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Abstract

The segment minimization problem consists of represergimgteger matrix as the sum of the fewest
number of integer matrices each of which have the propegyttte non-zeroes in each row are consec-
utive. This has direct applications to an effective form ahcer treatment. Using several insights, we
extend previous results to obtain constant-factor imprevs in the approximation guarantees. We show
that these improvements yield better performance by pingidn experimental evaluation of all known
approximation algorithms using both synthetic and reatlavdlinical data. Our algorithms are superior for
76% of instances and we argue for their utility alongsidehtberistic approaches used in practice.

1 Introduction

Intensity-modulated radiation therapy (IMRT) is an effeetform of cancer treatment in which the region
to be treated is discretized into a grid. A treatment plarci$ies the amount of radiation to be delivered to
the area corresponding to each grid cell. A device called lleaf collimator (MLC) is used to administer
treatment in several steps. In each step, two banks of nezted$ in the MLC are positioned to cover certain
portions of the body surface, while the exposed portionsabgected to a specific amount of radiation.

A treatment plan is represented asranx n intensity matrix” of non-negative integer values, whose
entries represent the amount of radiation to be delivergdegaorresponding grid cells. The MLC leaves
partially cover rows ofl”; for each rowi there are two leaves, one which slides inward from the ledt@re
which slides inward from the right. After each step, the amadiradiation applied in that step (this can differ
per step) is subtracted from each entryitthat is exposed. The treatment is complete when all entréss a
In many cases, the number of segments does not have sigtiifgzaing on whether overdosing/underdosing
occurs; therefore, approximation algorithms are suitab&etting leaf positions in each step requires time.
We aim to minimize the number of steps as this increasesmdtieoughput and reduces the procedure cost.

Formally, asegments a matrix,S such that non-zeroes in each row$fare consecutive, and all non-
zero entries ofS are the same integer, which we call thegment-valueA segmentatiorof 7' is a set of
segment matrices that sumIg and we call the cardinality of such a set #ieeof that segmentation. The
segmentation probleis, given an intensity matri¥’, to find a minimum-size segmentationtf

Related Work: The segmentation problem is known to be NP-complete, evemgmgle row [3], and APX-
complete [4]. A number of heuristics are known (see [2, 316] and references therein). Approaches for
obtaining optimal solutions also exist (see [8,12] andnezfees therein); these approaches do not necessarily
terminate in polynomial time. Bansat al. [4] provide a24/13-approximation algorithm for the single-row
problem. Most relevant to our current work, Luanal.[13] give two approximation algorithms for the full

m x n problem; however, they do not confirm the performance of thigorithms with experiments. Finally,

we note that other important metrics for treatment planeixigt, such as total irradiation time (see [1,7,12])

Our Contributions: Luan et al. [13] made two observations: (L)can be decomposed into a particular set
‘P of 0/1 matrices where the segmentation size of gaehP can be related to the optimal segmentation size
of T', and (2) segmentations for the single-row problem can be tesebtain good segmentations for the full-
matrix problem. By exploiting these properties, they atai two algorithms with respective approximation
factors of1 + log, h and2(1 + log, D) whereh is the largest value ifl’, and D is roughly the largest
difference between consecutive row elements. Throughayjty: denoteg log, . Our first contribution is:
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e We extend the ideas of [13] to achieve three fast algorithiitis @pproximation factors of (roughly)
3. (1 +loggh), 2 (1+logy h) and(24/13) log D. _Since% log, (h) < 3 logs(h) < logy(h), for
sufficiently largeOD PT" andh, our first two algorithms improve on previous work by a faabs 1.057
and%, respectively, while our third algorithm improves by a faabdf 13/12.
While admittedly these improvements are not large, the liofhat they translate into improved performance
in practice. Previous approximation algorithms have netnkested; therefore, our second contribution is:

e We provide the first experimental evaluation of known appr@tion algorithms for the full segmenta-
tion problem, using both synthetic and real-world clinidata. Our approximation improvements yield
significant performance gains. Together, our new algoistane superior for 76% of test instances.

We remark that our experimental evaluation has practidakvaVhile newer approaches in radiation therapy
exist [14], the delivery method as described in this pap#résmainstream in current clinics and will likely
stay because of its simplicity and less machine wear and teasurrent MLCs, segment minimization is
performed by heuristics available in commercial softwarghsas the CORVUS system manufactured by the
NOMOS Corporation [10]. However, heuristics do not offelusion-quality guarantees and the run-time
for exact methods can be prohibitively high. Instead, fagraximation algorithms can be used in parallel
with heuristics to catch poor-quality solutions. Finallye expect that as intensity matrixes become larger,
approximation algorithms will become increasingly usefué to the high running time of exact methods.

2 Improved Approximation Algorithms

LetT = (T[i,j]) fori =1,...,mandj = 1,...,n be the target-matrix. Defineraarkeras an indey for
which T, j — 1] # T[i,j], orj = 1 andT[i, 1] # 0, orj = n + 1 andT[i,n] # 0 (alternatively, one can
imagine an additional column of Os on the left and the righfhfLet p’ be the number of markers in roiv

of T, and letp = maxume:{p'}, i-e. the number of markers in the rowBthaving the most markers over all
rows. We reiterate the following observation noted in [18kK 2- OPT whereOPT is the size of a minimal
segmentation of’. The first approximation algorithm given by Luan et al. [13jnks as follows. Split the
intensity matrix7" into matricesP, . . ., P, such thatl’ = Zfzo 2¢. P, wherek = log, h and eachP, is
a0/1-matrix. A segmentation fof’ can then be obtained by taking segmentations of dacimultiplying
their values by2¢, and taking their union. Since eaéhis a 0/1-matrix, an optimal segmentation of it can be
found easily, and an approximation boundlof log, i holds.

FIRST IMPROVED ALGORITHM: We extend this approach by increasing the bage-03, 4, i.e. writing

T= Z';:O b® - P,. But this raises two crucial questions: Can we solve the segation problem in a matrix
with values in{0,1,...,b — 1}? And is the resulting segmentation a good approximatiomefaptimal
segmentation? Resolving these questions is non-trivéht@guires new techniques over those used in [13].

Forb = 3, we wish to segment an intensity matid that has all entries i40, 1,2}; we call this a
0/1/2-matrix. Let p; denote the number of markers in tik row of 7.

Lemma 1. There exists a segmentation of rowf a0,/1/2-matrix P, such that the number of 1-segments is
at most; - p;, and the number of 2-segments is at mpsp;, + 3.

Proof. We use induction op}. The base case is where none of the cases for the inductiopecapplied;
we treat this last. For the induction, we identify a subsegeeof the row for which we can add segments,
resulting in the removal of many markers. We detail this fa first of the cases in the induction step and
illustrate them all in Figure 1:

1. Assume that the row contains a subsequence of the farm. We use regular expression notation:
1271 denotes an entry 1, followed by 1 entries 2, followed by an entry 1. Letbe a 1-segment that
covers exactly the subsequence2ef and consideP’ = P — s. ThenP’ has two fewer markers in
theith row (at the endpoints of), and so by induction thé&h row can be segmented using at most
- (py — 2) 1-segments, and - (p} — 2) + & 2-segments. Adding the 1-segmenytields the result.

2. If there exists a subsequence of the farti0, then apply a 1-segment to the subsequendes oT his
removes 2 markers, and adds a 1-segment, and no 2-segmairidactively obtained segmentation.

3. If there exists a subsequence of the faiat 17270, then similarly apply a 2-segment at the first
subsequence @k, then two 1-segments to remove the remaiing*. This removes 4 markers, and
adds two 1-segments, and one 2-segment to the inductivijneiol segmentation.

4. Ifthere exist two subsequences of the fa¥2ri 10 or 017210, then similarly apply one 1-segment to
one subsequence 2§, and one 2-segment to the other subsequengg, tfien apply two 1-segments
to the two remaining sequencesi®. This removes 6 markers, and adds three 1-segments and one
2-segment to the inductively obtained segmentation.
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Figure 1: An illustration of cases (1) through (6) of the grobLemma 1.

5. If there exist two subsequences of the fdxat 0, then similarly apply one 2-segment to one of them,
and two 1-segments to the other. This removes 4 markers datsha@o 1-segments and one 2-segment
to the inductively obtained segmentation.

6. If there exists one subsequence of the f621+0 or01+2%0, and one subsequence of the fdiat 0,
then apply one 2-segment to the subsequéace, and two one 1-segments to the other. This removes
5 markers, and adds two 1-segments and one 2-segment tatiaively obtained segmentation.

In all the above cases, we have removed at least 2 markersgggment and at least 4 markers per 2-
segment. Thus, counting only segments created and maetemed 1 thus far, we have at mgsy2) - p
1-segments an@l /4) - p, 2-segments. All that remains to do is to consider any matkertsare remaining.

Assume that none of the above cases can be applied (i.e askeechse) - we argue that now at most three
markers are left. Led(1 + 2)™0 be a subsequence that has markers in it where 2) denotes the presence
of al or a2. Assume first the leftmost non-zero is a 1. Then the subseguenst contain a 2 somewhere
(otherwise we're in case (2)), so it has the fdiir 2 (1 +2) 0. But after the 2s, no 1 can follow (otherwise
we're in case (1)), so this subsequence has the form2*0. Likewise, if the last non-zero is 1, then the
subsequence has the fofi@™170. If the first and last non-zero are 2, then the subsequencthbdsrm
0270 (otherwise we're in case (1) or (3)).

If we had two subsequencesl + 2)*0, then each would have the fori *2*0 or 02110 or 0270,
and this is case (4), (5) or (6). So there is only one of therd,ighas at most three markers. We can now
eliminate either three remaining markers with a 1-segmedtza2-segment, or two remaining markers with
a 2-segment. In either case, the bound on the number on theemarhl-segments used is sfill/2) - p, and
the 2-segments is used(is/4) - p; + 1/2 (tight for the case 0f210). O

There exists a simple algorithmREEDYROWPACKING for combining segmentations mfws of a matrix
P, with values inl, ..., b— 1 into a segmentation of theholematrix P,. For each value € {1,...,b— 1},
check whether any segment in any row has valuiéso, remove a segment of valudrom each row that has
one. Combine these segments into one segment-matrix (dlswvaluev), and add it taS. Continue until
all segments in all rows have been used in a segment-matiearlg, if each row has at most; i-segments
(i.e., segments with valu®, this gives a segmentation 65 with at mostn; i-segments and; + - - - +np_1
segments in total. Using the segmentations of each rowrgddtaivith Lemma 1, and combining them with
GREEDYROWPACKING, gives a segmentatia$y of each 0/1/2-matrix;.

Theorem 1. Assumé’ = Z';:O 3¢Py, wherek = 1+ log h andh is the largest value ifl", and eachP, is a
0/1/2-matrix. Combining the above segmentatiSps . ., Sy for matricesP,, ..., P gives a segmentation
S for T of size at mosg -k-OPT + % - k. This segmentation requir€$(m - n - log h) time to find.

Proof. Recall that the segmentation of rowof P, has at mos% - pl 1-segments and at mo§t- Py + %
2-segments (Lemma 1). Let = max; pj; be the maximum number of markers within any row/ot By
algorithm GREEDYPACKING segmentatios,; of P, then has at mo$ - pe 1-segments and at mo};t pe+ %
2-segments. SiS| < % - pe + % Matrix P, can have a marker only if matrik has a marker in the same
location, sop, < p by [13]. Sincep < 2 - OPT, we put it all together to get:

k

k k
3 1 3 1 3 1
= < — . — < —.92. — — — . — . .
EEDIIE <4 pe+2)_§ <4 2 OPT—|-2) (2 OPT+2) (1+ logg h)

£=0 £=0 £=0
For eachP,, this require$D(m - n) time; thus, the entire algorithm runs in tini&m - n - log h). O

By extending these ideas, we can prov?ga(l +log, h) approximation wheh = 4. In theory, our approach
could be taken further; however, the case-by-case anadyisigolved (see [6] for details far = 4).

1 72 6 0 11 2 1 0 02 0 20
Examplel. LetT=| 6 2 4 8 2 | =30 2 1 2 2 |+3 2 0 1 2 0

2 1 3 7 2 2 1 0 1 2 001 20
By Lemma 1, the row segmentations féy are as follows: row 1 belongs to Case 1 and uses segments
[00100],[11110], row 2 belongs to Case 3 and uses segménts1 1 1],[0001 1], (0200 0],



and row 3 belongs to Case 4 and uses segminis) 0 0], 0 0002],[11000], [000 10]. Applying
GREEDYROWPACKING first to the value 1 and then to the value 2 gives the followeggsentation foiP,:

00 1 0 0 11 1 1 0 00 0 0 O 00 0 0 O
o o111 },{00O0OT1 1],/ OO0 0 0O and [ 0 2 0 0 O
1 0 0 0 O 1 1.0 0 O 0 0 0 1 O 00 0 0 2

For Py, the row segments are: row 1 belongs to Case 5 {(5¢$ 0 0], [0 1 0 0 0], [0 0 0 2 0], row 2 belongs

to Case 6 and usg2 000 0],[001 1 0], [000 10}, and row 3 belongs to one of the remaining cases and
usesi0 01 00],[000 2 0]. ApplyingGREEDYROWPACKING first to the value 1 and then to the value 2 gives
the following segmentation fa?;:

01 0 0 O 01 0 0 0 0 0 0 2 O
001 10]),l00O0 10 )Jandl 2 0 0 0 O
0 0 1 0 O 0 0 0 0 0 0 0 0 2 O

SECOND IMPROVED ALGORITHM: Luan et al. showed that for a single-row problem, if thererisra
approximate solution where all segment-values are at mfsthen ana(log M + 1)-approximate seg-
mentation ofI" can be found in polynomial time. Using this property, thehaus gave &(log, D + 1)
approximation since any single-row problem has a 2-appmate solution. Here, th@ew-differenceD is the
maximum difference between consecutive row elements,@ntaximum of the first and last entries in the
row, whichever is larger. We extend this approach with tweeaslsations. Firstany segmentation can be
converted into a segmentation of the same size with value®satD. Secondly, valuea < 2 are known.

Theorem 2. There exists an algorithm that, for an intensity maffixvith maximum row-differencB, finds
a segmentation of size at mo%t- (log D + 1)OPT and runs inO(m - n? - h - log D) time.

Proof. LetS be any segmentation of a single-row intensity matfiwith row-differenceD. Modify S such
that no two segments meet, i.e., if some segment ends at intlean no segment startsat- 1. This can
always be done without increasing the number of segmergeg8e Any segmentS must then have value
v < D, forif S ends ati, thenT'[i + 1] = T'[¢] — v since no segment startsiat 1. Therefore, we have
a segmentation df’ of size at mostS| where all segments have value at mgst Given thatM = D, it
follows from the observation of Luaet al., that we have an(log D + 1)-approximate segmentation. Since
a < % is shown in [4], our result follows. The < % algorithm of [4] runs inO(n? - h) time. Since we run
this over allm rows of each of th&(log D) matrices specified in [13], the running time of our algorittsm
O(m -n?-h-logD). O

3 Performance Evaluation

In many areas, heuristics outperform approximation atlyors in practice. However, heuristics can become
trapped in local optima and yield low-quality solutions. @ other hand, as demonstrated by previous
work [12], and by our experiments, computing the optimumdsputationally intensive and only possi-
ble with matrices of limited size antl values (hence the need for heuristics). Therefore, appration
algorithms can play an important role by providing a fasthmoetfor checking solution quality.

Preliminary work [5] shows that our algorithms frequentitah poor quality solutions yielded by the
popular heuristic of Xia and Verhey [16] which is extensyweted as a benchmark in the literature (see [6]
for details). That said, we expect more recent and sophtsticheuristics to outperform our algorithms most
of the time.We stress that we do not aim to beat heuristics, only to peoaidefficient safeguard against poor
quality solutions There is a vast literature on segmentation heuristicswite a comprehensive comparison
involving these approaches would be valuable, such an taideg is outside the scope of this work.

We implemented four algorithms in Java using roughly 36@@diof code: (i) A=z, the (log, h + 1)
approximation algorithm of [13], (ii) A-3, our3/2 - (logs h + 1) approximation algorithm, (iii) A—2, the
2(log D + 1) approximation algorithm of [13], (iv) A—24/13, our24/13 - (log D + 1) which utilizes our
implementations of algorithms from [4]. Experimentatioitwthe % - (1+log, h) approximation algorithm
did not yield improved performance ove,4;, so we do not consider it further. Finally, we compare agains
OPT using the recent state-of-the-art exact algorithmsdayléazardet al. [9] which are shown to compare
favourably with another recent exact algorithm [15]. Cam#vdet al. provide two exact algorithms: the
shortest path constraint programming algorithm (CPSP)taedranch-and-Price (BP) algorithm. We use
the following test data:

e Data Set l:a real-world data set df0 clinical intensity matrices from the Department of Radiati
Oncology at the University of California at the San FrangiSchool of Medicine.
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e Data Set Il:a real-world data set of2 clinical intensity matrices from prostate, brain, and headk
cases from the Department of Radiation Oncology at the Usityeof Maryland School of Medicine.

e Data Set lll:a synthetic data set @b intensity matrices. Each matrix is obtained as follows: pate
the sum of the probability density functions of 2-4 bivagi@aussians generated from two independent
standard univariate Gaussian distributions with ampétudand the centers of the distributions are
sampled uniformly at random. The distributions are diseeet by adding as the value in the x n-
grid the integer part of the corresponding function value.

First, we note that all three data sets are scalell s023 - this is necessary so that the exact algorithm
of [9] (1) completes within a reasonable amount of time andi(#s not exceed the allotted memddgcond,
Data Set Il allows for testing on intensity matrices whérealues are relatively small compareditoThis
allows us to investigate the effect of small values on the performance of our approximation algorithms.
Testing on matrices with smalD values is also pertinent assuming higher precision MLCsatlanv for
more fine-grained intensity matrices.

ANALYSIS OF EXPERIMENTS: Tables 3-8 contain the results for each instance of our atialw All
experiments were conducted ori7a2.8 GHz Intel CPU machine running a 64-bit version of LinuxQ

At most2 GB of RAM was utilized in any trial with the approximation algthms while for OPT5 GB of
RAM (Tripple Channel DDR3 2000) was allotted to the progrdine time to compute the optimal solutions
in Data Set | and Il was negligible (under 0.5 CPU secondgguBR); however, only CPSP was able to solve
the Data Set Il instances and the run-time values are indlud@able 8 since they were significant. Table 1
summarizes performance by enumerating the number of ioss$ain which each algorithm outperformed all
others (excluding OPT) with ties included.

| | #Instances]| Ap—s | Ap_s | An—z | Aa—i13 |
Data Set | 70 24 (34.3%)| 55 (78.6%)| 14 (20.0%)| 18 (25.7%)
Data Set Il 22 3 (13.6%) 9 (40.9%)| 11 (50.0%)| 12 (54.5%)
Data Set Ill 20 0 (0.0%) 0 (0.0%) 11 (55.0%)| 18 (90.0%)

Table 1:The number of instances where each of approximation algositachieves the smallest
segmentation with ties included. The largest value in eashis bolded.

Our Questions: In analyzing our results, we focus on three questions: (1Y ldo our improved algo-
rithms compare against their older counterparts by Letaal.? (2) How do the algorithms with af(log &)
approximation guarantee compare to those wittOdlog D) approximation guarantee? (3) How do these
approximation algorithms compare against the optimumtsoi@

Question 1: Table 1 shows that A3 and A,—,4/,3 outperform on a larger number of instances than the
algorithms of [13] in all three data sets for a total&3f out of 112 instances (75.9%). In particular,;,As

ties or outperforms all other approximation algorithmsfnout of the70 instances (78.6%) in Data Set |
while A,_4/13 ties or outperforms all other approximation algorithms2rout of the22 instances (54.5%)

in Data Set Il and in 8 out of the20 instances (90.0%) in Data Set III.

Given these positive results, we wish to know lgw muchwe improve. We examine the number of
segments required by an algorithm per instance and caédhiatatio of these two values; the median (Med.),
minimum (Min.) and maximum (Max.) ratios over all instandsgeported in Table 3. A3 performs
substantially better than,A, overall judging by both the median values. Inthe case of A 13 and A,—o,
our gains are smaller, yet there is still an overall improgaton average.

| | Ap—; outperforms A _ > | A, 21 outperforms A—s | Ties |
Data Set | 47 (67.1%) 6 (8.6%) 17 (24.3%)
Data Set Il 7 (31.8%) 9 (40.9%) 6 (27.3%)
Data Set Ill 0 (0.0%) 20 (100.0%) 0 (0.0%)

Table 2:An instance-by-instance comparison of-A and A,—24/13.

Question 2: We contrast the performance of tli§log h) and O(log D) approximation algorithms. We
restrict ourselves to a comparison of-A and A,_», /13 given the previous discussion. Table 2 provides
the results of our comparison. We also calculate the averagdian, minimum and maximum ratios on a
per-instance basis of A o, /13 over A,_3 in Table 4.

We can tentatively draw some conclusions. Wlheand D are relatively equal, A3 approximation
generally yields superior performance in practice; thisegainly the case for Data Set |. However, as Data
Set Il illustrates, there are exceptions; neither algorith clearly superior here. For the case wherés
significantly smaller than, all statistics suggest that A, /13 yields substantially better solutions.



Ratio of A,—3 over Ay—» Ratio of Aazf_g over A,—2
Ave. | Med. | Min. | Max. Ave. | Med. | Min. [ Max.

Data Set| | 0.9262 | 0.9161 | 0.6250| 1.2000 | 0.9860| 1.0000 | 0.7000 | 1.1667
Data Set Il | 0.9074| 0.8990 | 0.5714| 1.1429| 0.9878 | 1.0000| 0.8333 | 1.1818
Data Set Il | 0.9644 | 0.9687 | 1.0333| 0.8958 | 0.9451| 1.0000| 1.0357| 0.7407

Table 3:Average, median, minimum and maximum ratios measuringxtemeof our improvements.

| | Ave. [ Med. [ Min. [ Max. | | | Ave. | Med. | Worst [ Best |
Data Set| | 1.1650| 1.1111 | 0.4444| 1.8889 Data Setl | 1.1893| 1.2000| 1.5000| 1.0000
Data Setll | 0.9810| 1.0000 | 0.6250| 1.2500 Data Set Il | 1.3636 | 1.3636| 1.6000| 1.1250
Data Set Il | 0.6289 | 0.6189| 0.7333 | 0.5400 Data Setlll | 1.1847| 1.1425| 1.5000| 1.0385
Table 4: Average, median, minimum and maximum Table 5:Statistics using thbestapproximations
ratios of A,_24/13 over A,—s. achieved by running all four algorithms.

Question 3: Finally, we compare against OPT. For each data set, all appation algorithms are run on
each instance and we take the best solution. Using theseshlesibns, average, median, worst and best
values are reported in Table 5. We see that our heuristiasadifar from the optimal solution in most cases.

Running Time: All approximation algorithms completed each instance wwith01 CPU seconds on Data
Set 1,0.02 CPU seconds on Data Set I, ah@40 CPU seconds on Data Set Ill. In contrast, the running time
for computing OPT can be significant. For Data Sets | & II, tlygoathm of [9] performs superbly. However,
for Data Set Il, this is due to the fact that thevalues are scaled to be small (clinical values were truncate
a single decimal point). By incorporating even another metiplace of clinical data, we found OPT (using
CPSP) did not terminate within 24 hours. In fact, for any of atiempts withh > 25, the CPSP algorithm
of [9] did not complete within 6 hours. Furthermore, attespith the Branch-and-Price algorithm (both the
light and normal versions) quickly terminated due to men®rgrs [9] forh > 20. These limitations are a
concern for present-day real-world instances. From a fatv@oking perspective, larger intensity matrices
may become feasible as technology advances and this wiklgrecrease the running time and memory
usage of exact algorithms. The impactefalues and size is apparentin Data Set Ill where computiAg O
for several cases required hundreds, or even thousand®Wb&€Econds.

In conclusion, our theoretical and experimental resulsasthat there are fast algorithms that yield
segmentations that are provably not too far from the optiranchperform well in experiments. While more
sophisticated heuristics likely outperform them, thegmathms are fast enough that they could be run in
parallel with heuristics, thus providing a check on solntiuality without significant overhead.
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Experimental Results

Instancg m n h | D |OPT|Ap—2|Ap—3|Aa=2 . %;L Instancé m n h D [OPT [Ap—2|Ap—3| Aa=2 Aa:%_%
1 20| 19 | 5] 5|7 |10 8 | 12 12 1 1516 | 10| 8 | 8 | 18 | 15 12 12
2 19| 18 |5|5|7 | 11| 9| 11 11 2 15|16 | 10| 8 | 11| 16 | 15 15 15
3 19| 14 | 5| 5|9 | 11| 10| 15 15 3 15|15 10| 9 | 8 | 15| 16 10 10
4 19| 14 | 5| 5|8 | 10| 10 | 13 15 4 16|13 10] 9 |7 | 14| 8 10 10
5 19| 16 | 5| 5|8 | 12| 9 | 14 13 5 1616|100 9|9 | 14| 14 14 14
6 20| 16| 5|58 |11] 9 | 12 12 6 16|16 |10| 8 | 9 | 21| 13 17 15
7 20| 16| 5|59 |12] 9 | 14 15 7 15| 13| 10| 10| 5 8 | 9 10 9
8 20| 16 | 5|5|8 | 12| 10| 13 13 8 23| 27|10| 9 | 14| 24| 22 25 25
9 20| 11|5]|5]|7 8 | 8 | 12 12 9 24| 24| 10| 7 | 14| 21| 18 17 19
10 | 27| 21 |5 |5 |10 13| 14| 13 14 10 | 23| 32| 10| 10 | 15 | 24 | 23 23 20
1 27| 20 |5 |5|10] 12| 13| 11 11 11 | 23| 24| 10| 8 | 14| 22| 20 19 19
12 | 26| 18 |5|5]|s8 9 | 10| 12 12 12 | 23| 26| 10| 8 | 12| 25| 17 17 18
13 | 26| 15 |5|5|7 9 | 9| 10 10 13 | 23|33 | 10| 7 | 16| 23| 19 19 18
14 | 26| 18 |5 |5|8 | 11|12 12 14 14 | 23| 3 | 10 | 10 | 17 | 27 | 24 22 20
15 | 26| 17 | 5|5 |8 | 11| 11| 10 10 15 | 20| 23| 10| 9 |9 | 14| 14 13 14
16 | 26| 13 |5 |57 |10 9| 10 10 16 | 20| 19| 9 | 8 | 10| 14| 16 12 13
17 | 26| 18 |5 |5 |8 | 11| 11| 11 11 17 | 20| 22| 10 | 10 | 10 | 15 | 13 13 13
18 | 27| 20 |5 |5|8 | 11| 10| 10 10 18 | 20| 22| 10| 9 | 10| 15| 17 16 15
19 |21 | 19 (5|5 | 11| 15| 12| 13 13 19 | 20| 21| 10| 7 | 10| 16 | 14 15 14
20 | 21| 17 | 5|5 |7 9 | 10| 12 12 20 |20 19| 10| 6 |9 | 14| 12 11 13
21 | 21|15 |5|5|8 | 11| 8| 11 11 21 | 20| 23| 10| 10| 11| 17 | 16 19 19
22 | 20| 18| 5|5|9 | 12| 9 | 14 14 22 | 21| 20| 10| 10| 10| 17| 17 18 15
52 ﬁ }2 2 f—, 2 181 %) 192 192 Table 7: Experimental results for Data Set Il with the best
25 | 21|17 | 5|5 |9 | 12| 9 | 15 | 14 | result provided by the approximation algorithms undersdor
26 | 21| 19 |5|5|9 | 13| 10| 14 12 ; ; ; ; ; ;
27 |21 21| 5| s|11|1a|1a]| 13 i3 The running time in CPU seconds for OPT is provided in
28 | 21| 19 | 5|5 | 10| 14| 13| 13 13 | parentheses.
29 | 22| 16 |5|5|8 | 11| 9| 11 11
30 121115155 | 6|7 7 7 |[nstancg m [ n [ k| D OPT  [Ao=z[Ao=s[Aa=z[A,_21
2; 58 ig g g 30 ﬁ ﬁ’ 1‘2‘ 1‘3‘ 1 58 | 49 | 20 | 2 | 20(45) 37 | 34 | 27 | 22
33 | 22| 15|5|5|7 |11|10]| 10| 10 2 | 50|68 20 2] 29(59) 54 1 54| 31 31
34 | 21|20 5|5 10| 13| 12] 1a 14 3 54 | 61 | 20 | 2 | 25(53) 47 | 46 | 28 | 28
35 | 211161558 o | 9 | 10 10 4 51| 39| 20| 2| 17 (44) 32 29| 20| 20
36 |21] 14 |5|5|8 |11|11| 12| 12 5 | 44171120 2| 30(63) 55 | 55| 33| 33
37 | 25| 18|5|5|7 | 10]10] 11 10 6 56 | 43 | 21 | 2 | 18(66) 33 30| 24| 22
38 |50 211515111 14|13 12 13 7 40 | 67 | 21 | 2 | 30(74) 57 | 54 | 37 | 32
AL IR IE I HEHEEE A HL
32 gg ;2 g g ﬂ %g E ig 1‘7‘ 10 | 68| 63 | 21 | 2 | 25(4214) | 48 | 43 | 28 | 29
42 | 26| 185|590 | 11|11 12 12 11 | 68 | 47 | 22 | 2 | 18(123) 32 | 31| 20| 20
3 | 51 1815!5|8 | 10|10 11 9 12 | 44| 69 | 22 | 2 | 32(147) 59 | 59 | 36 | 32
AL AR R R R A AT R
32 275 271 g g éo 175 152 175 175 15 | 65| 60 | 22 | 2 | 18(103) 32 | 31| 19| 19
7 171 8ls5ls]|a 6 | 2 7 7 16 | 41| 50 | 23 | 2 | 25(12691) | 45 | 45 | 32 | 27
4 |8 9 5|58 |8 T 7| T || 5G| 2| 0on | 37| 3| 25| 2
gg g g g g g ; g ; Z 19 | 36 | 47 | 23 | 2| 23(1898) | 43 | 41 | 28 | 26
51 | sl 9ls5!5]s o | 7| 1 i1 20 | 59 | 38 | 23 | 2 | 18(126) 31 | 32| 19| 19
52 | 8 | 9 | 5155 | 815 6 6 | Table 8: The experimental instances using Data Set Ill with
53 | 8| 7 | 5|55 7|5 7 7 . e ;
54 | 8| 9 |5|5|6 | 8] 7 8 g | the best result provided by the approximation algorithms un
56 | 21| 17 | 5| 5|8 | 10| 10| 10 | 10 | derscored. The running time in CPU seconds (rounded to the
gg ig 12 g g ; 3 g g g nearest integer) for OPT using the CPSP algorithm of [9] is
58 | 20| 18| 5| 5| 6 7 8 9 9 provided in parentheses. In several cases, the runningisime
59 | 20| 17 | 51 5|6 717 8 8 significant.
60 | 19| 15 | 5| 5| 3 5| 6 4 4
61 | 20| 18 | 5|5 |7 9 | 10| 10 10
62 | 21| 18| 5|5 |8 | 10| 10| 12 12
63 | 21| 20 |5|5|7 | 10| 10| 10 10
64 | 23| 19 | 5|5 | 11| 15| 12| 16 16
65 | 23| 16 | 5|5|6 | 10| 8 8 8
66 | 23| 12 | 5| 5| 4 6 | 6 7 7
67 | 23| 18| 5|5 |8 | 12| 10| 13 11
68 | 23| 17 | 5|5 |8 | 11| 9 | 11 11
69 | 22| 14 | 5| 5|5 707 8 7
70 | 22| 16 | 5| 5| 7 8 | 9 9 9

Table 6:Experimental results for Data Set Il with the

best result provided by the approximation algorithms

underscored. The running time was negligible.



