

exists an alternate vertex in the induced subgraph that also satisfies the requirements of the inductive

hypothesis.

In Section 2.3 we introduce a different strategy to define an online routing algorithm with competitive

ratio at most π(5π + 4)/4 ≈ 15.479, drawing inspiration from Dobkin et al. [13] and Bose and Morin [6].

2.1 (4π
√

3) ≈ 21.766-Competitive Online Routing

Keil and Gutwin [18] proved that for any two vertices s and t in DT (P ), there exists a path σ from s to

t in DT (P ) such that |σ| ≤ 4π
√
3

9 |st| ≤ 2.419|st|. Although the path in the original proof may fall outside

U ∪ L, we show that the proof also implies the existence of a path of the same length among the vertices

in U ∪ L. We follow the construction given by Bose and Keil [4] (who proved the same result, but for the

more general constrained Delaunay triangulations).

Our proof that there exists a path from s to t on U∪L having length at most 2.419|st| has two main parts.

The first highlights a geometric property of Delaunay triangulations. The second part uses this geometric

property to prove the result by induction. We begin with the former.

Consider the directed line segment st from s to t. Let G#st be a circle through s and t such that the part

of G#st below st does not contain any points of P . We say that G#st is a right-empty circle with respect to s and

t. Let r denote the radius of G#st and let θ(s, t) denote its spanning angle, corresponding to the reflex angle

∠sat, where a denotes the centre of G#st (refer to Figure 2(a)). Let G#mst denote the right-empty circle with

respect to s and t that has the minimum spanning angle and let θm(s, t) denote its spanning angle. Bose

and Keil [4, Lemma 2.1] proved the following lemma by induction on the rank of the minimum-spanning

angles (with ties being broken arbitrarily).
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Fig. 2 (a) The smallest spanning angle with respect to s and t. (b) Illustration of the proof of Lemma 4.

Lemma 1 (Bose and Keil [4]) For any set of points P in the plane and any {s, t} ⊆ P , if there is a right-empty

circle G#st with radius r and spanning angle θ(s, t), then there exists a path τ in DT (P ) from s to t whose length

is at most r · θ(s, t) such that every edge in τ has length at most |st|.

The path τ of Lemma 1 satisfies the following property.

Lemma 2 All the vertices of the path τ are in U ∪ L.

To prove Lemma 2, we need the following technical lemmas.

Lemma 3 (Bose and Keil [4]) Suppose that st is not an edge of DT (P ). Let v ∈ P be a vertex in G#mst to

the left of st with the property that the circle through s, v and t is G#mts. If v is in the circle with respect to st as

diameter, then θm(s, v) ≤ θ(s, t), θm(v, t) ≤ θ(s, t) and v ∈ τ . Otherwise, we have θm(t, s) ≤ θ(s, t).

Proof This lemma is a direct consequence of Cases 1, 2, and 3, respectively, in the proof of Lemma 2.1

in [4]. ut

Lemma 4 Let st and uv be two line segments such that st and uv do not intersect and the projection of uv onto

st is contained in st (refer to Figure 2(b)). Let �uv be a circle such that u and v are on the boundary of �uv.

Let Γst be a circular arc such that

– s and t are the endpoints of Γst,

– Γst and uv intersect at u′ and v′,

– Γst and �uv intersect at a point s′ 6∈ {s, u′} that is between s and u′ along Γst.

Let C be the circular cap defined by the intersection of Γst with uv. Then �uv contains C.

Proof Suppose that �uv does not contain C. Therefore, C and �uv intersect at 2 points. But then, Γst and

�uv intersect at 3 points. This is impossible since in general, two different circles can intersect in at most

2 points. ut
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Fig. 3 Illustration of the proof of Lemma 2. (a) If v is not in U ∪ L, then G#mts intersects an edge of U ∪ L. (b) If v is

not in U ∪ L, then v is adjacent to s. (c) If v is not in U ∪ L, then t is inside the circle defining 4svw ∈ DT (P ), which is

a contradiction.

We can now show the proof of Lemma 2.

Proof (Lemma 2) If st is an edge of the convex hull of P , then it is also an edge of DT (P ), thus the lemma

holds. For the remainder of the proof, we assume that st is not an edge of the convex hull of P . We proceed

by induction on the rank of the minimum spanning angles (ties are broken arbitrarily).

For the base case, θm(s, t) has lowest rank. Bose and Keil showed that in this case, st is an edge of

DT (P ). Therefore, the lemma holds.

We make the following induction hypothesis: for any pair of vertices s and t whose minimum spanning

angle has rank at most k ≥ 1, all the vertices of the path τ from s to t belong to the union of the upper and lower

chains with respect to s and t.

Consider two vertices s and t whose minimum spanning angle has rank k+ 1. If st is an edge of DT (P ),

then we are done. Otherwise, there must be at least one vertex of DT (P ) in G#st to the left of st. Let v ∈ P

be a vertex in G#st to the left of st with the property that the circle through s, v and t is G#mts.

We consider two cases: either (1) v is inside the circle 	st having st as diameter or (2) v is outside of

	st.

1. If v ∈ 	st, then, by Lemma 3, we can apply induction on sv and on vt. Moreover, v ∈ τ . This way,

we get a path τsv (respectively τvt) from s to v (respectively from v to t) that satisfies the induction

hypothesis.

The heart of the proof is to argue that v ∈ U ∪ L. We prove this by contradiction. Suppose v 6∈ U ∪ L.

Therefore, G#mts intersects an edge of U ∪L and contains v on its boundary. More precisely, there is an

arc Γ ∗ ⊂ G#mts such that v ∈ Γ ∗, Γ ∗ intersects an edge e of U ∪ L and no part of Γ ∗ is inside U ∪ L

(refer to Figure 3(a)). Without loss of generality, suppose e ∈ U , so that e = uiui+1, where ui, ui+1 ∈ U .

8



If ui 6= s and ui+1 6= t, then we can apply Lemma 4 to st and uiui+1. We get an empty circular sector

that contains v, which is impossible. Therefore, either ui = s or ui+1 = t. Without loss of generality,

suppose that ui = s. Therefore, e = su1 ∈ DT (P ).

We now prove that v is adjacent to s. Suppose that v is not. Since Γ ∗ intersects su1, then Γ ∗ intersects

an edge v′v′′ ∈ DT (P ) in 4sv′v′′ ∈ DT (P ) where ∠tsv′′ < ∠tsv′ (refer to Figure 3(b)). In such a case,

Γ ∗ intersects sv′′ in its interior. Therefore, we can apply Lemma 4 to ts and v′′v′. We get that v is inside

the empty circle ©sv′v′′ that defines 4sv′v′′. This is a contradiction. Therefore, v is adjacent to s.

Since v is adjacent to s, v is on the boundary of G#mts and v 6∈ U∪L, there exists a triangle4svw ∈ DT (P ),

where ∠tsw < ∠tsv and w 6∈ G#mts. Let ©svw be the empty circle defining 4svw. Since w 6∈ G#mts, then

t ∈ ©svw, which is a contradiction (refer to Figure 3(c)). Therefore, v ∈ U ∪ L.

We now have that v ∈ U ∪L, and the vertices of τsv (respectively of τvt) belong to the union of the lower

and upper chains with respect to s and v (respectively to v and t). We need to prove that the vertices

of τsv ∪ τvt belong to U ∪ L. Notice that if v is not adjacent to s and v is not adjacent to t, then the

union of the upper and lower chains with respect to s and v is a subset of U ∪ L. Moreover, the union

of the upper and lower chains with respect to v and t is also a subset of U ∪ L. Therefore, if v is not

adjacent to s and v is not adjacent to t, then τsv ∈ U ∪ L and τvt ∈ U ∪ L by the induction hypothesis.

Consequently, τsv ∪ τvt ∈ U ∪ L.

If v = u1, then τsv = su1 ∈ U and by the induction hypothesis, τvt ∈ U ∪ L. Hence, τsv ∪ τvt ∈ U ∪ L. If

v = uk−1, then τsv ∈ U by the induction hypothesis and τvt = uk−1t ∈ U . Hence, τsv ∪ τvt ∈ U ∪ L.

2. If v 6∈ 	st, then we can apply induction by Lemma 3. Notice that the upper chain with respect to t and

s is L and the lower chain with respect to t and s is U . Therefore, we get our result by induction. ut

We now outline the construction of the 2.419-path σ. Before doing this, we need to define a lune. Let p

be a point on st and Γsp be the circular arc from s to p such that Γsp is above sp and the tangent to Γsp

at s makes an angle of π/3 with st (refer to Figure 4(a)). Let Γ ′sp be the circular arc that is the reflection

of Γsp across sp. The lune Lsp with respect to s and p is defined to be Γsp ∪ Γ ′sp.

To construct the 2.419-path σ from s to t, we consider the largest empty lune Lsp that has a vertex

v ∈ P on its boundary. If there is more than one vertex on the boundary of Lsp, we consider the one closest

to s. We can see this as the process of growing a lune from s until it hits a vertex v ∈ P . To construct σ, we

first travel from s to v using the path of Lemma 2 (by considering a specific right-empty circle G#sv; refer
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Fig. 4 (a) The lune Lsp with respect to s and p. (b) An example where the first vertex we hit by growing a lune from s

is not in U ∪ L.

to the proof of Theorem 1.1 in [4]). Then, we apply induction from v to t. When we apply Lemma 2 from

s to v, we need to consider a good right-empty circle. A right empty circle G#sv is good with respect to Lsp if

it is centered on so, where o is the center of Γ ′sp.

It is possible that the first vertex v of P we encounter by growing a lune from s is not in U ∪ L (refer

to Figure 4(b)). In the original proof by Keil and Gutwin as well as the proof in Bose and Keil, it was

not necessary for v to be in U ∪ L to prove the spanning ratio. However, to be able to route, we need this

property to apply Theorem 1. Fortunately, we are able to show that there exists a point v′ in U ∪ L that

satisfies the same properties as v and allows the inductive argument to go through. We outline this below.

Lemma 5 Suppose that the first vertex v ∈ DT (P ) we hit by growing a lune from s is not in U ∪L. Let u1 ∈ U

and `1 ∈ L be such that su1 ∈ DT (P ) and s`1 ∈ DT (P ). If we keep growing the lune until it hits a vertex

v′ ∈ U ∪L, then v′ = u1 or v′ = `1. Moreover, there exists a good right-empty circle with respect to the lune that

has v on its boundary.

Proof Without loss of generality, suppose that v is above the line through st. Denote by Lsp the empty lune

that has v on its boundary. Denote by Lsp′ the (not necessarily empty) lune that has u1 on its boundary.

We have that v is outside of ©su1`1, where ©su1`1 defines 4su1`1 ∈ DT (P ). Therefore, the part of Lsp′

that is below su1 is inside the empty circle ©su1`1. Consequently, if we keep growing Lsp until it hits a

vertex v′ ∈ U ∪ L, then v′ = u1. Moreover, since the part of Lsp′ that is below su1 is empty, there exists a

good right-empty circle G#su1 with respect to Lsp′ . ut

The proof of Theorem 1.1 in [4] is based on finding a good right-empty circle before applying induction.

In our case, we can use Lemma 5 within Theorem 1.1 to find such a circle; this will guarantee that there

exists a 2.419-path σ ∈ U ∪ L. Therefore, we can apply Theorem 1 to find the shortest path on U ∪ L. The

length of our routing path is at most 9 4π
√
3

9 |st| = 4π
√

3|st| ≈ 21.766|st|. This gives the following theorem.
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Theorem 2 There is a (4π
√

3)-competitive online routing algorithm for Delaunay triangulations.

2.2 17.982-Competitive Online Routing

Xia [24] showed that the stretch factor of a Delaunay triangulation of a set of points in the plane is less

than 1.998. His proof restricts the search space to the set of triangles intersecting st as outlined in the proof

of Corollary 1 in [24]. Therefore, by applying Theorem 1, we obtain a competitive online routing strategy

whose competitive ratio is at most 17.982.

Theorem 3 There is a 17.892-competitive online routing algorithm for Delaunay triangulations.

2.3 (π(5π + 4)/4) ≈ 15.479-Competitive Online Routing

We propose an online competitive routing algorithm inspired by the work of Dobkin et al. [13] and Bose

and Morin [6]. Let P denote any set of n points in general position and let s and t denote any two vertices

in P . Without loss of generality, assume s and t lie on the x-axis, with s having a smaller x-coordinate than

t. Let V0, . . . , Vm−1 be the cells of the Voronoi diagram intersected by the line segment st, with V0 being

the Voronoi cell of s and Vm−1 being the cell of t. The path from s to t in DT(P ) obtained by following

the sites generating the cells V0, . . . , Vm−1, in order, shall be referred to as the Voronoi path and denoted

VP(s, t). Label the vertices on this path s = v0, . . . , vm−1 = t. The Voronoi path is x-monotone and it is not

necessarily a constant spanning path [13] (see Figure 5). Dobkin et al. [13] proved the following lemma.

s t

Fig. 5 This example shows that the number of times the Voronoi path (in bold) crosses st is unbounded in general.

Consequently, the Voronoi path is not a constant spanning path.

Lemma 6 (Dobkin et al. [13]) Let N be the set of edges of VP(s, t) that do not cross the segment st. The

sum of the lengths of the edges in N is at most |st|π/2.
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vj+1
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Fig. 6 The red and dashed line represents the Voronoi path PV from b0 = s to bq = t. The circles are centered on st. They

are the ones that define the Voronoi path. This is an example where we would follow the Voronoi path since h ≤ w/4.

If the vertices on VP(s, t) all lie above the line through s and t, the Voronoi path is called one-sided. The

above lemma implies that if VP(s, t) is one-sided, then |VP(s, t)| ≤ |st|π/2. Therefore, VP(s, t) is a π/2-

spanning path when it is one-sided. Note that VP(s, t) is not necessarily a constant spanning path when

it crosses st. Consider a Voronoi path from s to t that is not one-sided. Let s = b0, b1, . . . , bq = t be the

subsequence of vertices of the Voronoi path that lie above the x-axis. Consider two consecutive vertices in

this subsequence bi = vj and bi+1 = vk that are not consecutive on the Voronoi path, i.e. k 6= j + 1. This

means that the edge vjvj+1 and vk−1vk both cross st. (refer to Figure 6). Let PV be the Voronoi path

vj , vj+1, . . . , vk and let PU be the path from vj to vk on the upper chain. For a point p ∈ P , let x(p) and y(p)

be the x-coordinate and y-coordinate of p, respectively. Define h = minj<z<k |y(vz)| and w = x(vj)− x(vk).

Dobkin et al. [13] proved the following lemma:

Lemma 7 (Dobkin et al. [13]) If h ≤ w/4, |PV | is at most (1 +
√

5)wπ/2 and the path from vj+1 to vk−1

has length at most wπ/2.

Using the construction given by Dobkin et al. [13], Bose and Morin [6] proved:

Lemma 8 (Bose and Morin [6]) If h > w/4, |PU | is at most wπ2/4.

Intuitively, the two lemmas state that when the Voronoi path from vj to vk comes “close” to the x-axis,

then the length of the Voronoi path is at most a constant times w, otherwise, the length of the upper chain

from vj to vk is at most a constant times w. These two lemmas taken together imply that the Delaunay

triangulation is a ((1 +
√

5)π/2)-spanner. Notice that given a vertex v on the upper (respectively lower)

chain from s to t, one can locally determine if v is on VP(s, t) simply by examining N(v). Consider all the

empty circles defined by the Delaunay triangles in N(v) that intersect st. If any one of these circles has its
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center below (respectively above) the x-axis, then v is on the Voronoi path from s to t since its Voronoi

cell intersects st. Armed with this observation, Lemmas 7 and 8 seem to suggest the following competitive

online routing algorithm:

When at a vertex bi, if bi+1 is adjacent to bi on the Voronoi path from s to t, follow the edge. If bi and

bi+1 are not adjacent on the Voronoi path, follow PV from bi to bi+1 when h ≤ w/4 and PU when h > w/4.

Unfortunately, the main caveat to this approach is that we do not know how to compute h or w locally

from vertex bi. It seems that knowledge of PV is required to compute h and w, which is not necessarily

available locally at bi.

To overcome this obstacle, we slightly modify the above approach. When bi and bi+1 are adjacent on

the Voronoi path, we still follow the edge. However, when they are not adjacent, we take the following

approach. Let d = |vjvj+1|. From vj , follow PU until either vk is reached or a distance of at most d has

been travelled on PU . Should the latter occur at a vertex u on the upper chain, let v be the vertex furthest

along the lower chain adjacent to u. Note that v must be on PV . Move to v and continue on PV . Proceed in

this manner until t is reached. We refer to this online routing strategy as OnlineDelaunayRoute and outline

it as follows: We assume that s is on the upper chain. The algorithm is initiated at node s with a call to

OnlineDelaunayRoute(s, t, 0,m).

Theorem 4 OnlineDelaunayRoute is an online routing strategy that is (π(5π + 4)/4)-competitive on Delaunay

triangulations.

Proof When bi and bi+1 are consecutive on the Voronoi path from s to t, the message follows the edge. By

Lemma 6, the sum of all the edges of the Voronoi path that do not cross st is at most |st|π/2.

When bi and bi+1 are not consecutive, the message follows two different paths depending on the length

of PU . If PU has length at most d, then the messages travels on PU . Otherwise, it travels on PU for a distance

of d, crosses over onto PV and then continues travelling on PV . Notice that by the triangle inequality, this

is shorter than travelling on PU for distance of at most d, returning to bi and travelling on PV . Therefore,

the total distance travelled is at most 2d+ |PV |. We bound this distance in terms of w. There are 4 cases

to consider.
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Algorithm 1 OnlineDelaunayRoute(s, t, d,m).

Input: c is the current node. The header contains s the source node, t the destination node, and d the distance remaining

on the shortcut path. Parameter m is the message.

Output: Forward the header and message from c to one of the vertices in N(c) until t is reached.

1: Let u be the vertex furthest along the upper chain adjacent to c, ` be the vertex furthest along the lower chain adjacent

to c, and v be the vertex furthest along the Voronoi path adjacent to c.

2: if c = t then

3: Destination reached. EXIT

4: end if

5: if c is on lower chain then

6: Forward s, t, 0,m to v. EXIT

7: else {c is on upper chain}

8: if c is on the Voronoi path then

9: if v is on the upper chain then

10: Forward s, t, 0,m to v. EXIT

11: else {v is on lower chain}

12: d← |cv|

13: end if

14: end if

15: end if

16: if d− |cu| ≥ 0 then

17: d← d− |cu|. Forward s, t, d,m to u.

18: else

19: Forward s, t, 0,m to `.

20: end if

Case 1: h ≤ w/4 and the message travels |PU |.

By Lemma 7, we have |PV | ≤ (1 +
√

5)wπ/2. Since the edge vjvj+1 ∈ PV , we have that d ≤ |PV |. Since the

message remains on PU , we have that |PU | ≤ d. Therefore, |PU | ≤ (1 +
√

5)wπ/2 ≤ 5.09w.

Case 2: h ≤ w/4 and the message travels 2d+ |PV |.

By Lemma 7, we have |PV | ≤ (1 +
√

5)wπ/2. Since the edge vjvj+1 ∈ PV , we have that d ≤ |PV |. Therefore,

2d+ |PV | ≤ 3|PV | ≤ 3(1 +
√

5)wπ/2 ≤ 15.25w.

Case 3: h > w/4 and the message travels |PU |.

By Lemma 8, |PU | ≤ wπ2/4 ≤ 2.47w.
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Case 4: h > w/4 and the message travels 2d+ |PV |.

By Lemma 8, |PU | ≤ wπ2/4. By construction, d ≤ |PU |. Since the portion of PV that lies below the

x-axis is a one-sided Voronoi path, its length is at most wπ/2 by Lemma 7. By the triangle inequality,

|PV | ≤ 2d+ πw + |PU |. Therefore, putting it all together, we have 2d+ |PV | ≤ π(5π + 4)w/4 ≤ 15.479w.

Since the cost of the path is dominated by the value obtained in Case 4, the result follows. ut

3 Routing on Delaunay Triangulations of Points in Convex Position

When the points in P are in convex position, we can achieve a better competitive ratio in DT (P ). In this

section, we first show that as a consequence of a result by Cui et al. [11], there exists a path from s to t

on U ∪ L having length at most ρ, where ρ ≈ 2.326 satisfies (1) (see below). This immediately implies that

we can apply Theorem 1 to get a competitive online routing algorithm with a competitive ratio of at most

9ρ ≈ 20.926.

Using an entirely different online routing strategy, in Section 3.2 we show how to achieve a better

competitive ratio of at most (11 + 3
√

2)/2 ≈ 7.621.

3.1 Lower and Upper Chains for Points in Convex Position

Cui et al. [11, Theorem 1] prove the following result about Delaunay Triangulations for points in convex

position.

Lemma 9 [Cui et al. [11]] Given any set P of points in general position and any pair of vertices {s, t} in DT (P ),

there is a path τ from s to t in DT (P ) of length at most ρ|st| ≈ 2.326|st|, where ρ is the root of

ρ3 − ρ−
(
π + arctan

(
1− ρ2

ρ

))√
ρ4 − ρ2 + 1 = 0. (1)

Cui et al. prove Lemma 9 by induction on the rank of |st| (with ties being broken arbitrarily).

Since P is in convex position, there exists a supporting line Ls through s such that all other points of

P lie on one side of Ls. Let Lt be a line through t that is parallel to Ls . Then on one side of the line

through st — either above or below it — all points of P lie between Ls and Lt . Without loss of generality,

assume that all points of P above the line st lie between Ls and Lt . Note that if this set of points is empty,
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then s and t are connected in DT (P ) by a horizontal path (possibly a single edge) of weight |st|, and the

statement follows.

Let v ∈ P be a point above st that maximizes the angle γ = ∠svt. The following three lemmas are a

direct consequence of the proof of Theorem 1 in [11].

Lemma 10 If γ ≤ ξ ≈ 2.057 (where ξ/ sin ξ = ρ), then τ is the path we obtain from Lemma 1.

Lemma 11 If γ > ξ ≈ 2.057 (where ξ/ sin ξ = ρ) and sv is an edge of DT (P ), then the first edge of τ is sv and

we can apply induction from v to t.

If γ > ξ and vt is an edge of DT (P ), then the last edge of τ is vt and we can apply induction from s to v.

Lemma 12 Suppose that γ > ξ ≈ 2.057 (where ξ/ sin ξ = ρ), sv is not an edge of DT (P ) and vt is not an edge

of DT (P ). Let Lv be a supporting line passing through v such that all other points in P are below Lv. Let s′ and

t′ be the intersections of Lv with Ls and Lt, respectively. Then the part of τ from s to v is inside the triangle

4ss′v and the part of τ from v to t is inside the triangle 4vt′t.

Lemma 13 For points in convex position, all vertices of the path τ are in U ∪ L.

Proof We proceed by induction on the rank of |st| (ties are broken arbitrarily).

For the base case, st has lowest rank. Therefore, the circle with respect to st as diameter is empty and

st is an edge. Thus, the lemma holds.

We make the following induction hypothesis: for any pair of vertices s and t such that |st| has rank at most

k ≥ 1, all the vertices of the path τ from s to t belong to the union of the upper and lower chains with respect to

s and t.

Consider two vertices s and t such that |st| has rank k+ 1. If st is an edge of DT (P ), then we are done.

Otherwise, since P is in convex position, there exists a supporting line Ls through s such that all other

points of P lie on one side of Ls. Let Lt be a line through t that is parallel to Ls . Then on one side of

the line through st — either above or below it — all points of P lie between Ls and Lt . Without loss

of generality, assume that all points of P above the line st lie between Ls and Lt . Note that if this set

of points is empty, then s and t are connected in DT (P ) by a horizontal path (possibly a single edge) of

weight |st|, and the statement follows. Let v ∈ P be a point above st that maximizes the angle γ = ∠svt.

If γ ≤ ξ ≈ 2.057 (where ξ/ sin ξ = ρ), then by Lemma 10, τ is the path we obtain from Lemma 1.

Therefore, by Lemma 2, all the vertices of the path τ are in U ∪ L.
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Suppose γ > ξ. If sv is an edge of DT (P ) and vt is an edge of DT (P ), then we are done. If sv is an edge

of DT (P ) and vt is not an edge of DT (P ), then by Lemma 11, the first edge of τ is sv and we can apply

induction from v to t. Since v is not adjacent to t, the union of the upper and lower chains with respect to

v and t is a subset of U ∪L. Therefore, all the vertices of τ are in U ∪L. If sv is not an edge of DT (P ) and

vt is an edge of DT (P ), a symmetric argument applies.

Suppose that γ > ξ, sv is not an edge of DT (P ) and vt is not an edge of DT (P ). Let Lv be a supporting

line passing through v such that all other points in P are below Lv. Let s′ and t′ be the intersections of Lv

with Ls and Lt, respectively. Then by Lemma 12, the part of τ from s to v is inside the triangle 4ss′v and

the part of τ from v to t is inside the triangle 4vt′t. Since the part of U from s to v belongs to 4ss′v and

the part U from v to t belongs to 4vt′t, the proof is complete. ut

From Lemma 13 and Theorem 1, we get the following theorem.

Theorem 5 There is a 9ρ-competitive online routing algorithm for Delaunay triangulations of points in convex

position, where ρ ≈ 2.326 is the root of

ρ3 − ρ−
(
π + arctan

(
1− ρ2

ρ

))√
ρ4 − ρ2 + 1 = 0

and 9ρ ≈ 20.926.

3.2 (11 + 3
√

2)/2 ≈ 7.621-Competitive Online Routing for Points in Convex Position

We present an online routing algorithm with a competitive ratio of at most (11 + 3
√

2)/2 for Delaunay

triangulations of sets of points in convex position, where (11 + 3
√

2)/2 ≈ 7.621. Throughout this section we

assume that P is a set of points in convex position in the plane. For ease of exposition, we assume without

loss of generality that the line segment st is horizontal, with s to the left of t. Let 	st be the circle whose

diameter is the line segment st. Let S(s, t) be the axis-parallel square whose bisector is the line segment

st. Again, let U and L denote the respective upper and lower chains of s and t in DT(P ). Before proving

Theorem 17, we begin with a few geometric lemmas and observations used to prove the correctness of the

algorithm and to bound its competitive ratio.

Lemma 14 If a line ` is not parallel to any side of a convex polygon Q, then ` intersects the boundary of Q in

at most two points.

17



s t

ui

ui+1

`i′

`j `j+1

uj′

ur+1

ur

`r′

Fig. 7 The general shape of a routing path (in bold) that crosses st three times when P is in convex position.

Lemma 15 If vertex v ∈ U (respectively v ∈ L) is outside of 	st then v is adjacent to at least one vertex v′ ∈ L

(respectively v′ ∈ U) that is in 	st.

Proof Suppose that both v and v′ are outside 	st. By definition, every edge between a vertex in U and a

vertex in V must intersect st. Since vv′ intersect st and st is the diameter of 	st, every circle with v and v′

on its boundary will either contain s in its interior or t in its interior. This contradicts the fact that vv′ is

an edge of the Delaunay triangulation. ut

We now describe the routing algorithm. The message starts at a node s with destination t. The algorithm

first forwards the message from s to one of its neighbours on U ∪ L that is in S(s, t). Such a vertex must

exist by Lemma 15. The algorithm makes a forwarding decision at each vertex v along the route, which we

now describe. Without loss of generality, suppose that v is on the upper chain (an analogous symmetric

case applies if v is on the lower chain). Let u be the vertex adjacent to v on the upper chain and let ` be

the vertex adjacent to v that is furthest right on the lower chain. If u is in S(s, t) then forward the message

to u, otherwise forward it to `. This decision can be made locally given the following information stored in

the header: the source s, the destination t and N(v), the set of vertices adjacent to v. Let σ be the path

followed by the message.

For ease of exposition, we assume that st is horizontal with s to the left of t. The initial call to the

algorithm is LocalConvexRoute(s, t,m). Let σ be the path followed by the message from s to t (refer to

Figure 7).
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Algorithm 2 LocalConvexRoute(s, t,m).

Input: c is the current node, N(c) is the set of vertices adjacent to c. The header contains s the source node, t the

destination node and m the message. Recall that we reorient the graph such that st is horizontal.

Output: Forward message and header from c to one of the vertices in N(c) until t is reached.

1: Let N ′(c) = {u, `} where u is the furthest neighbour adjacent to c on the upper chain and ` is the furthest neighbour

adjacent to c on the lower chain where distance is measured by the x-coordinate of the vertex.

2: if t ∈ N(c) then

3: Forward s, t,m to vertex t. EXIT

4: end if

5: if c = t then

6: Destination Reached. EXIT

7: end if

8: if c = s then

9: Forward s, t,m to a vertex of N ′(c) that is on the Voronoi path. EXIT

10: end if

11: Let x ∈ N ′(c) be the vertex such that cx does not intersect st.

12: Let y ∈ N ′(c) be the vertex such that cy intersects st.

13: if cx is in S(s, t) then

14: Forward s, t,m to vertex x

15: else

16: Forward s, t,m to vertex y

17: end if

Lemma 16 The path σ taken by the message m crosses the line segment st at most three times before reaching

t.

Proof Notice that prior to crossing the boundary of the square, the path σ crosses st. Without loss of

generality, assume that σ crosses st for the first time from a vertex on the upper chain to a vertex on the

lower chain. Let x1y1 be this edge with x1 ∈ U and y1 ∈ L. Since the path crosses st, x1 must be adjacent

to a vertex x′1 ∈ U that is outside S(s, t). By Lemma 15, y1 must be in 	st since it is also adjacent to x′1.

By Observation 14, the portion of the upper chain from x1 to t in clockwise order and the portion of the

lower chain from y1 to t in counter-clockwise order intersects S(s, t) a total of 6 times.

Suppose, for a contradiction, that σ crossed st four times with the first edge as above from x1 to y1.

Let the other three edges be x2y2, x3y3, and x4y4 with xi ∈ U and yi ∈ L. This means that the upper chain

intersects S(s, t) twice from x1 to x2 since x′1 is outside S(s, t) and x2 is inside S(s, t) by Lemma 15. Similarly,
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the lower chain between y2 and y3 intersects S(s, t) twice. The upper chain from x3 to x4 intersects S(s, t)

twice. Finally, the edge on the lower chain adjacent to y4 intersects S(s, t) since this is what prompted the

algorithm to cross to x4. However, this is at least 7 intersections which is a contradiction. ut

Lemma 17 The length of the path σ is at most (11 + 3
√

2)|st|/2.

Proof Let U ′ be the sequence s = u′0, u
′
1, ...u

′
k = t of vertices followed by the message on U and L′ be

s = `′0, `
′
1, ...`

′
b = t be the sequence followed by the message on L. By construction, neither U ′ nor L′ go

outside S(s, t). Since the union of these two sequences is a convex polygon inside S(s, t), its perimeter is at

most the perimeter of the square which is 4|st|. This accounts for all of σ except for the crossing edges.

By Lemma 16, σ crosses st at most 3 times. Each of those edges has one endpoint in S(s, t) and one

endpoint in 	st. Therefore, its length is at most (
√

2/2 + 1/2)|st| since the longest such edge has one

endpoint on the corner of the square and the other diametrically opposed on the boundary of the circle.

Summing the components gives an upper bound on σ of (11 + 3
√

2)|st|/2. ut

Theorem 6 follows from Lemma 17:

Theorem 6 There is a (11+3
√

2)/2-competitive online routing algorithm for Delaunay triangulations of convex

point sets.
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