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ABSTRACT

Chvátal and Klincsek (1980) gave an O(n3)-time algorithm for the problem of finding a

maximum-cardinality convex subset of an arbitrary given set P of n points in the plane.

This paper examines a generalization of the problem, the Bottleneck Convex Subsets
problem: given a set P of n points in the plane and a positive integer k, select k pairwise
disjoint convex subsets of P such that the cardinality of the smallest subset is maximized.

Equivalently, a solution maximizes the cardinality of k mutually disjoint convex subsets
of P of equal cardinality. We give an algorithm that solves the problem exactly, with

running time polynomial in n when k is fixed. We then show the problem to be NP-hard

when k is an arbitrary input parameter, even for points in general position. Finally,
we give a fixed-parameter tractable algorithm parameterized in terms of the number of
points strictly interior to the convex hull.

Keywords: Convex set; NP-hard; FPT-algorithms.
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(a) (b) (c)

Fig. 1. (a) A point set P . (b) A solution to the Bottleneck Convex Subsets problem when k = 2.

(c) A solution when k = 3.

1. Introduction

A set P of points in the plane is convex if for every p ∈ P there exists a closed half-

plane H+ such that H+ ∩P = {p}. Determining whether a given set P of n points

in the plane is convex requires Θ(n log n) time in the worst case, corresponding to

the time required to determine whether the convex hull of P has n vertices on its

boundary 19. Chvátal and Klincsek 4 gave an O(n3)-time and O(n2)-space algorithm

to find a maximum-cardinality convex subset of any given set P of n points in the

plane. Later, Edelsbrunner and Guibas 8 improved the space complexity to O(n). In

this paper, we examine a generalization of the problems to multiple convex subsets

of P . Given a set P of points in the plane and a positive integer k, we examine

the problem of finding k convex and mutually disjoint subsets of P , such that the

cardinality of the smallest set is maximized (e.g., see Figure 1). We define the

problem formally, as follows.

BOTTLENECK CONVEX SUBSETS

Instance: A set P of n points in R2, and a positive integer k.

Problem: Select k sets P1, . . . , Pk such that

• ∀i ∈ {1, . . . , k}, Pi ⊆ P ,

• ∀i ∈ {1, . . . , k}, Pi is convex,

• ∀{i, j} ⊆ {1, . . . , k}, i 6= j ⇒ Pi ∩ Pj = ∅, and

• min
i∈{1,...,k}

|Pi| is maximized.

Since every subset of a convex set of points remains convex, any k convex sets

can be made to have equal cardinality by removing points from any set whose

cardinality exceeds that of the smallest set. Therefore, an equivalent problem is

to find k mutually disjoint convex subsets of P of equal cardinality, where the

cardinality is maximized.
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1.1. Our contributions

In this paper we examine the problem of finding k large convex subsets of a given

point set with n points. Our contributions are as follows:

(1) We give a polynomial-time algorithm that solves Bottleneck Convex Subsets

for any fixed k. The algorithm constructs a directed acyclic graph G whose

vertices correspond to distinct configurations of edges passing through vertical

slabs between neighbouring points of P . A solution to the problem is found

by identifying a node in G associated with a maximum-cardinality set that is

reachable from the source node.

(2) Using a reduction from a restricted version of Numerical 3-Dimensional Match-

ing, which is known to be NP-complete, we show that Bottleneck Convex Sub-

sets is NP-hard when k is an arbitrary input parameter.

(3) We show that Bottleneck Convex Subsets is fixed-parameter tractable when

parameterized by the number of points that are strictly interior to the convex

hull of the given point set, i.e., the number of non-extreme points. Therefore,

if the number of points interior to the convex hull is fixed, then for every k,

Bottleneck Convex Subsets can be solved in polynomial time.

1.2. Related work

A convex k-gon is a convex set with k points. A convex k-hole within a set P is a

convex k-gon on a subset of P whose convex hull is empty of any other points of

P . A rich body of research examines convex k-holes in point sets 22. By the Erdős-

Szekeres theorem 12, every point set with n points in the Euclidean plan contains a

convex k-gon for some k ∈ Ω(log n). Urabe 23 showed that by repeatedly extracting

such a convex Ω(log n)-gon, one can partition a point set into O(n/ log n) convex

subsets, each of size O(log n).

Given a set P of n points in the plane, there exist O(n3)-time algorithms to

compute a largest convex subset of P 4,8 and a largest empty convex subset of

P 2. Both problems are NP-hard in R3 15. In fact, finding a largest empty convex

subset is W[1]-hard in R3 15. González-Aguilar et al. 16 have recently examined the

problem of finding a largest convex set in the rectilinear setting.

The convex cover number of a point set P is the minimum number of disjoint

convex sets that covers P . The convex partition number of a point set P is the

minimum number of convex sets with disjoint convex hulls (in addition to their

vertex sets being pairwise vertex disjoint) that covers P . Urabe 23 examined lower

and upper bounds on the convex cover number and the convex partition number.

He showed that the convex cover number of a set of n points in R2 is in Θ(n/ log n)

and its convex partition number is bounded from above by d 2n
7 e. Furthermore, there

exist point sets with convex partition number at least dn−1
4 e.

Arkin et al. 1 proved that both finding the convex cover number and the convex

partition number of a point set are NP-hard problems, and gave a polynomial-
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time O(log n)-approximation algorithm for both problems. Although the Bottleneck

Convex Subsets problem appears to be similar to the convex cover number problem

as both problems attempt to find disjoint convex sets, the objective functions are

different. Neither the NP-hardness proof nor the approximation result for convex

cover number 1 readily extends to the Bottleneck Convex Subsets problem. Previous

work has also considered partitioning a point set into empty convex sets, where the

convex hulls of the sets do not contain any interior point. For the number of empty

convex point sets, an upper bound of d 9n
34 e and a lower bound of dn+1

4 e is known 5.

We refer the readers to 10,11 for related problems on finding convex sets with various

optimization criteria.

Another related problem in this context is to partition a given point set using a

minimum number of lines (Point-Line-Cover), which Megiddo and Tamir 21 showed

to be NP-hard, and was subsquently shown to be APX-hard 3,20. Point-Line-Cover is

known to be fixed-parameter tractable when parameterized on the number of lines.

Whether the minimum convex cover problem is fixed-parameter tractable remains

an open problem 9. Note that for any fixed k, one can decide whether the minimum

convex cover number of a point set is at most k in polynomial time 1.

Previous work on the Ramsey-remainder problem provides insight into the Bot-

tleneck Convex Subsets problem 13. Given an integer i, the Ramsey-remainder is

the smallest integer rr(i) such that for every sufficiently large point set, all but at

most rr(i) points can be partitioned into convex sets of size at least i. Therefore, a

Bottleneck Convex Subsets problem with sufficiently large n and with k ≤ bn−rr(k)
k c

must have a solution where the size of the (rr(k)+1)th smallest convex set is at least

k. Note that the Bottleneck Convex Subsets problem is straightforward to solve for

the case when k ≥ n/3, i.e., one needs to compute a balanced partition without

worrying about the convexity of the sets. However, the case when k = n/4 already

becomes nontrivial. Károlyi 18 derived a necessary and sufficient condition for a set

of 4n points in general position to admit a partition into n convex quadrilaterals,

and gave an O(n log n)-time algorithm to decide whether such a partition exists.

2. A Polynomial-Time Algorithm for a Fixed k

Given a set P of n points in the plane and a fixed integer k, we describe an

O(kn5k+3)-time algorithm that solves Bottleneck Convex Subsets for any fixed k.

Here we give an outline of the algorithm. The idea is to construct a directed

acyclic graph G each of whose vertices corresponds to a vertical slab of the plane

in a given state with respect to the selected subsets P1, . . . , Pk of P , with an edge

from one slab to the slab immediately to its right if the states of the two neighbour-

ing slabs form a locally mutually compatible solution. The notion of compatibility

depends on whether the union of the convex regions intersected by these two slabs

is also convex. A feasible solution (P1, . . . , Pk are mutually disjoint convex subsets

of P ) corresponds to a directed path starting at the root node in G, i.e., a sequence

of consecutive compatible slabs. Among the feasible solutions, an optimal solution
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(mini∈{1,...,k} |Pi| is maximized) corresponds to a path that ends at a node for which

the cardinality of the smallest set is maximized.

We now describe the details of the algorithm. Rotate P such that no two of

its points lie on a common vertical line. Partition the plane into n − 1 vertical

slabs, S1, . . . , Sn−1, determined by the n vertical lines through points of P . Let L

be the set of
(
n
2

)
line segments whose endpoints are pairs of points in P . Within

each slab, Si, consider the set of line segments Li = {l ∩ Si | l ∈ L}. A convex

point set corresponds to the vertices of a convex polygon; in a feasible solution,

j convex polygons intersect Si for some j ∈ {0, . . . , k}. Each of these polygons

has a top segment and a bottom segment in Li. There are at most
(|Li|

2

)
possible

choices of segments in Li for the first polygon,
(|Li|−2

2

)
for the second polygon, . . .,

and
(|Li|−2(j−1)

2

)
for the jth polygon, giving

∏j−1
x=0

(|Li|−2x
2

)
∈ O(|Li|2j) = O(n4j)

possible combinations of edges in Si for a given j ∈ {0, . . . , k}.
We construct an unweighted directed acyclic graph G. Each vertex in V (G)

corresponds to a slab Si, a j ∈ {0, . . . , k}, and a top edge and a bottom edge for

each of the j convex polygons that intersect Si. Consequently, the number of vertices

in G is O(
∑n−1

i=1

∑k
j=0 n

4j) = O(kn4k+1).

Furthermore, we create (n/k)k copies of each vertex associated with a slab Si,

each of which is assigned a distinct value (`1, . . . , `k) ∈ Zk, where for each j ∈
{1, . . . , k}, `j = |Pj ∩ (S1 ∪ · · · ∪ Si)|, i.e., the number of points of Pj that lie in

the first i slabs. We refer to ` = minj∈{1,...,k} `j as the level of the vertex. Each

vertex at level ` in G corresponds to a slab Si, such that the minimum cardinality

of any polygon in S1∪ . . .∪Si (or partial polygon if it includes points to the right of

Si) is `. Therefore, the resulting graph G has O((n/k)kkn4k+1) ⊆ O( 1
kk−1 · n5k+1)

vertices. See Figure 2.

Every slab has exactly one point of P on its left boundary and one on its right

boundary. For each vertex v in G, let vl and vr denote these two points of P for

the slab corresponding to v. We add an edge from vertex u to vertex v in G if they

are compatible. See Figure 3. The vertices u and v are compatible if:

• u and v correspond to neighbouring slabs, u to Si and v to Si+1, for some i,

and

• all top and bottom segments associated with u that do not pass through pi
continue in v, where pi = ur = vl is the point of P on the common boundary

of Si and Si+1, and

• one of the four following conditions is met:

Case 1. either (a) one top associated with u ends at pi and one top associated with

v begins at pi, forming a right turn at pi, or (b) one bottom associated

with u ends at pi and one bottom associated with v begins at pi, forming

a left turn at pi (all polygons in Si continue in Si+1; the number of edges

in Si is equal to that in Si+1);

Case 2. one top and one bottom associated with u end at pi, (one polygon ends in

Si and all remaining polygons continue into Si+1);
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Fig. 2. Each slab Si has various combinations of pairs of edges possible, each of which corresponds

to a vertex in G, which is copied at levels 1 through n/k. Directed edges are added from a vertex

associated with slab Si to a vertex associated with a compatible slab Si+1. The edge remains at
the same level if the cardinality of the smallest set in S1 ∪ · · · ∪Si+1 remains unchanged; the level

of Si+1 is one greater than the level of Si if the cardinality of the smallest set in S1 ∪ · · · ∪ Si+1

increases. Some vertices cannot be reached by any path from any source node at level 1 in slab
S1; these vertices and their out-edges are shaded gray. A feasible solution corresponds to a path

rooted at a source node associated with the slab S1 on level 1. An optimal solution ends at a sink

node at the highest level among all feasible solutions.

Case 3. no top or bottom associated with u end at pi, but one top and one bottom

associated with v start at pi (one polygon starts in Si+1 and all remaining

polygons continue from Si into Si+1).

Case 4. all edges in u continue into v and no edge passes through pi = ur = vl (all

polygons in Si continue into Si+1; the number of edges in Si is equal to

that in Si+1).

(a) Case 1

pi

Si Si+1 (b) Case 2

pi

Si Si+1 (c) Case 3

pi

Si Si+1 (c) Case 4

pi

Si Si+1

Fig. 3. The four cases in which we add an edge between the vertices u (associated with the slab

Si) and v (associated with the slab Si+1) in G; i.e., u and v are compatible. In this example,
k = 2, corresponding to two polygons, for which the edges through Si and Si+1 are coloured blue
and red, respectively. In Figure 3(a), pi lies on the upper hull of the blue polygon, so the polygon

makes a right turn at pi, i.e., the angle below pi must be convex. Figure 3(d), pi is omitted from
the selection.

For a given vertex u at most n− 2 edges satisfy Case 1 (there are at most n− 2

possible edges that continue from pi to form a convex bend), at most one edge

satisfies Case 2, at most
(
n−3

2

)
edges satisfy Case 3, and at most one edge satisfies

Case 4. Consequently, the number of edges in G is O(n2|V (G)|) ⊆ O( 1
kk−1 · n5k+3).

Any path from a source on level 1 to a highest-level node corresponds to an

optimal solution, and can be found using breadth-first search in time proportional



November 15, 2022 15:25 WSPC/Guidelines ws-IJCGA-v2

Bottleneck Convex Subsets: Finding k Large Convex Sets in a Point Set 7

to the number of edges in G. The resulting worst-case running time is proportional

to the number of vertices and edges in G: O(|V (G)| + |E(G)|) = O( 1
kk−1 · n5k+3).

In addition to storing a single in-neighbour from which a longest path reaches each

node u, we can maintain a list of all of its in-neighbours that give a longest path,

allowing the algorithm to reconstruct all distinct optimal solutions with the running

time increased only by the output size.

The time for constructing the graph G is proportional to its number of edges.

The combinations of
(
n
2j

)
line segments in a slab Si on level j can be enumerated

and created in O(1) time each, with O(1) time per edge added if graph vertices are

indexed according to their slab, their level, and the line segments they include. The

level of each node in G is determined in O(1) time per node by examining the level

of any of its in-neighbours; the level increases by one in Cases 1 and 2 if the point

pi is added to the minimum-cardinality set and that set is the unique minimum.

Theorem 1. Given a set P of n points in the plane, and a positive integer k,

Bottleneck Convex Subsets can be solved exactly in O( 1
kk−1 · n5k+3) time.

Although we described Bottleneck Convex Subsets using a directed graph, one

can think of a direct dynamic programming as follows. Consider the slabs from left

to right. Assume that slabs S1, . . . , Si have been processed and we have at most 2k

segments at Si corresponding to the k convex sets. For each convex set, we need to

consider O(n2) options for the top segment, O(n2) options for the bottom segment,

and O(n/k) options for its current size. Therefore, the number of entries in the

dynamic programming table corresponding to Si is O( 1
kkn

5k). While considering

Si+1, each convex subset for Si can be extended to Si+1 in O(n2) ways. Hence, we

need to spend O( 1
kkn

5k+2) time overall to fill the entries corresponding to Si+1.

Since there are n slabs, the overall time complexity becomes O( 1
kk · n5k+3).

Note that the graph model is sometimes beneficial over the dynamic program-

ming because once the graph is computed, it allows us to employ various graph

algorithms to readily find different types of outcomes. For example, let h be the

highest-level such that a vertex of level h can be reached from a level 1 vertex.

Then we can consider unit capacities for the edges and run a maximum flow algo-

rithm with level 1 vertices as sources and the highest-level vertices as sinks to get

a set of disjoint paths, which are likely to correspond to a diverse set of optimal

solutions for Bottleneck Convex Subsets.

3. NP-Hardness

In this section we show that Bottleneck Convex Subsets is NP-hard. We first intro-

duce some notation. Let x(p) and y(p) denote the x− and y-coordinates of a point p,

respectively. An angle ∠pqr determined by points p, q and r is called a y-monotone

angle if y(p) > y(q) > y(r). A y-monotone angle is left-facing (resp. right-facing) if

the point q lies interior to the left (resp., right) half-plane of the line through pr. If

q lies on the line through pr, then we refer to ∠pqr as a straight angle.
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The idea of the hardness proof is as follows. We first prove that given a set of 3m

points in the Euclidean plane, it is NP-hard to determine whether the points can

be partitioned into m y-monotone angles, where none of them are right facing (Sec-

tion 3.1). We then reduce this problem to Bottleneck Convex Subsets (Section 3.2).

3.1. Covering points by straight or left-facing angles

In this section we show that given a set of 3m points in the Euclidean plane, it is

NP-hard to determine whether the points can be partitioned into m y-monotone

angles, where none of them are right facing. In fact, we prove the problem to be

NP-hard in a restricted setting, as follows:

ANGLE PARTITION

Instance: A set P of 3m points lying on three parallel horizontal lines (y =

0, y = 1 and y = 2) in the plane, where each line contains exactly m points.

Problem: Partition P into at most m y-monotone angles, where none of them

are right facing.

We reduce Distinct 3-Numerical Matching with Target Sums (DNMTS), which

is known to be strongly NP-complete 17 .

DISTINCT NUMERICAL MATCHING WITH TARGET SUM

Instance: Three sets A = {a1, . . . , am}, B = {b1, . . . , bm}, C = {c1, . . . , cm},
each with m distinct positive integers, where

∑m
i=1 ai +

∑m
i=1 bi =

∑m
i=1 ci.

Problem: Decide whether there exist m triples (ai, bj , ck), where 1 ≤ i, j, k ≤
m, such that ai + bj = ck and no two triples share an element.

Theorem 2. Angle Partition is NP-hard.

Proof. Let M = (X,Y, Z) be an instance of DNMTS, where each set A,B,C

contains m positive integers. We now construct an instance Q of Angle Partition

as follows: (I) For each a ∈ A, create a point at (a, 0). (II) For each b ∈ B, create a

point at (b, 2). (III) For each c ∈ C, create a point at (c/2, 1).

This completes the construction of the point set P of the Angle Partition in-

stance Q (e.g., see Figure 4(a)). Since the numbers in A,B,C are distinct, no two

points in P will coincide. Note that by definition, a y-monotone angle must con-

tain one point from each of the lines y = 0, y = 1 and y = 2. Furthermore, every

straight angle ∠pqr will satisfy the equation x(p)+x(r)
2 = x(q). This transformation

is inspired by a 3-SUM hardness proof for ‘GeomBase’ 14.

We now show that M has an affirmative solution if and only if P admits a

partition into m y-monotone angles where none of them are right facing.

First consider that M has an affirmative answer, i.e., a set of m triples (ai, bj , ck),

where 1 ≤ i, j, k ≤ m, such that ai + bj = ck and no two triples share an element.

Therefore, we will have
(ai+bj)

2 = ck
2 . Hence we will find a straight line through

(ai, 0), (bk, 2), (cj/2, 1). These lines will form m y-monotone straight angles (e.g., see
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A = {16, 14, 10}, B = {8, 6, 12}, C = {18, 28, 20}

(16,0)(14,0)(10,0)

T = {(16, 12, 28), (14, 6, 20), (10, 8, 18)}

y = 0

y = 1

y = 2

(14,1)(10,1)

(6,1) (8,1) (12,1)

(9,1)

(a) (b)

Fig. 4. (a) Construction of Q (points on three lines) from an instance M =

{(16, 14, 10), (8, 6, 12), (18, 28, 28)} of DNMTS. (b) A solution {(16,12,28),(14,6,20),(10,8,18)} for
M and the corresponding angles of Q.

Figure 4(b)). Since none of these angles are right facing, this provides an affirmative

solution for the instance Q.

Consider now the case when Q has an affirmative solution T , i.e., a partition of

P into m y-monotone angles, where none of them are right facing. We first claim

that (Step 1) all these m y-monotone angles must be straight angles and then (Step

2) show how to construct an affirmative solution for M .

Step 1: Suppose for a contradiction that the solution T contains one or more left-

facing angles. For each left-facing angle ∠rst, where r, s, t are on lines y = 0, y = 1

and y = 2, respectively, we have x(s) < x(r)+x(t)
2 . For each straight angle ∠rst, we

have x(s) = x(r)+x(t)
2 . Since we do not have any right-facing angle, the following

inequality holds:
∑

∠rst∈T x(s) <
∑

∠rst∈T
x(r)

2 +
∑

∠rst∈T
x(t)

2 . Since no two angles

share a point, we have
∑m

i=1(ci/2) <
∑m

i=1(ai/2) +
∑m

i=1(bi/2), which contradicts

that M is an affirmative instance of DNMTS.

Step 2: We now transform the y-monotone straight angles of T into m triples

for M . For each angle, ∠rst, where r, s, t are on lines y = 0, y = 1 and y = 2, we

construct a triple (x(r), x(t), 2x(s)). Since ∠rst is a straight angle, x(r) + x(t) =

2x(s). Since no two angles share a point, the triples will be disjoint.

3.2. Bottleneck Convex Subsets is NP-hard

In this section we reduce Angle Partition to Bottleneck Convex Subsets. Let P be

an instance of Angle Partition, i.e., three lines y = 0, y = 1 and y = 2, each line

containing m points. Without loss of generality we can assume that the coordinates

of the points in P are positive; otherwise, it is straightforward to shift the point set

to the right to construct an instance of Angle Partition that admits an affirmative

answer if and only if P admits an affirmative answer. We now construct an instance

H of Bottleneck Convex Subsets from P with n = m(4m + 7) points and with

k = m.
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3.3. Construction of H

We first take a copy P ′ of the points of P and include those in H. Let ∆ be

a sufficiently large number (to be determined later). We now construct m upper

chains. The ith upper chain Ui, where 1 ≤ i ≤ m, is constructed following the step

below (see Figure 5).

Construction of Ui: Place two points at the coordinates (i∆,∆2 + 3) and ((i +

1)∆, 3). Let C be the curve determined by f(x) = ∆2 + 3 − (x − i∆)2, which

passes through these two points. Place 2m points w1, . . . , w2m uniformly on C

between (i∆,∆2 + 3) and ((i + 1)∆, 3), i.e., wj = (i∆ + j∆
2m , f(i∆ + j∆

2m )).

Each upper chain contains (2m+2) points. We define the m lower chains symmetri-

cally, where each lower chain Vi starts at (i∆,−∆2− 1) and ends at ((i+ 1)∆,−1).

We now choose the parameter ∆. Let L be the set of lines with non-zero slopes

passing through two points of P . Let t be the largest x-coordinate over all the

intersection points created by L with lines y = 0, y = 1 and y = 2. We set ∆ to be

(t + 2)4. This ensures that for any line ` with non-zero slope passing through two

points of P , the upper and lower chains lie on the right half-plane of ` regardless

of t. This concludes the construction of the Bottleneck Convex Subsets instance H,

where k = m. Note that H has 3m + m(4m + 4) = m(4m + 7) points. In the best

possible scenario, one may expect to cover all the points and have a partition into

m disjoint convex subsets, where each set contains (4m + 7) points.

We now have the following lemma.

Lemma 1. Let W be a partition of the upper and lower chains into a set L of at

most m disjoint convex sets. Then each convex set in L contains points from both

an upper chain and a lower chain.

Proof. Suppose for a contradiction that we have a convex set that contains points

from either upper chains or lower chains, without loss of generality, from lower

chains. Then we could delete all the points on the lower chain to obtain a convex

set partition for the upper chains with fewer than m disjoint convex sets. To reach

the contradiction, we now show that the upper chains cannot be covered with fewer

than m disjoint convex sets.

Since an upper chain U contains (2m+2) points, at least one convex set C must

contain at least 3 or more points from this set. We assign C to U and repeat this

process for the other upper chains. Let C1 and C2 be the convex sets assigned to

the upper chains U1 and U2. We now show that C1 and C2 cannot be the same,

which implies that there must be n disjoint convex sets.

Suppose for a contradiction that C1 coincides with C2. Then, by our assignment

strategy, C1 is guaranteed to contain three points from U1 and three points from U2.

Since every three points of an upper chain form a right-facing y-monotone angle,

we can define two right facing triangles A1 and A2 corresponding to U1 and U2.

Without loss generality assume that U1 appears to the left of U2. Since A1 is right
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y = −1

y = 3

(2∆,−1) (3∆,−1)

(∆,−∆2 − 1) (2∆,−∆2 − 1)

(4∆,−1)

(3∆,−∆2 − 1)

y = 0

y = 1

y = 2

(∆,∆2 + 3) (2∆,∆2 + 3) (3∆,∆2 + 3)

U1 U2 U3

V1 V2 V3

(2∆, 3) (3∆, 3) (4∆, 3)

Fig. 5. Illustration for the construction of H. Note that this is only a schematic representation,

which violates the property that all the chains are inside the wedge determined by the y-monotone
angles.

facing, the line segment joining the two end points of A1 cannot lie inside the convex

hull of C1, and hence C1 cannot be a convex set.

3.4. Reduction

We now show that the Angle Partition instance P admits an affirmative solution

if and only if the Bottleneck Convex Subsets instance H admits k(= m) disjoint

convex sets with each set containing (4m + 7) points.

Assume first that P admits an affirmative solution, i.e., P admits a set of m

y-monotone angles such that none of these are right facing. By the construction

of H, the corresponding point set P ′ must have such a partition into y-monotone

angles. For each i from 1 to m, we now form a point set Ci that contains the ith y-

monotone angle, the upper chain Ui and the lower chain Vi. Figure 6 illustrates such

a scenario. By the construction of H, all the chains are inside the wedge determined

by the y-monotone angle and hence Ci is a convex set with (4m+7) points. Since the

sets are disjoint, we obtain the required solution to the Bottleneck Convex Subsets

instance.

Consider now that the points of H admits m disjoint convex sets with each set

containing (4m + 7) points. Since H contains m(4m + 7) points, the convex sets

form a partition of H. Let L be such a partition. We now show how to construct

a solution for P using L. Let L′ be a set of convex sets obtained by removing the

points of P ′ from each convex set of L. By Lemma 1, each set of L′ contains at
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y = 0

y = 1

y = 2

y = 3

(∆,−∆2 − 1) (2∆,−∆2 − 1) (3∆,−∆2 − 1)

(∆,∆2 + 3) (2∆,∆2 + 3) (3∆,∆2 + 3)

U1 U2 U3

V1 V2 V3

(2∆, 3) (3∆, 3) (4∆, 3)

(2∆,−1) (3∆,−1)
y = −1

(4∆,−1)

Fig. 6. A schematic representation for the construction of a convex partition for H from an angle

partition of P .

least one point from the upper chains and one point from the lower chains. Since

there are 3m points on P ′, to partition P ′ into m convex sets, we must need each

convex set of L to contain a y-monotone angle with exactly one point from y = 0,

one point from y = 1 and one point from y = 2. Since each convex set contains

one point from an upper chain and one point from a lower chain, none of these

y-monotone angles can be right facing. Hence we obtain a partition of P ′ into the

required y-monotone angles, which implies a partition also for P . This completes

the reduction. The following theorem summarizes the results.

Theorem 3. The Bottleneck Convex Subsets problem is NP-hard.

3.5. NP-hardness for points in general position

We now show that Bottleneck Convex Subsets remains NP-hard even for points in

general position, i.e., when no three points lie on the same line.

We first consider Theorem 2. Given an instance M = (X,Y, Z) of DNMTS,

we showed in the proof of Theorem 2 that one can construct an instance of Angle

Partition, i.e., a set P of 3m points on three parallel horizontal lines, such that

M admits an affirmative solution if and only if P admits a partition into m y-

monotone angles, where none of them are right facing. Here P contained collinear

points (Figure 7(a)) and we showed if such a partition exists, then all m angles will
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be straight angles (Figure 7(b)). We now show how P can be perturbed to obtain

a point set P ′ such that the following properties hold.

- Every right-facing y-monotone angle in P determines a right-facing angle in P ′.

- Every left-facing y-monotone angle or straight angle in P determined by three

points lying on three different horizontal lines determines a left-facing angle in

P ′.

Figure 7(c) illustrates an example of the point set P ′ obtained after the perturbation

of P and Figure 7(d) illustrates a set of left-facing angles corresponding to the

straight angles of Figure 7(b).

(e) (f) (g) (h)

y = 0

y = 1

y = 2

(a) (b) (d)(b) (c)

Fig. 7. Illustration for the perturbation of P to construct P ′. (a)–(b) A point set P and its
corresponding angle partition. (c)–(d) The perturbed point set P ′ and its corresponding angle

partition. (e)–(g) Illustration for the perturbation of the points, where we first perturb the points

on y = 2, then the points on y = 0 and finally the points on y = 1. (h) The point set P ′.

.

Let L(P ) be the set of lines determined by pairs of points in P that lie on

different horizontal lines. To perturb P , we will use this set L. For each point q on

line y = 2, we consider a wedge Wq, as follows. One side of Wq is determined by

the line y = 2. The other side is determined by the line of L that passes through q

and makes the smallest anticlockwise angle with y = 2. Figure 7(e) illustrates these

wedges in gray. We then perturb each point q inside its wedge Wq such that for

every line ` ∈ L(P ) and the corresponding line `′, the points that are on the open

left (right) half-plane of `, are included in the open left (right) half-plane of `′. This

ensures that the angles that were previously left or right facing in P , remain the

same. However, the angles that were previously straight, now become left facing.

After the perturbation, only the lines y = 0 and y = 1 can contain collinear

points. We next perturb the points on line y = 0 and finally, the points on line

y = 1 using the same idea of creating a wedge for each point, as illustrated in

Figure 7(f)–(h).
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Consider now the reduction of Section 3.4. Here for each i from 1 to n, we

perturb the points of the corresponding upper and lower chain by rotating the set

(Ui ∪ Vi) by a small angle such that the circular ordering of the points around each

point remains the same. Since the perturbation preserves all the convex and concave

angles required for the reduction, we obtain the following theorem.

Theorem 4. The Bottleneck Convex Subsets problem is NP-hard even for points

in general position.

4. Point Sets with Few Points inside the Convex Hull

In this section we show that the Bottleneck Convex Subsets problem is fixed-

parameter tractable when parameterized by the number of points r inside the convex

hull, i.e., these points do not lie on the convex-hull boundary.

Theorem 5. Let P be a set of n points and let r be the number of points interior to

the convex hull of P . Then one can solve the Bottleneck Convex Subsets problem on

P in f(r)·nO(1) time, i.e., the Bottleneck Convex Subsets problem is fixed-parameter

tractable when parameterized by r.

Proof. Let k be the number of disjoint convex sets that we need to construct. We

guess the cardinality of the smallest convex set in an optimal solution and perform

a binary search.

For a guess q, we use Algorithm 0 to check whether there exists k disjoint convex

sets each with q points as follows.

C1
C2

C3

v3

v2

v4

v1

p1

p2
p3

p4

p5

p6
p7p8

p9

p10

p11

p12

p13

p14

p15

p16

p17

p18

p19

p20

(a) (b)

Fig. 8. Illustration for the Bottleneck Convex Subsets problem with eight points inside the convex
hull of P . For the convex set corresponding to v3, we have assigned the left halfplane of the line

through p19 and p20. The edges carrying the flow are shown in thick edges.

.

Assume that j of the k convex sets contain points from the interior. Since there

are only r interior points, we must have j ≤ r. We enumerate for each j from 0 to
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Algorithm 1 Bottleneck Convex Subsets

Input: A point set P of n points and two positive integers k and q where n ≤ kq.

Output: k convex subsets P1, . . . , Pk of P , each containing q points (if exists).

r ← Number of interior points of P

for each set of j ≤ r convex sets, each containing at most q interior points do

A← A set of k vertices; j of them correspond to the convex sets C1, . . . , Cj

B ← A set of vertices of P on the convex hull

. Leverage the maximum flow algorithm

G← A graph with vertex set (A ∪B), where an edge (v, w) with v ∈ A and

w ∈ B indicates that w together with the vertices of Cv form a convex set

Set each vertex v ∈ A to be a source with a production of (q − |Cv|) units

Set each vertex w ∈ B to be a sink that can consume at most 1 unit

if If the maximum flow is
∑k

j=0(q − |Cj |) units then

Return P1, . . . , Pk, which are constructed using the k flow sources and

their corresponding sinks

else

Return Null

end if

end for

r, all possible sets of j convex sets, where each convex set contains at most q points

from the interior of P . For each set of size ` ≤ r, we also consider all possible convex

orderings of the points such that each convex ordering determines a non-crossing

convex path of length (` − 1). Figure 8(a) illustrates such a set of j = 3 convex

sets C1, C2, C3 with a particular ordering of the points for each set. Therefore,

we have
∑k

j=0 j
(

2r

j

)
possibilities to consider. Thus the number of elements in the

enumeration is at most
∑k

j=0 r
(

2r

j

)
2j ≤

∑k
j=0 r2r

j+1 ≤ r2r
k+2

.

The idea is to examine whether these j sets can be extended to contain q points

each and to check whether the remaining points can be used to construct the re-

maining (k − j) convex sets by modelling this with a maximum flow problem. We

construct a bipartite graph G with vertex set A ∪B. The set A contains j vertices

v1, . . . , vj corresponding to the sets C1, . . . , Cj and (k − j) additional vertices rep-

resenting the remaining (k− j) sets (which are currently empty) to be constructed.

The set B consists of (n− r) vertices, each corresponding to a distinct point on the

convex hull of P . We add a directed edge from a vertex v in A to a vertex w in B

if the point w together with the interior points corresponding to v form a convex

set. For the case when the interior points corresponding to v form a straight line

(e.g., C3 in Figure 8(a)), we connect v to the points of B that lie on the halfplane

assigned to v. Figure 8(b) illustrates the resulting graph.

We now consider a maximum flow on this graph where each vertex vi in A has

a production of (q−|Ci|) units of flow and each sink can consume at most 1 unit of

flow. A maximum flow of
∑k

j=0(q−|Cj |) units indicates that the guess q is feasible,
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and we continue the binary search by guessing a higher value. Otherwise, we search

by guessing a lower value.

Hence the overall time complexity becomes O(f(r) · g(n) log n), where f(r) ∈
O(r2r

k+2

), g(n) is the time required for the maximum flow algorithm, and the log n

term corresponds to the binary search.

5. Discussion

We examined the Bottleneck Convex Subsets problem of selecting k mutually dis-

joint convex subsets of a given set of points P such that the cardinality of the

smallest set is maximized. We gave an algorithm that solves Bottleneck Convex

Subsets for small values of k, showed Bottleneck Convex Subsets is NP-hard for an

arbitrary k, and proved Bottleneck Convex Subsets to be fixed parameter tractable

when parameterized by the number of points interior to the convex hull. The prob-

lem is also solvable in polynomial time for specific large values of k. If k > n/4, then

some subset has cardinality at most three; a solution is found trivially by arbitrarily

partitioning P into k subsets of size bn/kc or dn/ke. If k ∈ {bn/5c+1, . . . , n/4} then

some subset has cardinality at most four. As discussed in Section 1.2, Károlyi 18

characterized necessary and sufficient conditions for a set of n points in general

position to admit a partition into k = n/4 convex quadrilaterals, and gave an

O(n log n)-time algorithm to decide whether such a partition exists; if no such par-

tition exists, then some set must contain at most three points, which can be solved as

described above. It remains open to determine whether Bottleneck Convex Subsets

can be solved in polynomial time for all k ∈ Θ(n).

As a direction for future research, a natural question is to establish a good lower

bound on the time required to solve these problems for small fixed values of k. In

particular, is the O(n3)-time algorithm of Chvátal and Klincsek 4 optimal for the

case k = 1? Note that our algorithm has time O(n8) when k = 1. It would also

be interesting to examine whether a fixed-parameter tractable algorithm exists for

Bottleneck Convex Subsets when parameterized by k, and to find approximation

algorithms for Bottleneck Convex Subsets when k is an arbitrary input parameter,

with running time polynomial in n and k.

It would also be interesting to look into Bottleneck Convex Subsets where we

enforce the convex hulls of the convex sets to be disjoint. The problem would relate

to the problem of finding a convex point set embedding of a graph in a point set 7.

The input of a convex point set embedding consists of a planar point set P of n

points and a planar graph G of n vertices. The goal is to determine whether G

admits a planar straight line drawing where P determines the vertex locations and

each bounded face in the drawing determines a convex polygon. Therefore, to test

whether there are k partitioned convex sets, each with at least q points, we can

set G to be a collection of k disjoint cycles, each of length q, and (n− kq) isolated

vertices.
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4. V. Chvátal and G. Klincsek. Finding largest convex subsets. Congressus Numeran-
tium, 29:453–460, 1980.

5. Ren Ding, Kiyoshi Hosono, Masatsugu Urabe, and Changqing Xu. Partitioning a
planar point set into empty convex polygons. In Proc. Discrete and Computational
Geometry, Japanese Conference (JCDCG), volume 2866 of LNCS, pages 129–134,
2002.

6. Stephane Durocher, J. Mark Keil, Saeed Mehrabi, and Debajyoti Mondal. Bottleneck
convex subsets: Finding k large convex sets in a point set. In In Proc. of the 27th
International Conference on Computing and Combinatorics, volume 13025 of LNCS,
pages 203–214. Springer, 2021.

7. Stephane Durocher and Debajyoti Mondal. On the hardness of point-set embeddabil-
ity. In Proc. International Workshop on Algorithms and Computation (WALCOM),
volume 7157 of LNCS, pages 148–159. Springer, 2012.

8. Herbert Edelsbrunner and Leonidas J. Guibas. Topologically sweeping an arrange-
ment. J. Comput. Syst. Sci., 38(1):165–194, 1989.

9. David Eppstein. Forbidden Configurations in Discrete Geometry. Cambridge Univer-
sity Press, 2018.

10. David Eppstein and Jeff Erickson. Iterated nearest neighbors and finding minimal
polytopes. Disc. Comp. Geom., 11:321–350, 1994.

11. David Eppstein, Mark H. Overmars, Günter Rote, and Gerhard J. Woeginger. Finding
minimum area k-gons. Disc. Comp. Geom., 7:45–58, 1992.
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