
A Note on Improving the Performance of Approximation
Algorithms for Radiation Therapy

Therese Biedl∗ Stephane Durocher† Holger H. Hoos‡

Shuang Luan§ Jared Saia¶ Maxwell Young†

Abstract

The segment minimization problem consists of representingan integer matrix as the sum of the fewest
number of integer matrices each of which have the property that the non-zeroes in each row are consec-
utive. This has direct applications to an effective form of cancer treatment. Using several insights, we
extend previous results to obtain constant-factor improvements in the approximation guarantees. We show
that these improvements yield better performance by providing an experimental evaluation of all known
approximation algorithms using both synthetic and real-world clinical data. Our algorithms are superior for
76% of instances and we argue for their utility alongside theheuristic approaches used in practice.

1 Introduction
Intensity-modulated radiation therapy (IMRT) is an effective form of cancer treatment in which the region
to be treated is discretized into a grid. A treatment plan specifies the amount of radiation to be delivered to
the area corresponding to each grid cell. A device called a multileaf collimator (MLC) is used to administer
treatment in several steps. In each step, two banks of metal leaves in the MLC are positioned to cover certain
portions of the body surface, while the exposed portions aresubjected to a specific amount of radiation.

A treatment plan is represented as anm × n intensity matrixT of non-negative integer values, whose
entries represent the amount of radiation to be delivered tothe corresponding grid cells. The MLC leaves
partially cover rows ofT ; for each rowi there are two leaves, one which slides inward from the left and one
which slides inward from the right. After each step, the amount of radiation applied in that step (this can differ
per step) is subtracted from each entry ofT that is exposed. The treatment is complete when all entries are0.
In many cases, the number of segments does not have significant bearing on whether overdosing/underdosing
occurs; therefore, approximation algorithms are suitable. Setting leaf positions in each step requires time.
We aim to minimize the number of steps as this increases patient throughput and reduces the procedure cost.

Formally, asegmentis a matrixS such that non-zeroes in each row ofS are consecutive, and all non-
zero entries ofS are the same integer, which we call thesegment-value. A segmentationof T is a set of
segment matrices that sum toT , and we call the cardinality of such a set thesizeof that segmentation. The
segmentation problemis, given an intensity matrixT , to find a minimum-size segmentation ofT .

Related Work: The segmentation problem is known to be NP-complete, even for a single row [3], and APX-
complete [4]. A number of heuristics are known (see [2, 3, 11,16] and references therein). Approaches for
obtaining optimal solutions also exist (see [8,12] and references therein); these approaches do not necessarily
terminate in polynomial time. Bansalet al. [4] provide a24/13-approximation algorithm for the single-row
problem. Most relevant to our current work, Luanet al. [13] give two approximation algorithms for the full
m×n problem; however, they do not confirm the performance of their algorithms with experiments. Finally,
we note that other important metrics for treatment planningexist, such as total irradiation time (see [1,7,12])

Our Contributions: Luan et al. [13] made two observations: (1)T can be decomposed into a particular set
P of 0/1 matrices where the segmentation size of eachp ∈ P can be related to the optimal segmentation size
of T , and (2) segmentations for the single-row problem can be used to obtain good segmentations for the full-
matrix problem. By exploiting these properties, they obtained two algorithms with respective approximation
factors of1 + log2 h and2(1 + log2 D) whereh is the largest value inT , andD is roughly the largest
difference between consecutive row elements. Throughout,logb x denotes⌈ logb x⌉. Our first contribution is:

∗David R. Cheriton School of Computer Science, University ofWaterloo, ON, Canada,{biedl, m22young}@uwaterloo.ca
†Department of Computer Science, University of Manitoba, MB, Canada, durocher@cs.umanitoba.ca
‡Department of Computer Science, University of British Columbia, BC, Canada, hoos@cs.ubc.ca
§Department of Computer Science, University of New Mexico, NM, USA,{sluan, saia}@cs.unm.edu

1

• We extend the ideas of [13] to achieve three fast algorithms with approximation factors of (roughly)
3

2
· (1 + log3 h),

11

6
· (1 + log4 h) and(24/13) logD. Since11

6
log4(h) <

3

2
log3(h) < log2(h), for

sufficiently largeOPT andh, our first two algorithms improve on previous work by a factorof ≈ 1.057
and 12

11
, respectively, while our third algorithm improves by a factor of 13/12.

While admittedly these improvements are not large, the hopeis that they translate into improved performance
in practice. Previous approximation algorithms have not been tested; therefore, our second contribution is:

• We provide the first experimental evaluation of known approximation algorithms for the full segmenta-
tion problem, using both synthetic and real-world clinicaldata. Our approximation improvements yield
significant performance gains. Together, our new algorithms are superior for 76% of test instances.

We remark that our experimental evaluation has practical value. While newer approaches in radiation therapy
exist [14], the delivery method as described in this paper isthe mainstream in current clinics and will likely
stay because of its simplicity and less machine wear and tear. In current MLCs, segment minimization is
performed by heuristics available in commercial software such as the CORVUS system manufactured by the
NOMOS Corporation [10]. However, heuristics do not offer solution-quality guarantees and the run-time
for exact methods can be prohibitively high. Instead, fast approximation algorithms can be used in parallel
with heuristics to catch poor-quality solutions. Finally,we expect that as intensity matrixes become larger,
approximation algorithms will become increasingly usefuldue to the high running time of exact methods.

2 Improved Approximation Algorithms
Let T = (T [i, j]) for i = 1, . . . ,m andj = 1, . . . , n be the target-matrix. Define amarkeras an indexj for
whichT [i, j − 1] 6= T [i, j], or j = 1 andT [i, 1] 6= 0, or j = n + 1 andT [i, n] 6= 0 (alternatively, one can
imagine an additional column of 0s on the left and the right ofT). Let ρi be the number of markers in rowi
of T , and letρ = maxAll rows i{ρ

i}, i.e. the number of markers in the row ofT having the most markers over all
rows. We reiterate the following observation noted in [13]:ρ ≤ 2 ·OPT whereOPT is the size of a minimal
segmentation ofT . The first approximation algorithm given by Luan et al. [13] works as follows. Split the
intensity matrixT into matricesP0, . . . , Pk such thatT =

∑k
ℓ=0

2ℓ · Pℓ wherek = log2 h and eachPℓ is
a 0/1-matrix. A segmentation forT can then be obtained by taking segmentations of eachPℓ, multiplying
their values by2ℓ, and taking their union. Since eachPℓ is a 0/1-matrix, an optimal segmentation of it can be
found easily, and an approximation bound of1 + log2 h holds.
FIRST IMPROVED ALGORITHM: We extend this approach by increasing the base tob = 3, 4, i.e. writing
T =

∑k
ℓ=0

bℓ · Pℓ. But this raises two crucial questions: Can we solve the segmentation problem in a matrix
with values in{0, 1, . . . , b − 1}? And is the resulting segmentation a good approximation of the optimal
segmentation? Resolving these questions is non-trivial and requires new techniques over those used in [13].

For b = 3, we wish to segment an intensity matrixPℓ that has all entries in{0, 1, 2}; we call this a
0/1/2-matrix. Let ρiℓ denote the number of markers in theith row ofPℓ.

Lemma 1. There exists a segmentation of rowi of a0/1/2-matrixPℓ such that the number of 1-segments is
at most1

2
· ρiℓ, and the number of 2-segments is at most1

4
· ρiℓ +

1

2
.

Proof. We use induction onρiℓ. The base case is where none of the cases for the induction canbe applied;
we treat this last. For the induction, we identify a subsequence of the row for which we can add segments,
resulting in the removal of many markers. We detail this for the first of the cases in the induction step and
illustrate them all in Figure 1:

1. Assume that the row contains a subsequence of the form12+1. We use regular expression notation:
12+1 denotes an entry 1, followed by≥ 1 entries 2, followed by an entry 1. Lets be a 1-segment that
covers exactly the subsequence of2s, and considerP ′ = P − s. ThenP ′ has two fewer markers in
the ith row (at the endpoints ofs), and so by induction theith row can be segmented using at most
1

2
· (ρiℓ − 2) 1-segments, and1

4
· (ρiℓ − 2) + 1

2
2-segments. Adding the 1-segments yields the result.

2. If there exists a subsequence of the form01+0, then apply a 1-segment to the subsequence of1s. This
removes 2 markers, and adds a 1-segment, and no 2-segment to the inductively obtained segmentation.

3. If there exists a subsequence of the form02+1+2+0, then similarly apply a 2-segment at the first
subsequence of2s, then two 1-segments to remove the remaining1+2+. This removes 4 markers, and
adds two 1-segments, and one 2-segment to the inductively obtained segmentation.

4. If there exist two subsequences of the form02+1+0 or 01+2+0, then similarly apply one 1-segment to
one subsequence of2s, and one 2-segment to the other subsequence of2s, then apply two 1-segments
to the two remaining sequences of1s. This removes 6 markers, and adds three 1-segments and one
2-segment to the inductively obtained segmentation.

2

Figure 1: An illustration of cases (1) through (6) of the proof of Lemma 1.

5. If there exist two subsequences of the form02+0, then similarly apply one 2-segment to one of them,
and two 1-segments to the other. This removes 4 markers, and adds two 1-segments and one 2-segment
to the inductively obtained segmentation.

6. If there exists one subsequence of the form02+1+0 or01+2+0, and one subsequence of the form02+0,
then apply one 2-segment to the subsequence02+0, and two one 1-segments to the other. This removes
5 markers, and adds two 1-segments and one 2-segment to the inductively obtained segmentation.

In all the above cases, we have removed at least 2 markers per 1-segment and at least 4 markers per 2-
segment. Thus, counting only segments created and markers removed 1 thus far, we have at most(1/2) · piℓ
1-segments and(1/4) · piℓ 2-segments. All that remains to do is to consider any markersthat are remaining.

Assume that none of the above cases can be applied (i.e., the base case) - we argue that now at most three
markers are left. Let0(1 + 2)+0 be a subsequence that has markers in it where(1 + 2) denotes the presence
of a 1 or a2. Assume first the leftmost non-zero is a 1. Then the subsequence must contain a 2 somewhere
(otherwise we’re in case (2)), so it has the form01+2+(1+2)+0. But after the 2s, no 1 can follow (otherwise
we’re in case (1)), so this subsequence has the form01+2+0. Likewise, if the last non-zero is 1, then the
subsequence has the form02+1+0. If the first and last non-zero are 2, then the subsequence hasthe form
02+0 (otherwise we’re in case (1) or (3)).

If we had two subsequences0(1 + 2)+0, then each would have the form01+2+0 or 02+1+0 or 02+0,
and this is case (4), (5) or (6). So there is only one of them, and it has at most three markers. We can now
eliminate either three remaining markers with a 1-segment and a 2-segment, or two remaining markers with
a 2-segment. In either case, the bound on the number on the number of 1-segments used is still(1/2) · piℓ and
the 2-segments is used is(1/4) · piℓ + 1/2 (tight for the case of02+0).

There exists a simple algorithm GREEDYROWPACKING for combining segmentations ofrowsof a matrix
Pℓ with values in1, . . . , b− 1 into a segmentation of thewholematrixPℓ. For each valuev ∈ {1, . . . , b− 1},
check whether any segment in any row has valuev. If so, remove a segment of valuev from each row that has
one. Combine these segments into one segment-matrix (also with valuev), and add it toS. Continue until
all segments in all rows have been used in a segment-matrix. Clearly, if each row has at mostni i-segments
(i.e., segments with valuei), this gives a segmentation ofPℓ with at mostni i-segments andn1 + · · ·+ nb−1

segments in total. Using the segmentations of each row obtained with Lemma 1, and combining them with
GREEDYROWPACKING, gives a segmentationSℓ of each 0/1/2-matrixPℓ.

Theorem 1. AssumeT =
∑k

ℓ=0
3ℓPℓ, wherek = 1+ log3 h andh is the largest value inT , and eachPℓ is a

0/1/2-matrix. Combining the above segmentationsS0, . . . ,Sk for matricesP0, . . . , Pk gives a segmentation
S for T of size at most3

2
· k ·OPT + 1

2
· k. This segmentation requiresO(m · n · log h) time to find.

Proof. Recall that the segmentation of rowi of Pℓ has at most1
2
· ρiℓ 1-segments and at most1

4
· ρiℓ +

1

2

2-segments (Lemma 1). Letρℓ = maxi ρ
i
ℓ be the maximum number of markers within any row ofPℓ. By

algorithm GREEDYPACKING segmentationSℓ of Pℓ then has at most1
2
·ρℓ 1-segments and at most1

4
·ρℓ+

1

2

2-segments. So|Sℓ| ≤
3

4
· ρℓ +

1

2
. Matrix Pℓ can have a marker only if matrixT has a marker in the same

location, soρℓ ≤ ρ by [13]. Sinceρ ≤ 2 · OPT , we put it all together to get:

|S| =

k
∑

ℓ=0

|Sℓ| ≤

k
∑

ℓ=0

(

3

4
· ρℓ +

1

2

)

≤

k
∑

ℓ=0

(

3

4
· 2 ·OPT +

1

2

)

=

(

3

2
·OPT +

1

2

)

· (1 + log
3
h) .

For eachPℓ, this requiresO(m · n) time; thus, the entire algorithm runs in timeO(m · n · log h).

By extending these ideas, we can prove a11

6
·(1+log4 h) approximation whenb = 4. In theory, our approach

could be taken further; however, the case-by-case analysisis involved (see [6] for details forb = 4).

Example 1. LetT =





1 7 2 6 0
6 2 4 8 2
2 1 3 7 2



 = 30 ·





1 1 2 1 0
0 2 1 2 2
2 1 0 1 2



+ 31 ·





0 2 0 2 0
2 0 1 2 0
0 0 1 2 0





By Lemma 1, the row segmentations forP0 are as follows: row 1 belongs to Case 1 and uses segments
[0 0 1 0 0], [1 1 1 1 0], row 2 belongs to Case 3 and uses segments[0 0 1 1 1], [0 0 0 1 1], [0 2 0 0 0],

3

and row 3 belongs to Case 4 and uses segments[1 0 0 0 0], [0 0 0 0 2], [1 1 0 0 0], [0 0 0 1 0]. Applying
GREEDYROWPACKING first to the value 1 and then to the value 2 gives the following segmentation forP0:

(

0 0 1 0 0
0 0 1 1 1
1 0 0 0 0

)

,

(

1 1 1 1 0
0 0 0 1 1
1 1 0 0 0

)

,

(

0 0 0 0 0
0 0 0 0 0
0 0 0 1 0

)

and

(

0 0 0 0 0
0 2 0 0 0
0 0 0 0 2

)

For P1, the row segments are: row 1 belongs to Case 5 uses[0 1 0 0 0], [0 1 0 0 0], [0 0 0 2 0], row 2 belongs
to Case 6 and uses[2 0 0 0 0], [0 0 1 1 0], [0 0 0 1 0], and row 3 belongs to one of the remaining cases and
uses[0 0 1 0 0], [0 0 0 2 0]. ApplyingGREEDYROWPACKING first to the value 1 and then to the value 2 gives
the following segmentation forP1:

(

0 1 0 0 0
0 0 1 1 0
0 0 1 0 0

)

,

(

0 1 0 0 0
0 0 0 1 0
0 0 0 0 0

)

and

(

0 0 0 2 0
2 0 0 0 0
0 0 0 2 0

)

SECOND IMPROVED ALGORITHM: Luan et al. showed that for a single-row problem, if there is an α-
approximate solution where all segment-values are at mostM , then anα(logM + 1)-approximate seg-
mentation ofT can be found in polynomial time. Using this property, the authors gave a2(log2 D + 1)
approximation since any single-row problem has a 2-approximate solution. Here, therow-differenceD is the
maximum difference between consecutive row elements, or the maximum of the first and last entries in the
row, whichever is larger. We extend this approach with two observations. First,any segmentation can be
converted into a segmentation of the same size with values atmostD. Secondly, valuesα < 2 are known.

Theorem 2. There exists an algorithm that, for an intensity matrixT with maximum row-differenceD, finds
a segmentation of size at most24

13
· (logD + 1)OPT and runs inO(m · n2 · h · logD) time.

Proof. Let S be any segmentation of a single-row intensity matrixT with row-differenceD. Modify S such
that no two segments meet, i.e., if some segment ends at indexi, then no segment starts ati + 1. This can
always be done without increasing the number of segments (see [3]). Any segmentS must then have value
v ≤ D, for if S ends ati, thenT [i + 1] = T [i] − v since no segment starts ati + 1. Therefore, we have
a segmentation ofT of size at most|S| where all segments have value at mostD. Given thatM = D, it
follows from the observation of Luanet al., that we have anα(logD + 1)-approximate segmentation. Since
α ≤ 24

13
is shown in [4], our result follows. Theα ≤ 24

13
algorithm of [4] runs inO(n2 ·h) time. Since we run

this over allm rows of each of theO(logD) matrices specified in [13], the running time of our algorithmis
O(m · n2 · h · logD).

3 Performance Evaluation
In many areas, heuristics outperform approximation algorithms in practice. However, heuristics can become
trapped in local optima and yield low-quality solutions. Onthe other hand, as demonstrated by previous
work [12], and by our experiments, computing the optimum is computationally intensive and only possi-
ble with matrices of limited size andh values (hence the need for heuristics). Therefore, approximation
algorithms can play an important role by providing a fast method for checking solution quality.

Preliminary work [5] shows that our algorithms frequently catch poor quality solutions yielded by the
popular heuristic of Xia and Verhey [16] which is extensively used as a benchmark in the literature (see [6]
for details). That said, we expect more recent and sophisticated heuristics to outperform our algorithms most
of the time.We stress that we do not aim to beat heuristics, only to provide an efficient safeguard against poor
quality solutions. There is a vast literature on segmentation heuristics and,while a comprehensive comparison
involving these approaches would be valuable, such an undertaking is outside the scope of this work.

We implemented four algorithms in Java using roughly 3600 lines of code: (i) Ab=2, the (log2 h + 1)
approximation algorithm of [13], (ii) Ab=3, our3/2 · (log3 h+ 1) approximation algorithm, (iii) Aα=2, the
2(logD + 1) approximation algorithm of [13], (iv) Aα=24/13, our 24/13 · (logD + 1) which utilizes our
implementations of algorithms from [4]. Experimentation with the 11

6
· (1+ log4 h) approximation algorithm

did not yield improved performance over Ab=3, so we do not consider it further. Finally, we compare against
OPT using the recent state-of-the-art exact algorithms by Cambazardet al. [9] which are shown to compare
favourably with another recent exact algorithm [15]. Cambazardet al. provide two exact algorithms: the
shortest path constraint programming algorithm (CPSP) andthe Branch-and-Price (BP) algorithm. We use
the following test data:

• Data Set I:a real-world data set of70 clinical intensity matrices from the Department of Radiation
Oncology at the University of California at the San Francisco School of Medicine.

4

• Data Set II:a real-world data set of22 clinical intensity matrices from prostate, brain, and head-neck
cases from the Department of Radiation Oncology at the University of Maryland School of Medicine.

• Data Set III:a synthetic data set of20 intensity matrices. Each matrix is obtained as follows: compute
the sum of the probability density functions of 2-4 bivariate Gaussians generated from two independent
standard univariate Gaussian distributions with amplitude h and the centers of the distributions are
sampled uniformly at random. The distributions are discretized by adding as the value in them × n-
grid the integer part of the corresponding function value.

First, we note that all three data sets are scaled soh ≤ 23 - this is necessary so that the exact algorithm
of [9] (1) completes within a reasonable amount of time and (2) does not exceed the allotted memory. Second,
Data Set III allows for testing on intensity matrices whereD values are relatively small compared toh. This
allows us to investigate the effect of smallD values on the performance of our approximation algorithms.
Testing on matrices with smallD values is also pertinent assuming higher precision MLCs canallow for
more fine-grained intensity matrices.
ANALYSIS OF EXPERIMENTS: Tables 3-8 contain the results for each instance of our evaluation. All
experiments were conducted on ai7 2.8 GHz Intel CPU machine running a 64-bit version of Linux 10.04.
At most2 GB of RAM was utilized in any trial with the approximation algorithms while for OPT,5 GB of
RAM (Tripple Channel DDR3 2000) was allotted to the program.The time to compute the optimal solutions
in Data Set I and II was negligible (under 0.5 CPU seconds using BP); however, only CPSP was able to solve
the Data Set II instances and the run-time values are included in Table 8 since they were significant. Table 1
summarizes performance by enumerating the number of instances in which each algorithm outperformed all
others (excluding OPT) with ties included.

Instances Ab=2 Ab=3 Aα=2 Aα=24/13

Data Set I 70 24 (34.3%) 55 (78.6%) 14 (20.0%) 18 (25.7%)
Data Set II 22 3 (13.6%) 9 (40.9%) 11 (50.0%) 12 (54.5%)
Data Set III 20 0 (0.0%) 0 (0.0%) 11 (55.0%) 18 (90.0%)

Table 1:The number of instances where each of approximation algorithms achieves the smallest
segmentation with ties included. The largest value in each row is bolded.

Our Questions: In analyzing our results, we focus on three questions: (1) How do our improved algo-
rithms compare against their older counterparts by Luanet al.? (2) How do the algorithms with anO(log h)
approximation guarantee compare to those with anO(logD) approximation guarantee? (3) How do these
approximation algorithms compare against the optimum solution?
Question 1: Table 1 shows that Ab=3 and Aα=24/13 outperform on a larger number of instances than the
algorithms of [13] in all three data sets for a total of85 out of 112 instances (75.9%). In particular, Ab=3

ties or outperforms all other approximation algorithms in55 out of the70 instances (78.6%) in Data Set I
while Aα=24/13 ties or outperforms all other approximation algorithms in12 out of the22 instances (54.5%)
in Data Set II and in18 out of the20 instances (90.0%) in Data Set III.

Given these positive results, we wish to know byhow muchwe improve. We examine the number of
segments required by an algorithm per instance and calculate the ratio of these two values; the median (Med.),
minimum (Min.) and maximum (Max.) ratios over all instancesis reported in Table 3. Ab=3 performs
substantially better than Ab=2 overall judging by both the median values. In the case of Aα=24/13 and Aα=2,
our gains are smaller, yet there is still an overall improvement on average.

Ab=3 outperforms Aα=
24

13

Aα=
24

13

outperforms Ab=3 Ties

Data Set I 47 (67.1%) 6 (8.6%) 17 (24.3%)
Data Set II 7 (31.8%) 9 (40.9%) 6 (27.3%)
Data Set III 0 (0.0%) 20 (100.0%) 0 (0.0%)

Table 2:An instance-by-instance comparison of Ab=3 and Aα=24/13.

Question 2: We contrast the performance of theO(log h) andO(logD) approximation algorithms. We
restrict ourselves to a comparison of Ab=3 and Aα=24/13 given the previous discussion. Table 2 provides
the results of our comparison. We also calculate the average, median, minimum and maximum ratios on a
per-instance basis of Aα=24/13 over Ab=3 in Table 4.

We can tentatively draw some conclusions. Whenh andD are relatively equal, Ab=3 approximation
generally yields superior performance in practice; this iscertainly the case for Data Set I. However, as Data
Set II illustrates, there are exceptions; neither algorithm is clearly superior here. For the case whereD is
significantly smaller thanh, all statistics suggest that Aα=24/13 yields substantially better solutions.

5

Ratio of Ab=3 over Ab=2 Ratio of Aα=
24

13

over Aα=2

Ave. Med. Min. Max. Ave. Med. Min. Max.

Data Set I 0.9262 0.9161 0.6250 1.2000 0.9860 1.0000 0.7000 1.1667
Data Set II 0.9074 0.8990 0.5714 1.1429 0.9878 1.0000 0.8333 1.1818
Data Set III 0.9644 0.9687 1.0333 0.8958 0.9451 1.0000 1.0357 0.7407

Table 3:Average, median, minimum and maximum ratios measuring the extent of our improvements.

Ave. Med. Min. Max.

Data Set I 1.1650 1.1111 0.4444 1.8889
Data Set II 0.9810 1.0000 0.6250 1.2500
Data Set III 0.6289 0.6189 0.7333 0.5400

Table 4: Average, median, minimum and maximum
ratios of Aα=24/13 over Ab=3.

Ave. Med. Worst Best

Data Set I 1.1893 1.2000 1.5000 1.0000
Data Set II 1.3636 1.3636 1.6000 1.1250
Data Set III 1.1847 1.1425 1.5000 1.0385

Table 5:Statistics using thebestapproximations
achieved by running all four algorithms.

Question 3: Finally, we compare against OPT. For each data set, all approximation algorithms are run on
each instance and we take the best solution. Using these bestsolutions, average, median, worst and best
values are reported in Table 5. We see that our heuristics arenot far from the optimal solution in most cases.

Running Time: All approximation algorithms completed each instance within 0.01 CPU seconds on Data
Set I,0.02 CPU seconds on Data Set II, and0.240 CPU seconds on Data Set III. In contrast, the running time
for computing OPT can be significant. For Data Sets I & II, the algorithm of [9] performs superbly. However,
for Data Set II, this is due to the fact that theh values are scaled to be small (clinical values were truncated at
a single decimal point). By incorporating even another decimal place of clinical data, we found OPT (using
CPSP) did not terminate within 24 hours. In fact, for any of our attempts withh ≥ 25, the CPSP algorithm
of [9] did not complete within 6 hours. Furthermore, attempts with the Branch-and-Price algorithm (both the
light and normal versions) quickly terminated due to memoryerrors [9] forh ≥ 20. These limitations are a
concern for present-day real-world instances. From a forward-looking perspective, larger intensity matrices
may become feasible as technology advances and this will greatly increase the running time and memory
usage of exact algorithms. The impact ofh-values and size is apparent in Data Set III where computing OPT
for several cases required hundreds, or even thousands, of CPU seconds.

In conclusion, our theoretical and experimental results show that there are fast algorithms that yield
segmentations that are provably not too far from the optimumand perform well in experiments. While more
sophisticated heuristics likely outperform them, these algorithms are fast enough that they could be run in
parallel with heuristics, thus providing a check on solution quality without significant overhead.

References
[1] R. Ahuja and H. Hamacher. A Network Flow Algorithm to Minimize Beam-On Time for Unconstrained Multileaf Collimator

Problems in Cancer Radiation Therapy. Networks, 45, 36-41,2005.
[2] D. Baatar, N. Boland and R. Johnston. A New Sequential Extraction Heuristic for Optimizing the Delivery of Cancer Radiation

Treatment Using Multileaf Collimators. INFORMS Journal onComputing, 21(2), 224-241, 2009.
[3] D. Baatar, W. Hamacher, M. Ehrgott and G. J. Woeginger. Decomposition of Integer Matrices and Multileaf Collimator Sequencing.

Discrete Applied Mathematics, 152(1-3), 6-34, 2005.
[4] N. Bansal, D. Coppersmith and B. Schieber. Minimizing Setup and Beam-On Times in Radiation Therapy. Proc. of APPROX,

Lecture Notes in Computer Science, 4110, 27-38, 2006.
[5] T. Biedl, S. Durocher, H. H. Hoos, S. Luan, J. Saia and M. Young. Fixed-Parameter Tractability and Improved Approximations for

Segment Minimization. Technical Report CS-2009-03, University of Waterloo, January, 2009.
[6] T. Biedl, S. Durocher, H. H. Hoos, S. Luan, J. Saia and M. Young. Fixed-Parameter Tractability and Improved Approximations for

Segment Minimization. Preprint arXiv:0905.4930, 2009.
[7] N. Boland, H. Hamacher and F. Lenzen. Minimizing Beam-OnTime in Cancer Radiation Treatment Using Multileaf Collimators.

Networks, 43(4), 226240, 2003.
[8] S. Brand. The Sum-of-Increments Constraint in the Consecutive-Ones Matrix Decomposition Problem. Proc. of the Symposium

on Applied Computing, 1417-1418, 2009.
[9] H. Cambazard, E. O’Mahony and B. O’Sullivan. Hybrid Models for the Multileaf Collimator Sequencing Problem. Proc. of the

Intl. Conf. on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimiz. Problems, 56-70, 2010.
[10] CORVUS Treatment Planning System.http://www.nomos.com/products_Cor.html
[11] J. Dai and Y. Zhu. Minimizing the Number of Segments in a Delivery Sequence for Intensity-Modulated Radiation Therapy with

a Multileaf Collimator. Medical Physics, 28(10), 2113-2120, 2001.
[12] T. Kalinowski. The Complexity of Minimizing the Numberof Shape Matrices Subject to Minimal Beam-On Time in Multileaf

Collimator Field Decomposition with Bounded Fluence. Discrete Applied Mathematics, 157(9), 2089-2104, 2009.
[13] S. Luan, J. Saia and M. Young. Approximation Algorithmsfor Minimizing Segments in Radiation Therapy. InformationProcessing

Letters, 101, 239-244, 2007.
[14] K. Otto. Volumetric Modulated Arc Therapy: IMRT in a Single Gantry Arc Medical Physics 35(1), 310-317, 2008.
[15] Z. C. Taskin, J. C. Smith, H. E. Romeijn and J. F. Dempsey.Optimal Multileaf Collimator Leaf Sequencing in IMRT Treatment

Planning. Operations Research, 58(3), 674-690, 2010.
[16] P. Xia and L. Verhey. Multileaf Collimator Leaf Sequencing Algorithm for Intensity Modulated Beams with Multiple Static Seg-

ments. Medical Physics, 25, 1424-1434, 1998.

6

Experimental Results
Instance m n h D OPT Ab=2 Ab=3 Aα=2 A

α=
24

13

1 20 19 5 5 7 10 8 12 12
2 19 18 5 5 7 11 9 11 11
3 19 14 5 5 9 11 10 15 15
4 19 14 5 5 8 10 10 13 15
5 19 16 5 5 8 12 9 14 13
6 20 16 5 5 8 11 9 12 12
7 20 16 5 5 9 12 9 14 15
8 20 16 5 5 8 12 10 13 13
9 20 11 5 5 7 8 8 12 12
10 27 21 5 5 10 13 14 13 14
11 27 20 5 5 10 12 13 11 11
12 26 18 5 5 8 9 10 12 12
13 26 15 5 5 7 9 9 10 10
14 26 18 5 5 8 11 12 12 14
15 26 17 5 5 8 11 11 10 10
16 26 13 5 5 7 10 9 10 10
17 26 18 5 5 8 11 11 11 11
18 27 20 5 5 8 11 10 10 10
19 21 19 5 5 11 15 12 13 13
20 21 17 5 5 7 9 10 12 12
21 21 15 5 5 8 11 8 11 11
22 20 18 5 5 9 12 9 14 14
23 21 18 5 5 8 11 10 12 12
24 21 15 5 5 6 8 7 9 9
25 21 17 5 5 9 12 9 15 14
26 21 19 5 5 9 13 10 14 12
27 21 21 5 5 11 14 14 13 13
28 21 19 5 5 10 14 13 13 13
29 22 16 5 5 8 11 9 11 11
30 21 11 5 5 5 6 7 7 7
31 20 20 5 5 10 14 13 14 14
32 20 19 5 5 9 11 11 12 13
33 22 15 5 5 7 11 10 10 10
34 21 20 5 5 10 13 12 14 14
35 21 16 5 5 8 9 9 10 10
36 21 14 5 5 8 11 11 12 12
37 25 18 5 5 7 10 10 11 10
38 25 21 5 5 11 14 13 14 13
39 25 18 5 5 8 11 10 13 12
40 26 19 5 5 11 12 14 20 14
41 26 21 5 5 13 16 15 19 17
42 26 18 5 5 9 11 11 12 12
43 25 18 5 5 8 10 10 11 9
44 25 17 5 5 8 11 10 12 12
45 25 21 5 5 10 15 12 15 15
46 7 7 5 5 5 7 6 7 7
47 7 8 5 5 4 6 4 7 7
48 8 9 5 5 5 8 7 7 7
49 8 8 5 5 5 7 6 7 7
50 8 9 5 5 5 7 6 7 6
51 8 9 5 5 6 9 7 11 11
52 8 9 5 5 5 8 5 6 6
53 8 7 5 5 5 7 5 7 7
54 8 9 5 5 6 8 7 8 8
55 21 17 5 5 8 10 10 10 10
56 20 19 5 5 7 9 8 9 9
57 19 14 5 5 5 7 8 6 6
58 20 18 5 5 6 7 8 9 9
59 20 17 5 5 6 7 7 8 8
60 19 15 5 5 3 5 6 4 4
61 20 18 5 5 7 9 10 10 10
62 21 18 5 5 8 10 10 12 12
63 21 20 5 5 7 10 10 10 10
64 23 19 5 5 11 15 12 16 16
65 23 16 5 5 6 10 8 8 8
66 23 12 5 5 4 6 6 7 7
67 23 18 5 5 8 12 10 13 11
68 23 17 5 5 8 11 9 11 11
69 22 14 5 5 5 7 7 8 7
70 22 16 5 5 7 8 9 9 9

Table 6:Experimental results for Data Set II with the
best result provided by the approximation algorithms
underscored. The running time was negligible.

Instance m n h D OPT Ab=2 Ab=3 Aα=2 A
α=

24

13

1 15 16 10 8 8 18 15 12 12
2 15 16 10 8 11 16 15 15 15
3 15 15 10 9 8 15 16 10 10
4 16 13 10 9 7 14 8 10 10
5 16 16 10 9 9 14 14 14 14
6 16 16 10 8 9 21 13 17 15
7 15 13 10 10 5 8 9 10 9
8 23 27 10 9 14 24 21 25 25
9 24 24 10 7 14 21 18 17 19
10 23 32 10 10 15 24 23 23 20
11 23 24 10 8 14 22 20 19 19
12 23 26 10 8 12 25 17 17 18
13 23 33 10 7 16 23 19 19 18
14 23 36 10 10 17 27 24 22 20
15 20 23 10 9 9 14 14 13 14
16 20 19 9 8 10 14 16 12 13
17 20 22 10 10 10 15 13 13 13
18 20 22 10 9 10 15 17 16 15
19 20 21 10 7 10 16 14 15 14
20 20 19 10 6 9 14 12 11 13
21 20 23 10 10 11 17 16 19 19
22 21 20 10 10 10 17 17 18 15

Table 7: Experimental results for Data Set II with the best
result provided by the approximation algorithms underscored.
The running time in CPU seconds for OPT is provided in
parentheses.

Instance m n h D OPT Ab=2 Ab=3 Aα=2 A
α=

24

13

1 58 49 20 2 20 (45) 37 34 27 22
2 50 68 20 2 29 (59) 54 54 31 31
3 54 61 20 2 25 (53) 47 46 28 28
4 51 39 20 2 17 (44) 32 29 20 20
5 44 71 20 2 30 (63) 55 55 33 33
6 56 43 21 2 18 (66) 33 30 24 22
7 40 67 21 2 30 (74) 57 54 37 32
8 52 59 21 2 25 (2359) 48 43 29 30
9 44 39 21 2 18 (61) 33 31 23 21
10 68 63 21 2 25 (4214) 48 43 28 29
11 68 47 22 2 18 (123) 32 31 20 20
12 44 69 22 2 32 (147) 59 59 36 32
13 59 37 22 2 18 (115) 30 31 19 19
14 54 59 22 2 26 (124) 49 50 27 27
15 65 60 22 2 18 (103) 32 31 19 19
16 41 50 23 2 25 (12691) 45 45 32 27
17 64 62 23 2 18 (192) 32 32 27 20
18 62 58 23 2 19 (208) 37 34 25 23
19 36 47 23 2 23 (1898) 43 41 28 26
20 59 38 23 2 18 (126) 31 32 19 19

Table 8: The experimental instances using Data Set III with
the best result provided by the approximation algorithms un-
derscored. The running time in CPU seconds (rounded to the
nearest integer) for OPT using the CPSP algorithm of [9] is
provided in parentheses. In several cases, the running timeis
significant.

7

