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In various wireless networking settings, node locations determine a network’s topology,
allowing the network to be modelled by a geometric graph drawn in the plane. Without

any additional information, local geometric routing algorithms can guarantee delivery
to the target node only in restricted classes of geometric graphs, such as triangulations.

In order to guarantee delivery on more general classes of geometric graphs (e.g., convex

subdivisions or planar subdivisions), previous local geometric routing algorithms required
Θ(logn) state bits to be stored and passed with the message. We present the first local

geometric routing algorithm using only one state bit to guarantee delivery on convex

subdivisions and, when the algorithm has knowledge of the incoming port (the preceding
node on the route), the first stateless local geometric routing algorithm that guarantees

delivery on edge-augmented monotone subdivisions (including all convex subdivisions).

We also show that Ω(logn) state bits are necessary in planar subdivisions in which faces
may have three or more reflex vertices.

Keywords: local routing; geometric routing; graph traversal; geometric graph; convex

subdivision

1. Introduction

1.1. Local Geometric Routing

A local routing algorithm determines a sequence of forwarding decisions that defines

a path in a network from a given source node to a given target node, where each

internal node along the path selects one of its neighbours to extend the path as

a function of its local network neighbourhood and limited information about the

target node. Additional information available to each node on the path may in-

clude the identity of its neighbour that forwarded the message (the incoming port

on which the message arrived) as well as a small number of state bits passed with

the message (which may be modified locally before forwarding). In various wireless

networking settings, the locations of nodes and physical proximity between nodes

determine the pairs of nodes that can communicate; that is, the network is deter-

mined geometrically. The network’s geometric properties can provide navigational

cues, enabling a local routing algorithm to use this additional geometric informa-

tion to guide a message towards its destination. Each node may know its location,

allowing every node on the path to make a forwarding decision as a function of the

relative locations of its neighbours, the target node, and itself. We refer to such al-

gorithms as local geometric routing algorithms. This paper examines the problem of

defining local geometric routing algorithms that guarantee delivery from any source

node to any target node on specific classes of geometric graphs.

1.2. Model and Definitions

We represent a network by an undirected graph G drawn in the plane, where each

vertex is represented by a point and each edge is represented by a (straight) line

segment connecting the vertices at its endpoints. Let V (G) denote the set of vertices

(points) of G and let E(G) denote its set of edges (line segments), where n = |V (G)|
and m = |E(G)|. To simplify the discussion, we assume that vertices are in general

position. By that we mean that no three points are collinear and no two points have
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Fig. 1. (A) a convex subdivision G. (B) a monotone subdivision G′. (C) an edge-augmented
convex subdivision that has G as a spanning subgraph.

the same x-coordinate or the same y-coordinate.

We require G to be connected for a route to exist between any pair of nodes.

The drawing need not be planar, although some of our discussion relates to planar

subdivisions. Recall that a drawing of a graph G in the plane is a planar subdivi-

sion (also planar drawing, plane graph, or planar straight-line graph) if each edge in

E(G) is drawn as a line segment and any two edges intersect only at their common

endpoint. A planar subdivision partitions the plane into facesa. When each internal

face is a convex polygon and the boundary of the outer face is the convex hull, the

drawing is a convex subdivision. When each internal face is a triangle, the subdivi-

sion is a triangulation. When each internal face is an x-monotone polygon (but not

necessarily convex) and the boundary of the outer face is also an x-monotone poly-

gon, the drawing is a monotone subdivision. Recall that a polygon is x-monotone if

the intersection of its interior with any vertical line gives a connected region (i.e.,

a line segment). Every convex subdivision is also a monotone subdivision.

When G contains a spanning subgraph that is a convex subdivision, (respec-

tively, a monotone subdivision), then we say G is an edge-augmented convex sub-

division (respectively, an edge-augmented monotone subdivision); in this case, G

corresponds to a convex subdivision to which zero or more edges have been added

joining pairs of vertices in the underlying convex subdivision, possibly creating edge

crossings. Edge-augmented convex subdivisions are not planar in general. See Fig-

ure 1. Any routing algorithm that guarantees delivery on edge-augmented convex

subdivisions also guarantees delivery on convex subdivisions.

Using notation similar to that previously defined3,11,12, a local geometric routing

algorithm can be expressed as a routing function f : V (G) × V (G) ×P(V (G)) →
V (G), where P() denotes the power set, with arguments f(u, t,N(u)) such that

u ∈ V (G) is the vertex for which a forwarding decision is being made (i.e., the node

presently holding the message), t ∈ V (G) is the target vertex, and N(u) ⊆ V (G)

is the set of neighbours of u in G. Upon receiving a message destined for a node

t, a node u forwards the message to its neighbour w = f(u, t,N(u)). Since it does

not know which of its neighbours forwarded the message to it, we say the routing

aSome definitions for planar subdivisions disallow vertices of degree one. The discussion in this

paper applies to both definitions: with or without vertices of degree one.
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algorithm is predecessor-oblivious.

If u knows which of its neighbours forwarded the message, then we say the rout-

ing algorithm is predecessor-aware and represent the corresponding routing func-

tion as f(u, v, t,N(u)), where v ∈ V (G) denotes the neighbour of u that last for-

warded the message to u. Furthermore, if c state bits are passed with the message

then we say the routing algorithm is c-bit local and the routing function becomes

f(u, t,N(u), e) (or f(u, v, t,N(u), e) if predecessor-aware), where e ∈ {0, 1}c. We fo-

cus on the cases c = 1 and c ∈ o(log n). If no bits are passed with the message then

we say the routing algorithm is stateless. Note that no state information is stored at

a node after it has forwarded a message; that is, the network is memoryless. When

a message is forwarded, its destination t and the c state bits are passed with it. All

other information is available locally at node u. Randomized solutions exist for this

problem (e.g., Chen et al.11); typical randomized routing algorithms require access

to Θ(log d) random bits at each vertex, where d denote the vertex degree. In this

work we restrict attention to deterministic routing algorithms.

1.3. Related Work

When applying a local geometric algorithm that is stateless and predecessor-

oblivious, every time a node u receives a message destined for a given target node

t, u always forwards the message to the same neighbour. Therefore, every node can

be visited at most once on the route between the source and target nodes. Conse-

quently, stateless predecessor-oblivious routing algorithms that guarantee delivery

are limited to restricted classes of geometric graphs. These algorithms include greedy

routing13 and compass routing16, both of which succeed on any Delaunay triangu-

lation but fail on more general triangulations7, as well as greedy-compass routing2,

which succeeds on any triangulation. In a triangulation each node knows the com-

plete set of edges bounding every face on which it is adjacent. Beyond triangulations

are convex subdivisions, where faces remain convex, but a node only knows two

edges bounding every face on which it is adjacent. Every stateless and predecessor-

oblivious local geometric routing algorithm fails on some convex subdivision2. Con-

seqently, local routing algorithms require additional reference beacons, or the ability

to store learned route information in state bits, to support successful navigation on

convex subdivisions or, more generally, on planar subdivisions.

Face routing16 succeeds on any planar subdivision, but requires both

predecessor-awareness and Θ(log n) state bits (assuming vertex coordinates can

be stored using Θ(log n) bits per vertex, as is the case for vertices drawn on a

polynomial-sized Θ(nγ)×Θ(nγ) grid, for some fixed γ). Variants of face routing suc-

ceed on unit disc graphs8 and some quasi unit disc graphs17. Some local geometric

algorithms define a route (or a graph traversal) on planar and near-planar subdivi-

sions by performing a depth-first traversal of a locally defined spanning tree1,5,10,18;

all such algorithms known require Θ(log n) state bits. For graphs drawn in three-

dimensional space, every stateless and predecessor-aware local geometric routing
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algorithm fails on some unit ball graph and on some quasi unit disc graph12, even

if the degree of locality is extended by any constant k (i.e., every node knows the

complete induced subgraph within distance k of itself).

If Θ(log n) state bits are available, then geometric information is not necessary to

support local routing: by storing an index into a polynomial-length universal traver-

sal sequence, predecessor-oblivious routing is possible on any graph, not restricted

to being planar nor to belonging to any particular class of drawings9; this requires

each node to be able to reconstruct the traversal sequence. Without geometric infor-

mation, a stateless routing algorithm requires knowledge of a large neighbourhood

around each node to guarantee delivery. Specifically, a predecessor-aware stateless

routing algorithm requires each node to have knowledge of the induced subgraph

within graph distance n/3 of itself; for predecessor-oblivious algorithms the distance

increases3 to n/2. There exists a set of graphs such that every stateless routing al-

gorithm whose knowledge is limited to a neighbourhood of radius less than n/3

(respectively, n/2 for predecessor-oblivious algorithms) around each node fails on

one or more of these graphs3.

In addition to knowing the target node t, knowledge of the source node s also

determines whether local routing is possible. Applying the right-hand rule along

the edges of the sequence of faces that intersect the line segment from s to t

gives a stateless predecessor-aware local geometric routing that succeeds on convex

subdivisions18 (requiring knowledge of s); this is essentially face routing applied to

a specific class of graphs that does not require backtracking. To succeed on planar

subdivisions that are not convex, face routing is occasionally forced to backtrack8,16,

requiring Θ(log n) state bits. Knowledge of s is significant even when geometric in-

formation is not available. For example, given s, a stateless predecessor-aware local

routing algorithm only requires knowledge of the induced subgraph within graph

distance n/4 of each node to guarantee delivery in any graph3, instead of distance

n/3 without knowledge of s.

Although similar to local routing, online routing6 differs by the fact that each

node u along the route has complete information about the subgraph explored prior

to arriving at u. Storing such information in a message requires Θ(n log n) state bits

in general.

For surveys on local geometric routing, see Morin18, Guan15, Urrutia19, and

Frey et al.14.

1.4. Contributions

Guaranteeing delivery on geometric graphs beyond triangulations requires state in-

formation or predecessor-awareness. In this paper we seek to bridge the gap between

stateless predecessor-oblivious local routing algorithms, which cannot guarantee de-

livery even on convex subdivisions, and Θ(log n)-bit local routing algorithms. We

examine the number of state bits (modified dynamically during execution) necessary

for local routing to succeed beyond triangulations, i.e., the amount of working mem-
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ory necessary, and answer questions that arise from previous results showing a) that

stateless local routing algorithms exist that guarantee delivery on triangulations, b)

that no stateless local routing algorithm can guarantee delivery on convex subdivi-

sions, and c) that Θ(log n) state bits suffice for local routing to guarantee delivery

on any graph. Specifically, we examine whether navigation is possible when a local

routing algorithm is provided a single state bit, whether it is possible when enabled

with predecessor awareness, and we derive a lower bound on the number of state

bits necessary. In each case we seek to define a routing algorithm and to identify

broad classes of geometric graphs on which the algorithm guarantees delivery.

No stateless predecessor-oblivious local geometric routing algorithm can guar-

antee delivery on convex subdivisions2; to succeed on convex subdivisions and,

therefore, on more general classes of graphs such as planar subdivisions, a local

geometric routing algorithm must have the ability to store state information or be

provided with predecessor awareness. To the authors’ knowledge, prior to this work

no predecessor-oblivious c-bit local geometric routing algorithm was known to guar-

antee delivery on convex subdivisions for any c ∈ o(log n). Similarly, no predecessor-

aware stateless local geometric routing algorithm was known to guarantee delivery

on convex subdivisions. This paper presents the first predecessor-aware stateless

local geometric routing algorithm and the first 1-bit predecessor-oblivious local ge-

ometric routing algorithm to guarantee delivery on any non-trivial class of geometric

graphs beyond triangulations. See Table 1. In Section 2 we present a predecessor-

oblivious local geometric routing algorithm that uses one state bit (c = 1) and

guarantees delivery on any convex subdivision. In Section 3 we show that even with

at most three reflex vertices per face, every predecessor-oblivious local geometric

routing algorithm requires c ∈ Ω(log n) state bits in the worst case; this implies

that Ω(log n) state bits are sometimes necessary for local routing to succeed in

monotone subdivisions. In Section 4, we present a stateless predecessor-aware lo-

cal geometric routing algorithm that guarantees delivery on any edge-augmented

monotone subdivision. Recall that every (edge-augmented) convex subdivison is

also an (edge-augmented) monotone subdivision. We conclude with a discussion in

Section 5.

2. Using One State Bit

We describe a predecessor-oblivious one-bit local geometric routing algorithm, called

OneBit, that guarantees delivery on any convex subdivision. Let u denote the node

holding the message, i.e., the node making a forwarding decision. As in compass

routing16 and greedy-compass routing2, we refer to the clockwise (respectively, coun-

terclockwise) neighbour of u relative to t, denoted cw(u) (respectively, ccw(u)) de-

fined as the node v ∈ N(u) that forms the smallest clockwise (counterclockwise)

angle ∠tuv. Let Hs denote the closed half-plane containing s whose boundary is

the vertical line `t through t. See Figure 2A. Algorithm OneBit never forwards the

message to a node outside Hs, enabling all nodes along the route to identify Hs
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bits predecessor oblivious

0
triangulations2

impossible on convex subdivisions2

1 convex subdivisions

O(1) beyond convex subdivisions: unknown

o(log n) impossible on monotone subdivisions with ≥ 3 reflex vertices per face

O(log n) all graphs9

bits predecessor aware

0
(edge-augmented) convex subdivisions,

(edge-augmented) monotone subdivisions

1

O(1) beyond edge-augmented monotone subdivisions: unknown

o(log n)

O(log n) planar16, unit disc8, all graphs9†

Table 1. Classes of graphs on which local routing is possible with respect to the number of state

bits and predecessor awareness. New contributions appear in bold. †Local routing using traversal
sequences requires predecessor awareness: Θ(logn) bits allows the label of the predecessor to be

encoded in state bits, providing implicit predecessor awareness.
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Fig. 2. (A) The clockwise and counterclockwise neighbours of u are defined relative to the line
segment from u to t. The state bit c remains unchanged since both ccw(u) and cw(u) are in Hs;

node u forwards the message to ccw(u) if c = 0 and to cw(u) if c = 1. (B) The bold arrows denote

the sequence of local forwarding decisions made by Algorithm OneBit from s to t on this convex
subdivision. Nodes at which the state bit toggles are shaded grey. Some edges can be traversed once
in each direction on a route; e.g., see the subsequence a → b → c → b → d. (C) The increasing

sequence of angles and the region R(C) determined by a clockwise chain C

consistently relative to `t, regardless of whether the source node s is left or right of

`t.

Algorithm OneBit uses one state bit, denoted c, to determine whether node u

should forward the message from u to cw(u) or to ccw(u). The state bit c can be

initialized arbitrarily at the source node s, e.g., c ← 0. Node s does not need to

know it is the source; the algorithm can initialize c arbitrarily if it is not assigned a
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value in {0, 1}. See Algorithm 1 and Figure 2B. The resulting route corresponds to

a sequence of clockwise forwarding decisions (when c = 0), which we call a clockwise

chain, followed by a sequence of counterclockwise forwarding decisions (when c = 1),

which we call a counterclockwise chain, followed by another clockwise chain (when

c = 0 again), and so on, until the message reaches the target node t. Note that a

clockwise chain proceeds in a counterclockwise direction relative to t, and vice versa.

The algorithm toggles the state bit whenever continuing the chain would send the

message outside Hs. As we show, each chain in the resulting sequence is contained

within a region bounded by the preceding chain, giving a convergence towards t. We

refer to the first and last vertices on a chain according to the chronological order

of the sequence of forwarding decisions as its head and tail, respectively, where the

tail of the ith chain is the head of the (i+ 1)st chain.

Algorithm 1 OneBit(u, c, t)

Preconditions: u is the node holding the message, N(u) is its set of neighbours,

c ∈ {0, 1} is the state bit passed with the message, t is the target node, and

cw(u) and ccw(u) denote the clockwise and counterclockwise neighbours of u,

respectively. Hs is the half-plane containing u bounded by the vertical line

through t.

Postconditions: Forward the message from u to w with state bit c′, where w ∈
N(u).

1: c′ ← c

2: if [c′ = 0 and ccw(u) 6∈ Hs] or [c′ = 1 and cw(u) 6∈ Hs] then

3: c′ ← not c′ (The current chain cannot be continued in Hs: change states.)

4: end if

5: if t ∈ N(u) then (The target node t is adjacent to u.)

6: w ← t (Forward the message to the target node t.)

7: else if c′ = 0 then (State 0)

8: w ← ccw(u) (Forward the message along a clockwise chain.)

9: else (State 1)

10: w ← cw(u) (Forward the message along a counterclockwise chain.)

11: end if

12: forward the message from u to its neighbour w with state bit c

Next we show that OneBit delivers the message from the source node s to the

target node t in any convex subdivision G.

Lemma 1. For every node u in a convex subdivision, if u 6= t, then cw(u) ∈ Hs or

ccw(u) ∈ Hs.

Proof. The lemma follows from the fact that the half-plane Hs is closed and is

bounded by the vertical line `t through t and that every face is convex.
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Lemma 2. Every clockwise (respectively, counterclockwise) chain C terminates,

either at t or at the head of an oppositely oriented chain.

Proof. Without loss of generality, suppose C is a clockwise chain corresponding

to the sequence of vertices v1, . . . , vk. By construction, the nodes v1, . . . , vk are all

contained in Hs and corresponds to a sequence of increasing angles ∠v1tz < · · · <
∠vktz, where z is any point that lies below t on `t. See Figure 2C. As defined in

Algorithm 1, the chain C terminates when the tail node u has no counterclockwise

neighbour. By Lemma 1, u must have a clockwise neighbour v, which defines the

head of the subsequent counterclockwise chain.

Lemma 2 implies that the forwarding sequence cannot continue indefinitely (i.e.,

it cannot cycle) without a change of state. Consequently, every chain C has a head

and a tail. Given a chain C, let R(C) denote the region bounded by C, the respective

vertical rays emanating away from its head and tail, and `t. See Figure 2C. We say

a chain is complete if it originated and terminated as a result of toggling the state

bit. Consequently, all chains are complete, except the first (whose head is the source

node s) and the last (whose tail is the target node t).

Lemma 3. If Ci and Cj are any two chains in a route such that Ci is complete

and Ci precedes Cj, then R(Cj) ⊆ R(Ci)

Proof. The result follows by induction on the sequence of chains between Ci and

Cj . Consider the case when Ci and Cj are consecutive chains. Without loss of

generality, suppose Ci is a counterclockwise chain. Let u denote any node in Ci
other than the tail. Node u forwards the message to its neighbour v = cw(u).

Therefore, ccw(v) exists. That is, either ccw(v) = u or ccw(v) = u′ such that

∠tvu′ < ∠tvu. See Figure 3A. That is, no two chains can cross. They can, however,

share a common sequence of adjacent vertices.

Lemma 4. If i 6= j and Ci and Cj are any two oppositely oriented complete chains,

then Cj 6= Ci.

Proof. Suppose without loss of generality that Ci precedes Cj . We prove the lemma

by contradiction. By definition of R(C) and Lemma 2, no point of C lies in the

interior of R(C) and, consequently, for any chains Ci and Cj , R(Ci) 6= R(Cj) if and

only if Ci 6= Cj . Suppose Ci = Cj , where Ci and Cj are two oppositely oriented

chains. Therefore, for every edge {u, v} in both Ci and Cj , u = cw(v) and v = ccw(u)

(or vice versa). Consequently, no internal vertex on the chains can have an edge into

the interior of R(Ci) = R(Cj). See Figure 3B. Since every face is convex, t must

have a neighbour in Hs. Therefore, some node on Ci must have a neighbour that is

t or that lies in the interior of R(Ci), deriving a contradiction.
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B

t

u

v

u’

t

u

v

A

Fig. 3. illustrations in support of Lemmas 3 (A) and 4 (B)

Theorem 1. Given any convex subdivision G and any vertices {s, t} ⊆ V (G),

Algorithm OneBit is a predecessor-oblivious local geometric routing algorithm that

uses one state bit to determine a sequence of forwarding decisions from s to t in G.

Proof. Each chain is finite by Lemma 2. In particular, the first chain terminates.

Each pair of subsequent chains, Ci and Cj , is complete, except for the last chain

which terminates at t. Lemmas 3 and 4 imply that R(Cj) is a proper subset of R(Ci).

Consequently, the sequence of chains converges towards `t. Since the vertices of each

chain are vertices of G, of which there are a finite number, the result follows.

3. Beyond Convex Subdivisions

Stateless predecessor-oblivious algorithms exist that succeed on triangulations, but

no such algorithm is possible for convex subdivision2. In Section 2 we showed that

a single state bit suffices to allow successful predecessor-oblivious routing on convex

subdivisions. A natural next step in generalizing the class of graphs might be to

consider planar subdivisions in which each face is “nearly convex”, i.e., where each

face has at most λ reflex vertices for a given λ ≥ 1. In this section we show that

even with at most three reflex vertices per face (λ = 3) every predecessor-oblivious

local geometric routing algorithm requires Ω(log n) state bits in the worst case.

If a vertex’s coordinates can be represented using Θ(log n) bits, then predecessor

awareness can be encoded using Θ(log n) bits. Thus, we show that either Ω(log n)

state bits or predecessor awareness are necessary when faces may have three or more

reflex vertices.

Theorem 2. Every predecessor-oblivious local geometric routing algorithm that

uses o(log n) state bits fails on some n-vertex monotone subdivision with at most

three reflex vertices per face.

Proof. Suppose c state bits are available, where c ∈ o(log n). Consequently, there
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0

f(1)

f(2)

f(3)

f(4)

f(5)

s s’

Fig. 4. Each face has at most three reflex vertices. In this example, n = 17 and k = 5.

exists n0 such that

∀n ≥ n0, c < log n− 3. (1)

Note that log denotes the binary logarithm. Choose any n ≥ max{n0, 5}. Let k =

b(n − 2)/3c and let G denote the graph obtained by subdividing every edge in

the complete bipartite graph K2,k with an additional vertex. The resulting graph

consists of k paths of length 5 whose endpoints meet at respective hubs of degree

k. This graph can be embedded in the plane by drawing the hub vertices at (0, 0)

and (4, 0), and for each i ∈ {0, . . . , k − 1} drawing the vertices of the ith path at

(1, i), (2, f(i)), (3, i), where the function f assigns coordinates for the middle vertex

on each path. The embedding is non-crossing if and only if f is strictly increasing.

If the middle vertex on each path is assigned an integer y-coordinate in the range

{0, . . . , n2 − 1}, then f could be any of
(
n2

k

)
distinct increasing integer functions

f : {0, . . . , k− 1} → {0, . . . , n2 − 1}. Suppose the origin s is one of the hub vertices

and the destination t is the middle vertex of one of the k paths. Let s′ denote the

second hub vertex. See Figure 4.

Three properties of this construction are important. Firstly, the local neighbour-

hoods at s and s′ are independent of f . Secondly, for any y ∈ {k, . . . , n2−k}, a node

positioned at (2, y) could be the middle vertex of any of the k paths; the identity

of this path cannot be determined from the local neighbourhood of s or s′. Thirdly,

each face has at most three reflex vertices.

Each node can make at most 2c distinct forwarding decisions: one for each of

the 2c possible combinations of state bits. In particular, the node s can forward the

message to at most 2c of its neighbours and, similarly, s′ can forward the message
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to at most 2c of its neighbours. Therefore, the message can be forwarded on at

most 2c+1 of the k paths. Recall that c denotes the number of state bits used by

the algorithm. We have the following:

c < log n− 3 by (1)

⇒ c < log(n− 2)− 2 since n > 2

⇒ c+ 1 < log((n− 2)/3)− 1

⇒ c+ 1 < log k

⇒ 2c+1 < k. (2)

By (2) the number of paths that can be explored (2c+1) is strictly less than the

total number of paths (k). Consequently, there is at least one path along which the

message will never be forwarded. Since t can lie on any of the k middle vertices, it

follows that every algorithm fails on at least one of the
(
n2

k

)
graphs defined by f .

4. Using Predecessor Awareness

As shown in Section 3, to succeed on simple classes of geometric graphs beyond

convex subdivisions, a local routing algorithm requires Ω(log n) state bits. If vertex

coordinates can be stored using Θ(log n) bits per vertex, then a predecessor’s coor-

dinates can be stored using Θ(log n) bits. For some specific classes of graphs, fewer

bits suffice to encode predecessor awareness (e.g., orthogonal subdivisions).

In this section we describe a predecessor-aware stateless local geometric rout-

ing algorithm, called PredAware(u, v, t), that guarantees delivery on any edge-

augmented monotone subdivision.

Let G be an edge-augmented monotone subdivision. We define a partial order

P over the vertex set V (G) as follows. For each u ∈ V (G), let `u denote the vertical

line through u, let z′u denote a point on `u above u, and let H−u and H+
u denote the

respective left and right half-planes bounded by `u. By the assumption of general

position, the set of neighbours of each vertex u is partitioned by H−u and H+
u , and

u is the only vertex on `u (z′u is not a vertex). Let the ith left neighbour of u,

denoted leftu(i), be the node in v ∈ N(u) ∩H−u that forms the ith smallest convex

angle ∠vuz′u. The parent of u is its first left neighbour, leftu(1). Similarly, let the

ith right neighbour of u, denoted rightu(i), be the node v ∈ N(u) ∩H+
u that forms

the ith smallest convex angle ∠vuz′u. See Figure 5A. If u has no left neighbours,

then u is a root. If u has no right neighbours, then u is a leaf. For all nodes u and

v, u = leftv(i) for some i if and only if v = rightu(j) for some j; in particular, this

inverse relationship exists if and only if u and v are neighbours and u lies to the left

of `v. The left neighbour relation, ≺ (or equivalently, the right neighbour relation)

assigns an orientation to each edge in E(G) such that u ≺ v if {u, v} ∈ E(G) and

ux < vx, where ax denotes the x-coordinate of point a. That is, each (previously

undirected) edge {u, v} ∈ E(G), where ux < vx, is assigned the orientation (u, v).

Since x-coordinates belong to a total order, the corresponding directed graph is

acyclic, which defines the partial order P on the vertex set V (G). See Figure 5C.
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z′u

a

b

c
d

e

lu

A B C

vl
vr

vl
vr

u

Fig. 5. (A) Nodes a and b are the respective 1st and 2nd left neighbours of u. Node a is the

parent of u. Nodes c, d, and e are the respective 1st, 2nd, and 3rd right neighbours of u. (B) An

edge-augmented monotone subdivision G, where the underlying monotone subdivision is shown in
bold. (C) The corresponding directed acyclic graph on G with parent edges defining a spanning

tree in bold.

Lemma 5. P defines a single-source (single root) single-sink (single leaf) directed

acyclic graph over G.

Proof. Let M be the monotone subdivision underlying G. Recall that the boundary

of the exterior face of any monotone subdivision is monotone. Hence M has a

leftmost and a rightmost node, which we denote by vl and vr, respectively. Since

these nodes remain incident to the outer face even after edge augmentation, they

are also the leftmost and rightmost vertices in G. Observe that for each vertex

v 6∈ {vl, vr} of G, there is a monotone path from vl to vr that passes through v.

Hence every vertex v 6∈ {vl, vr} has at least one left and at least one right neighbour.

The existence of a directed cycle in G would imply some edge oriented from

right to left. By definition, all edges are oriented from left to right. Therefore, the

resulting edge orientations on G determine a directed acyclic graph with a unique

source vl and a unique sink vr.

The term “source” as used in Lemma 5 refers to a vertex with in-degree zero

and non-zero out-degree in a directed acyclic graph. Throughout the rest of the

paper, a source node refers to the initial node s from which a message is routed to

a target node t.

Algorithm PredAware traverses every edge of G using the partial order P defined

on G. The orientation of each edge and, consequently, the partial order P, can be

determined locally by any node u that knows its coordinates and those of its set of

neighbours N(u). The route corresponds to a depth-first traversal of a spanning tree

of G, resulting in a complete traversal of the graph’s vertices (implying guaranteed

delivery). Specifically, for each node u ∈ V (G) that is not the leftmost node (which

is the tree root) the edge {u, leftu(1)} ∈ E(G) (i.e., the edge from u to its parent)

corresponds to a tree edge.

Lemma 6. The set of parent edges defines a spanning tree on G.
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Proof. By Lemma 5, the partial order P corresponds to a directed acyclic graph

with a single source on the graph G. Each vertex other than the root has a single

parent edge, which is an in-edge. The result follows.

Let u denote the node holding the message, i.e., the node making a forwarding

decision. Let v ∈ N(u) denote the neighbour of u that last forwarded the message

to u. At the start of the route (when u = s initially), suppose v = ∅. The tree

traversal algorithm is described in Algorithm 2.

Theorem 3. Given any edge-augmented monotone subdivision G and any vertices

{s, t} ⊆ V (G), Algorithm PredAware is a predecessor-aware stateless local geometric

routing algorithm that determines a sequence of forwarding decisions from s to t in

G. Furthermore, Algorithm PredAware performs a traversal of G.

Proof. Upon receiving the message from its parent, each node u sequentially for-

wards the message to each of its right neighbours in clockwise order (see lines 9–14

and 17–24 in Algorithm 2). Upon receiving the message from its ith right neigh-

bour, u forwards the message to its (i + 1)st right neighbour. If u has no (i + 1)st

neighbour, then u returns the message to its parent. If u receives the message from

a left neighbour other than its parent, then u returns the message to the sender;

this indicates that the message was sent along a non-tree edge, and the message

is returned immediately. Therefore, the route is extended only when a node u re-

ceives the message from its parent, by forwarding the message to each of u’s right

neighbours. A node’s set of right neighbours includes all of its children in the span-

ning tree on the set of parent edges. Algorithm 2 generates a depth-first recursive

traversal of the set of parent edges, which, by Lemma 6, corresponds to a spanning

tree of G. The resulting sequence of forwarding decisions is a preorder (depth-first)

traversal of the spanning tree.

Although local algorithms exist for various classes of geometric graphs that

construct a spanning tree on which a depth-first tree traversal determines a graph

traversal sequence (e.g., de Berg et al.1 and Morin18), these all require Θ(log n)

state bits. Algorithm PredAware is stateless. Its ability to guarantee delivery on a

monotone subdivision is due to predecessor awareness.

5. Discussion and Directions for Future Research

Although stateless local geometric routing algorithms exist that guarantee deliv-

ery on triangulations, no stateless local routing algorithm can guarantee delivery

on convex subdivisions2. Similarly, although Θ(log n)-bit local routing algorithms

exist that guarantee delivery on any graph (including planar subdivisions)9, no

o(log n)-bit algorithm is known that guarantees delivery on planar subdivisions

(and, therefore, nor on monotone subdivision), even with predecessor awareness.
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Algorithm 2 PredAware(u, v, t)

Preconditions: u is the node holding the message, N(u) is its set of neighbours,

v ∈ N(u) is u’s neighbour that last forwarded the message, t is the target node,

leftu(i) and rightu(i) denote the ith left and right neighbours of u, respectively.

Postconditions: Forward the message from u to w, where w ∈ N(u).

1: if t ∈ N(u) then (The target node t is adjacent to u.)

2: w ← t (Forward the message to the target node t.)

3: else if v = ∅ then (There is no predecessor: initiate the route.)

4: if rightu(1) 6= ∅ then (u has a right neighbour.)

5: w ← rightu(1) (Forward the message to u’s first right neighbour.)

6: else (u has no right neighbour.)

7: w ← leftu(1) (Forward the message to u’s parent.)

8: end if

9: else if v = leftu(1) then (u’s parent passed the message into a new subtree of

u.)

10: if rightu(1) 6= ∅ then (u has a right neighbour.)

11: w ← rightu(1) (Forward the message to u’s first right neighbour.)

12: else (u has no right neighbour.)

13: w ← v (Return the message to u’s parent.)

14: end if

15: else if v = leftu(i) for some i ≥ 2 then (This edge is not in the spanning tree;

return the message.)

16: w ← v (Return the message to the sender v.)

17: else (v = rightu(i) for some i. Traversal of u’s ith subtree is complete. Traverse

u’s (i+ 1)st subtree if it exists.)

18: if rightu(i+ 1) 6= ∅ then (u has an (i+ 1)st right neighbour.)

19: w ← rightu(i+ 1) (Forward the message to u’s (i+ 1)st right neighbour.)

20: else if leftu(1) 6= ∅ then (u has no (i + 1)st right neighbour but has a

parent.)

21: w ← leftu(1) (Forward the message to u’s parent.)

22: else (u has neither an (i+ 1)st right neighbour nor a parent: u is the root.)

23: w ← rightu(1) (Forward the message to u’s first right neighbour.)

24: end if

25: end if

26: forward the message from u to its neighbour w

The algorithms presented in this paper reduce the gap between the classes of geo-

metric graphs on which guaranteed delivery is possible without state bits and those

on which it is possible with Θ(log n) state bits. Several questions remain to be

answered to close this gap. See Table 1.

If nodes have distinct labels (which is necessary if the target node t can be any

node in V (G)) then identifying t in the message requires Ω(log n) bits. That data is
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static and is not modified by the routing algorithm. The goal of this research is to

minimize the state bits modified dynamically by the algorithm. With sufficient state

bits, a routing algorithm can record the complete partial graph that has been ex-

plored (e.g., O(n log n) state bits). Braverman’s local routing algorithm9 guarantees

delivery on any graph using Θ(log n) state bits, regardless of geometry, and without

requiring predecessor awareness. In many cases, Θ(log n) bits is an allowable cost.

We seek to identify and characterize classes of geometric graphs on which deliv-

ery can be guaranteed using few states. In this paper we showed that guaranteed

delivery is possible on convex subdivisions using only one state bit and without

predecessor awareness. Similarly, we showed that using only predecessor awareness

and no state bits, guaranteed delivery is possible on edge-augmented monotone sub-

divisions. We showed that even with at most three reflex vertices per face, every

predecessor-oblivious local geometric routing algorithm requires c ∈ Ω(log n) state

bits in the worst case, even on monotone subdivisions. Routing in planar subdivi-

sions (and other classes of geometric graphs) allows a local routing algorithm to

capitalize on the inherent geometry to provide navigational beacons that may per-

mit guaranteeing delivery using fewer states than are necessary on arbitrary graphs.

This leads to some natural open questions:

• On what classes of geometric graphs can a local geometric routing algorithm

guarantee delivery using O(1) state bits?

• On what classes of geometric graphs can a stateless local geometric routing

algorithm guarantee delivery using predecessor awareness?

• With both predecessor awareness and O(1) state bits, can a local routing

algorithm guarantee delivery on more general classes of graphs than if it

were predecessor-aware and stateless?

This work assumes general position. When vertices are not in general posi-

tion, there exist examples of polygons with collinear vertices that cause Algorithm

PredAware to fail, even if we assume points are rotated or perturbed by ε. This

leaves open the problem of local routing on monotone subdivisions that are not in

general position.

An interesting related question is to examine local geometric traversal algo-

rithms. Algorithm PredAware eventually forwards the message to every vertex; that

is, it traverses edge-augmented monotone subdivisions using predecessor aware-

ness but without any additional state bits. Without predecessor awareness, Ω(1)

state bits are necessary to traverse non-Hamiltonian graphs. Since there exist non-

Hamiltonian triangulations, Ω(1) state bits are necessary even to traverse triangu-

lations. Does there exist a predecessor-oblivious geometric traversal algorithm that

uses O(1) state bits and can traverse all triangulations?

Finally, measuring and bounding a local routing algorithm’s dilation, also known

as its competitive ratio, (worst-case ratio of actual route length to shortest path

length) is of interest. Specifically, can O(1) dilation be guaranteed on convex sub-

divisions with O(1) state bit?
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