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Abstract. Given m unit disks and n points in the plane, the discrete
unit disk cover problem is to select a minimum subset of the disks to
cover the points. This problem is NP-hard [11] and the best previous
practical solution is a 38-approximation algorithm by Carmi et al. [4].
We first consider the line-separable discrete unit disk cover problem (the
set of disk centres can be separated from the set of points by a line) for
which we present an O(m2n)-time algorithm that finds an exact solu-
tion. Combining our line-separable algorithm with techniques from the
algorithm of Carmi et al. [4] results in an O(m2n4) time 22-approximate
solution to the discrete unit disk cover problem.

1 Introduction

Recent interest in specific geometric set cover problems is partly motivated by ap-
plications in wireless networking. In particular, when wireless clients and servers
are modelled as points in the plane and the range of wireless transmission is
assumed to be constant (say one unit), the resulting region of wireless communi-
cation is a disk of unit radius centred on the point representing the corresponding
wireless transmitting device. Under this model, sender a successfully transmits
a wireless message to receiver b if and only if point b is covered by the unit disk
centred at point a. This model applies more generally to a variety of facility
location problems for which the Euclidean distance between clients and facilities
cannot exceed a given radius, and clients and candidate facility locations are rep-
resented by discrete sets of points. Examples include (1) selecting locations for
wireless servers (e.g., gateways) from a set of candidate locations to cover a set
of wireless clients, (2) positioning a fleet of water bombers at airports such that
every active forest fire is within a given maximum distance of a water bomber,
(3) selecting a set of weather radar antennae to cover a set of cities, and (4)
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selecting locations for anti-ballistic defenses from a set of candidate locations to
cover strategic sites. These problems can be modelled by the discrete unit disk
cover problem (DUDC), whose definition is: Given sets P of m points and Q of
n points in the plane (candidate facilities and clients, respectively), find a set
P ′ ⊆ P (facilities) of minimum cardinality such that Disk(P ′) covers Q, where
Disk(A) denotes the set of unit disks centred on points in set A. In this work,
we consider the line-separable discrete unit disk cover (LSDUDC), where P and
Q are separated by a line l.

The DUDC problem is NP-hard [11]. In a recent result, Carmi et al. [4]
describe a polynomial-time 38-approximate solution, improving on earlier 108-
approximate [6] and 72-approximate solutions [16]. We present an O(m2n)-time
algorithm that returns an exact solution to the LSDUDC problem, as well as
a thorough proof of correctness of the technique. By combining the LSDUDC
algorithm with techniques from the algorithm of Carmi et al. [4], we present
a 22-approximation algorithm to the DUDC problem, improving on the best
previous practical polynomial-time approximation factor of 38.

1.1 Related Work

Line-Separable Discrete Unit Disk Cover. A solution to the LSDUDC prob-
lem was independently discovered and published by [3, Lemma 1], where they pro-
pose a dynamic programming algorithm with a time bound of O(m2n) but whose
correctness is not straightforward nor is it formally argued. This paper presents an
alternative algorithm together with a proof of correctness. Both algorithms follow
natural approaches, yet a full proof of correctness is not immediate.

ε-nets for Geometric Hitting Problems. Using ε-nets, Mustafa and Ray
[15,14] have recently presented a (1 + ε)-approximation to the DUDC problem.
Their algorithm runs in O(m2(c/ε)2+1n) time, where c ≤ 4γ [14]. Their γ value
can be bounded from above by 2

√
2 [8,12]. The fastest operation of this algo-

rithm is obtained by setting ε = 1 for a 2-approximation, and this will run in
O(m2·(8√2)2+1n) = O(m257n) time in the worst case. Clearly, this algorithm will
not be practical for large values of m.

Minimum Geometric Disk Cover. In the minimum geometric disk cover
problem, the input consists of a set of points in the plane, and the problem is to find
a set of unit disks of minimum cardinality whose union covers the points. Unlike
our problem, disk centres are not constrained to be selected from a given discrete
set, but rather may be centred at arbitrary points in the plane. Again, this prob-
lem is NP-hard [7,17] and has a PTAS solution [9]. Of course the problem can be
generalized further: see [5] for a discussion of geometric set cover problems.

Discrete k-Centre. Also related is the discrete Euclidean k-centre problem:
given a set P of m points in the plane, a set Q of n points in the plane, and
an integer k, find a set of k disks centred on points in P whose union covers Q
such that the radius of the largest disk is minimized. Observe that set Q has a
discrete unit disk cover consisting of k disks centred on points in P if and only
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if Q has a discrete k-centre centred on points in P with radius at most one.
This problem is NP-hard if k is an input variable [2]. When k is fixed, Hwang
et al. [10] give a mO(

√
k)-time algorithm, and Agarwal and Procopiuc [1] give an

mO(k1−1/d)-time algorithm for points in R
d.

2 Overview of the Algorithm

In this section we describe a polynomial-time algorithm for the line-separable
discrete unit disk cover (LSDUDC) problem and prove its correctness. Details
of the algorithm and its running time will be discussed in Section 3. Recall that
we have two sets P = {p1, p2, . . . , pm} and Q = {q1, q2, . . . , qn} of points in
the plane that are separated by a line l. We want to find a subset P ′ ⊆ P of
minimum cardinality such that all points of Q are covered by unit disks centred
at the points of P ′. An instance of the problem is shown in Figure 1. Without
loss of generality we assume that l is a horizontal line and points of P are above
l. Let di denote the unit disk that is centred at pi, for i ∈ {1, 2, . . . , m}, and
let D denote the set of these disks. We use pi and di interchangeably, e.g., our
solution can be considered both as a set of points (a subset of P ) and as a set
of disks. Further, when we discuss the intersection of a line with a disk, we are
referring to the intersection of the line with the boundary of the disk.

d1

d2

p1 p3

q3

q2

q1

p2

p4
p5

d4 d5d3

l

q4

q5

q6

q7

q8 q9

Fig. 1. An instance of the line-separable discrete unit disk cover problem

During the execution of our algorithm, it may be determined that a disk d ∈ D
should be added to the solution or that it is not relevant for the remainder of
the computation of the solution set. When this occurs, we remove disk d from
the problem. Similarly, we remove a point q ∈ Q if this point is not relevant
for the remainder of the computation (i.e., point q is covered by a disk in the
partial solution being constructed). Our algorithm relies on the following three
observations:

1. If a disk d1 covers no points from Q, we remove it.
2. If a disk d1 is dominated by a disk d2, then we can remove d1 from the

problem instance. Disk d2 dominates d1 if it covers all points of Q covered
by d1. If two disks cover the same subset of points from Q, we designate the
dominating disk as that whose left intersection with l is rightmost.
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3. If a point q1 ∈ Q is only covered by a disk d1, then d1 must be part of the
solution. We also remove d1 together with all points of Q covered by d1.

These three observations give us three Simplification rules. The idea is to apply
these rules to as many disks as possible and simplify the problem. For example,
consider the problem instance shown in Figure 1. Initially no disk dominates
another, thus we cannot apply the second rule. Disk d3 is the only disk that
covers q4 and, similarly, disk d5 is the only disk that covers q9. Thus we add
d3 and d5 to the (initially empty) solution and remove them together with the
points that are covered by them, namely {q2, q3, q4, q5, q6, q7, q8, q9}. Now disk d4

covers no point and can be removed. There is only one remaining point (q1) and
it is covered by the two remaining disks (d1 and d2). According to our convention,
d1 is dominated by d2 and is removed. Now d2 is the only disk covering q1. We
add d2 to the solution and remove d2 and q1. No disks or points remain and
we are done. Thus the Simplification rules suffice for this instance and give
an optimal solution {d2, d3, d5}. This example also illustrates that an optimal
solution is not necessarily unique, as {d1, d3, d5} is also an optimal solution. In
general, however, these Simplification rules do not suffice to obtain an optimal
solution.Referring to Fig. 1, if given only disks d1, d2 and d3 and points q1, q2

and q3, then no point q ∈ Q is covered by only one disk and no disk dominates
any other one.

We augment the Simplification rules with a simple greedy step to solve the
problem. We rename the disks so that the left intersection of di with l is to the
left of the left intersection of di+1 with l. We say that di precedes di+1 in the
ordering (the disks in Figure 1 follow this ordering). This combined algorithm,
Greedy, works by first applying the Simplification rules as many times as
possible. Next we find the first remaining disk in the left-to-right order, say
dj . We add dj to our solution and remove dj from D and all points covered
by dj from Q. We apply the Simplification rules followed by the greedy step
repeatedly until all disks have been removed. Since we remove at least one disk
at each greedy step, the algorithm terminates after at most m iterations. See
Algorithm 1 for the corresponding pseudocode.

Algorithm 1. Greedy (D, Q)
D←sortLeftToRight(D) //sort in increasing order of left intersection with l
S ← ∅

while D �= ∅ do do
Simplification (D, Q, S) //Simplification possibly modifies D, Q and S
d� ← leftmost disk in D
S ← S ∪ {d�}
D← D \ d�

Q′ ← {q ∈ Q | q is contained in d�}
Q← Q \Q′

end while
return S
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2.1 Correctness of Greedy

We now prove the correctness of the algorithm by proving that Greedy gives a
minimum LSDUDC solution. Assume for the sake of contradiction that there is
an algorithm Opt that gives a cover with fewer disks than Greedy. Let d1 be
the first disk in the ordering that is selected by Greedy but not by Opt. Let C
be the set of points in Q that are covered by d1 (we consider only the remaining
points and disks, i.e., those that have not been removed by the algorithm). First
assume that C is covered by a single disk d0 in the solution of Opt. Since d1

is not removed in the Simplification step, it is not dominated by any other
disk. Thus the only possibility is that d0 and d1 cover exactly the same set of
(remaining) points (i.e., set C) and d0 precedes d1 in the ordering. In this case,
we replace d0 with d1 in Opt, pushing the first difference between the solution
of Greedy and Opt to the right. Otherwise, C is covered by at least two disks
in the solution of Opt. Let d2 and d3 be two disks in the solution of Opt such
that each of them cover a strict subset of C. Without loss of generality assume
that d2 precedes d3 in the ordering. We prove that d1 ∪ d3 covers all points of Q
covered by d2 ∪ d3.
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Fig. 2. Proof of correctness of Greedy. If d1 is the first disk selected by Greedy and
not by Opt, then Opt must have d2 and d3 in its solution.

Let �i and ri denote the respective left and right intersection points of the
boundary of the unit disk di with the line l, for i ∈ {1, 2, 3}. If d2 precedes d1 in
the ordering, d1 dominates d2 (otherwise, Greedy would select d2 and not d1

at this step). In this case we replace d2 with d1 in Opt, pushing the difference
between the two algorithms to the right. Hence we are left with the case in which
d1 precedes d2 and d2 precedes d3 in the ordering. Thus the points are ordered
�1, �2, �3, r1, r2, r3 along line l (see Figure 2). Note that we cannot have a pair
of disks nested below l, otherwise the nested disk is dominated by the other.
Furthermore, we know that (d1 ∩ d3) \ d2 �= ∅. Let R = d2 \ d1. It suffices to
prove that R is completely contained in d3.

Proposition 1. Region R is contained in disk d3.

Proof. Since points r1 and r2 both lie between �3 and r3 on line l, both points
r1 and r2 are in disk d3. Let x denote the rightmost point of the intersection of
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the boundaries of disks d1 and d2. Observe that x lies on the boundary of region
(d1 ∩ d3) \ d2. Consequently, x ∈ d3. Since the boundary of R consists of arcs of
unit disks joining the points x, r1, and r2, it follows that R is contained in the
1-hull of {x, r1, r2}, where the 1-hull of {x, r1, r2} is the intersection of all unit
disks that contain {x, r1, r2}, denoted 1-H({x, r1, r2}). Since {x, r1, r2} ⊆ d3, it
follows that R ⊆ 1-H({x, r1, r2}) ⊆ d3. 	


Thus by removing d2 from the solution of Opt and adding d1 to it we will
have a feasible solution with the same number of disks. This pushes the first
difference between the solution of Greedy and Opt to the right. By continuing
this argument we can prove that the solution returned by Greedy uses the same
number of disks as Opt and therefore Greedy is an optimal algorithm.

3 Implementation Details and Analysis

We construct a graph G = (V, E), where each node vi ∈ V corresponds to
disk di for i ∈ {1, . . . , m} (recall that di is the ith disk sorted according to its
left intersection with l). We also associate a counter cvi to each node vi that
stores the number of points in Q contained in disk di that have not yet been
covered by the algorithm. Similarly, we associate with each edge e = (vi1 , vi2)
a counter ce that represents the number of points contained in di1 ∩ di2 . This
graph can be constructed in O(m2n) time by checking which points are contained
in the intersection of each pair of disks, adding the corresponding edges, and
updating the node and edge counters. The algorithm Greedy-Graph starts by
traversing the nodes in order v1, v2, . . . , vm. At each node vi, there are three
possible cases: (1) The counter cvi is 0; in this case di does not contain any
points or is dominated by a set of disks that has already been added to the
solution. This disk will not be in the solution set, so we can ignore this node and
continue with the next one. This is analogous to the first Simplification rule.
(2) There is an edge e = (vi, vk), k > i, such that ce = cvi ; in this case we know
that di is dominated by disk dk. Again, we ignore this node and continue. This
corresponds to an application of the second Simplification rule. (3) Every edge
e = (vi, vk), k > i, satisfies ce < cvi ; that means that disk di is not dominated by
any disk to its right. In this case we add di to the solution set and we eliminate
all remaining points contained by this disk from the graph. We continue with
the next node in the graph. Note that this is an application of the third rule of
Simplification and the greedy step.

In order to identify the appropriate case above we traverse the adjacency
list of each node we visit. This requires O(m) time in the worst case. When
a disk is added to the solution in the third case, all points contained in the
disk must be eliminated. Consider the elimination of a point p in disk di. Let
N(vi) = {vk | c(vi,vk) > 0}. For all vk ∈ N(vi), we decrease cvk

and c(vi,vk) by
one. In addition, for each pair of elements {vk1 , vk2} ⊆ N(vi), we check whether
the point is contained by both disks, and if this is case we decrease c(vk1 ,vk2 )

by one. This can take at most O(m2) time per point, thus the time required for
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eliminating all points is bounded by O(m2n) time. Since the time required to
construct the graph is O(m2n), the overall process takes O(m2n) time.

3.1 Correctness of Greedy-Graph

We now demonstrate that the Greedy-Graph algorithm is optimal by showing
that the set of disks returned by this algorithm has the same cardinality as that
returned by the Greedy algorithm presented in Section 2.

Lemma 1. If S is the disk cover returned by Greedy-Graph, and S′ is the
disk cover returned by Greedy, then |S| = |S′|.
Proof. Assume for the sake of contradiction that |S| �= |S′|. Recall that Greedy
is optimal, therefore |S′| and |S| can only differ if |S| > |S′|. Let d1 be the
first disk in the left-to-right order that is present in the solution of Greedy-
Graph, and not in the solution of Greedy. At some point during its execution,
Greedy must have decided to discard disk di. The only mechanisms in Greedy
for discarding disks are the first and second Simplification rules. Recall that
the first rule removes a disk if it contains no points, and the second rule discards
a disk if it is dominated by some other disk. We now show that for any of the
following possible events, Greedy-Graph will discard the same disk d1.

– Empty - Suppose d1 contains no points. In this case, Greedy-Graph will
find that cv1 = 0. Therefore, d1 will be discarded by Case 1, in contradiction
to our assumption.

– Dominance (right) - Now suppose d1 is dominated by some disk to the
right, dr. In this case, we will encounter d1 first during our walk, and we will
have that cv1 = c(v1,vr). Therefore, Greedy-Graph will remove d1 by Rule
2, in contradiction to our assumption.

– Dominance (left) - Suppose d1 is dominated by some disk to the left, d�.
In this case, we will have encountered d� first during our walk. There are
two possible cases in this scenario:
(i) If cv�

> c(v�,vk) for all dk, d� is added to S by Rule 3 of Greedy-Graph.
All points covered by d� are removed, leaving no points covered by d1.
This is now an instance of the Empty case.

(ii) Otherwise, cv�
= c(v�,vk) for some dk. This means that d� is dominated by

dk. Greedy-Graph would discard d� by Rule 3. By transitivity, dk also
dominates d1. If dk is to the right of d1, then this is now an instance of
Dominance (right), and thus we reach a contradiction. If dk is to the left
of d1, then this is again an instance of Dominance (left), so we apply this
same argument recursively. The recursion stops either when we reach an
instance of Dominance (right) or case (i) of Dominance (left). 	


We have shown that the solution of Greedy-Graph has the same cardinality as
the solution of Greedy, and since Greedy is optimal, so is Greedy-Graph.

Theorem 1. Given sets P of m points and Q of n points in the plane, where
P and Q can be separated by a line l, LSDUDC can be solved in O(m2n) time.
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4 Approximate Discrete Unit Disk Cover

We now show that our algorithm for the line-separable discrete unit disk cover
(LSDUDC) problem leads to a 22-approximation algorithm for the discrete unit
disk cover (DUDC) problem. The approximation algorithm is based on a suitable
adaptation of the 38-approximation algorithm of Carmi et al. [4].

For simplicity, we use the notation and assumptions of [4]. In that work, the
DUDC problem is supported by a variant of the LSDUDC problem: suppose are
given a set of disks D = L ∪ U . The disks in U are centred above a line l while
the disks in L are centred below l. We are also given a set of points Q covered
by U . The goal is to obtain the subset G of D of smallest cardinality such that
every point in Q is covered by a disk in G.

Note that our line-separable algorithm does not immediately result in a
straightforward improvement to the approximation factor of the algorithm of
Carmi et al. Their proof of correctness uses the fact that their 2-approximation
to the LSDUDC problem consists of disks forming the lower boundary of U ,
where the lower boundary is the union of all disk boundary arc segments below
l not contained in other disks. This is not necessarily the case in our solution.

Instead, we first solve the LSDUDC problem optimally using our algorithm
on the set of disks U to obtain a disk set H and then use the greedy minimum
assisted cover algorithm (see Carmi et al. [4, §2] for the formal definition) over
the sets H and L to obtain an improved solution E. Now we wish to compare
the cardinality of E with that of the global minimum disk cover G.

Consider the upper and lower components of the solutions E and G, i.e.,
EU = E ∩ U , EL = E ∩ L, GU = G ∩ U , and GL = G ∩ L. Note that |G| ≤ |E|
since G is the global minimum. Similarly, since E is the minimum assisted cover
based on H , it follows that |E| = |EU |+ |EL| ≤ |H/GL|+ |GL|, where H/GL is
the smallest subset of H that forms an assisted cover with GL.

Now we will show that 2|GU | ≥ |H/GL|. Given a disk d in GU , there are two
cases: either d lies above the lower boundary of H/GL, i.e., d is contained in the
union of all the disks in H/GL, or d contains one or more arc segments of the
lower boundary of H/GL. In the first case, Carmi et al. show that at most two
disks in H/GL suffice to cover d and, hence, for every such disk in the global
optimum solution G there are most two disks in H/GL. In the second case, let V
denote the subset of disks that have lower boundary segments that are contained
in d. The set of arc segments of the disks in V consists, from left to right, of a
partially-covered arc segment of the lower boundary, zero or more fully-covered
arc segments, and a partially-covered arc segment. Let W denote the disks whose
arcs are partially covered together with d. W dominates V and hence there is
at most one arc of the lower boundary fully contained in d; otherwise replacing
V with W results in a cover of smaller cardinality, deriving a contradiction,
since V ⊂ H , and H is the optimal LSDUDC solution1. Furthermore, observe
that the partially-covered arc disks must contain points not contained in the
fully-covered disk; otherwise they can also be eliminated while reducing the

1 Recall that all disks in V and U are centred above l, and all points in Q are below l.
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cardinality of the cover. As those disks contain other points, each of the disks is
partially covered by at least one other disk in G. We arbitrarily associate each
disk covered more than once to its leftmost disk in G. Thus, of the (at most)
three disks in V , at most two are associated to d. In sum, in either case each
disk in GU has at most two associated disks in H/GL from which it follows that
2|GU | ≥ |H/GL|. Hence, 2|G| = 2 (|GU | + |GL|) ≥ 2|GU | + |GL| ≥ |H/GL| +
|GL| ≥ |EU |+|EL| = |E|, which gives the approximation factor of two as desired.
Carmi et al. [4] prove that any disk can be used in up to eight applications of
the assisted LSDUDC algorithm, for which they have a 4-approximation. These
operations, followed by a 6-approximation for any remaining disks results in
an 8 × 4 + 6 = 38-approximation for the general DUDC problem. As we have
shown that our technique provides a 2-approximation for the assisted LSDUDC
problem, we now have an approximation ratio of 8 × 2 + 6 = 22 for DUDC.

4.1 Algorithm Analysis

There are essentially two main components to the algorithm for solving DUDC
by Carmi et al. [4]. First, they apply a grid of size 3/2×3/2 to the input data. Our
LSDUDC algorithm supplemented by their assisting disk technique is run on all
grid lines. Note that the number of relevant grid lines is O(n). Our technique runs
in O(m2n), and the assisting disk operation is easily implementable in O(mn),
so the running time of the first component is dominated by our step.

The second major component to their technique is finding the 6-approximation
for the DUDC of all disk centres and points contained in each of the 3/2 × 3/2
squares of the grid. Their technique is based on the application of a subset of nine
properties depending on where the disk centres are located. First, they determine
whether a solution exists using one or two centres by brute force, which is easily
done in O(m2n) time. The determination of which properties may be applied can
be done in O(m) time, and there are only two expensive steps that may be used
in any of the procedures, each of which may only be used a constant number of
times. First is the assisted LSDUDC technique, whose running time is O(m2n),
as we just discussed. The second technique that may be required is to determine
the optimal disk cover of a set of points using centres contained in one of the
1/2 × 1/2 squares, which can be solved in O(m2n4) time using the technique
presented in [13]. The centre of each disk can only be contained in one square,
and so this operation is never performed twice for any given disk. Therefore,
the complete DUDC algorithm achieves worst-case performance when all of the
disk centres in the plane are confined to a single 1/2 × 1/2 square, so that the
O(m2n4) operation is performed over the entire data set.

5 Conclusions

This paper presents a polynomial-time algorithm that returns an exact solution
to the LSDUDC problem, as well as a proof of correctness of the approach. This
algorithm for the line-separable problem allows us to improve the approximation
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algorithm of Carmi et al. [4], resulting in a 22-approximate solution to the general
DUDC problem, which runs in O(m2n4) time in the worst case.

Theorem 2. Given sets P of m points and Q of n points in the plane, we can
compute a 22-approximation of the DUDC problem in O(m2n4) time in the worst
case.
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