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Abstract. A sliding camera travelling along a line segment s in a polygon
P can see a point p in P if and only if p lies on a line segment contained
in P that intersects s at a right angle. The objective of the minimum
sliding cameras (MSC) problem is to guard P with the fewest sliding
cameras possible, each of which is a horizontal or vertical line segment.
In this paper, we give an O(n3)-time 3-approximation algorithm for the
MSC problem on any simple orthogonal polygon with n vertices. Our
algorithm involves establishing a connection between the MSC problem
and the problem of guarding simple grids with periscope guards.

1 Introduction

Given a polygon P with n vertices in the plane, the art gallery problem is to
find a minimum-cardinality set of guards such that every point in P is visible
to at least one guard, where each guard g is a point in the plane that sees a
point p if the line segment from g to p is contained in P . In the orthogonal art
gallery problem, the input polygon P is orthogonal; that is, every edge of P is
vertical or horizontal. The art gallery problem is NP-hard for both arbitrary [13]
and orthogonal polygons [16]. Eidenbenz [4] proved that the art gallery problem
is APX-hard on simple polygons, and that no polynomial-time algorithm can
guarantee to find a solution with o(log n) times the minimum number of guards on
polygons with holes, unless P=NP [5]. Ghosh [7] gave an O(log n)-approximation
algorithm for the art gallery problem that runs in O(n4) time on simple polygons
and O(n5) time on polygons with holes. Krohn and Nilsson [12] gave a polynomial-
time O(OPT 2)-approximation algorithm for the orthogonal art gallery problem,
where OPT is the cardinality of the optimal solution. Many variants of the art
gallery problem have been studied based on different types of visibility [14, 19],
different polygonal domains (e.g., orthogonal polygons [8], or polyominoes [1])
and different types of guards (e.g., points or line segments). See the surveys by
O’Rourke [15] or Urrutia [18] for a history of the art gallery problem.

Recently, Katz and Morgenstern [9] introduced a variant of the art gallery
problem in which sliding cameras are used to guard an orthogonal polygon. Given
an orthogonal polygon P with n vertices, a sliding camera is a point guard that
travels back and forth along a horizontal or vertical line segment s inside P .
The camera can see a point p ∈ P if there is a point q ∈ s such that the line



segment pq is horizontal or vertical, and is contained in P . In the minimum
sliding cameras (MSC) problem, the objective is to guard P using the minimum
number of sliding cameras.

A grid D is a connected union of vertical and horizontal line segments; each
maximal line segment in the grid is called a grid segment. We denote the set of
grid segments of D by TD. Moreover, a simple grid is defined as follows:

Definition 1 (Kosowski et al. [10]). A grid D is simple if there exists δ > 0
such that for every ε ∈ (0, δ) and every grid segment d in D, both endpoints of dε
lie in the outer face, where dε is the extension of d by ε units in both directions.

A periscope guard x located on a grid segment s in a grid D is a point on s
that sees a point y in D if some path from x to y in D has at most one bend.
In other words, points x and y are mutually visible if and only if they lie on
respective segments sx and sy in D such that sx ∩ sy 6= ∅ (it could be that
sx = sy). Periscope guards were introduced by Gewali and Ntafos [6] in their
examination of the complexity of the orthogonal art gallery problem (the orthogo-
nal art gallery problem was shown to be NP-hard three years later by Schuchardt
and Hecker [16]). In the minimum periscope guards (MPG) problem on a grid,
the objective is to guard the grid with the minimum number of periscope guards.
The MPG problem can be defined on an orthogonal polygon P similarly: the
goal is to locate the minimum number of periscope guards in P such that every
point in P is guarded by at least one periscope guard.

Related Work. Katz and Morgenstern [9] first considered a restricted version
of the MSC problem in which only vertical cameras are allowed; by reducing the
problem to the minimum clique cover problem on chordal graphs, they solved the
problem exactly in polynomial time. For the generalized case, where both vertical
and horizontal cameras are allowed, they gave a 2-approximation algorithm for
the MSC problem under the assumption that the polygon P is x-monotone.
Durocher and Mehrabi [3] showed that the MSC problem is NP-hard when
the polygon P is allowed to have holes (i.e., polygon P is not simple). They
also gave an exact polynomial-time algorithm that solves a variant of the MSC
problem, called the minimum-length sliding cameras (MLSC) problem, in which
the objective is to minimize the sum of the lengths of line segments along which
cameras travel. Seddighin [17] considered the MLSC problem under k-visibility,
where a camera’s line of sight can pass through k edges of the polygon, and
proved that the MLSC problem is NP-hard under k-visibility for any fixed k ≥ 2.
Durocher et al. [2] gave an O(n2.5)-time (3.5)-approximation algorithm for the
MSC problem on a simple orthogonal polygon with n vertices. Their algorithm
uses different techniques from those used in this paper; specifically, it applies
solutions to the minimum edge cover problem in graphs and the guarded mobile
guard problem on grids (where each guard must be seen by at least one other
guard). The complexity of the MSC problem on simple orthogonal polygons
remains unknown.

Gewali and Ntafos [6] showed that the MPG problem is NP-hard on general
three-dimensional grids and that it is polynomial-time tractable on simple two-
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dimensional grids (see Theorem 1). Moreover, Kosowski et al. [11] showed that
the problem of guarding a two-dimensional grid with the minimum number of
k-periscope guards is NP-hard (a point p on the grid is visible to a k-periscope
guard g if there exists a path of at most k bends in the grid from p to g). Our
results refer to the following theorem by Gewali and Ntafos [6].

Theorem 1 (Gewali and Ntafos [6]). Given a simple two-dimensional grid
G with n segments, the MPG problem can be solved exactly on G in O(n3) time.

Our Result. In this paper, we give an O(n3)-time 3-approximation algorithm for
the MSC problem on any simple orthogonal polygon P . To this end, we describe
a connection between the MSC problem on simple orthogonal polygons and the
MPG problem on simple grids. We first construct a simple grid GP associated
with polygon P and then show that a reduction from the MSC problem on P to
the MPG problem on grid GP gives a set of sliding cameras whose cardinality is at
most twice the cardinality of the solution to MPG problem on GP . However, some
new potentially unguarded regions are introduced. We show that the number of
such unguarded regions is bounded from above by the cardinality of the optimal
solution to the MPG problem, each of which can be guarded with a single sliding
camera. Finally, we show that the cardinality of the optimal solution to the MPG
problem is a lower bound for any feasible solution for the MSC problem. This
results in an approximation factor of 3 (2 for each periscope guard in the solution
of the MPG problem and 1 for guarding each unguarded region), improving the
previous best approximation factor of 3.5 [2].

2 Preliminaries

Throughout the paper, let P denote a simple orthogonal closed polygonal with n
vertices (including the polygon’s interior). Observe that every simple orthogonal
polygon with at most six vertices can be guarded by a single sliding camera;
therefore, we assume throughout the paper that n > 6. Let OPTP and OPTPG
denote optimal solutions for the MSC problem on P and the MPG problem on a
simple grid, respectively. Let V (P ) denote the set of reflex vertices of P and let Hu

and Vu be the maximum-length horizontal and vertical line segments, respectively,
inside P through a vertex u ∈ V (P ). Let L(P ) = {Hu | u ∈ V (P )} ∪ {Vu | u ∈
V (P )}. Let L and L′ be two orthogonal line segments (with respect to P ) inside
P ; the visibility region of L is the union of points in P that are seen by a sliding
camera that travels along L. We say L dominates L′ if the visibility region of L′

is a subset of that of L.
Let r be a reflex vertex of P . The lines through Hr and Vr partition the

plane into four quadrants, exactly one of which contains the exterior of P in an
ε-neighbourhood around r, for some ε > 0; we call the quadrant that is opposite
to this quadrant the essential quadrant of r, denoted by Q(r). See Figure 1(a) for
an example. Let u be a convex vertex of P such that both the vertices v and w of
P that are adjacent to u are also convex. Let p and q denote the next vertices of
P that are adjacent to v and w, respectively. We call vertex u a pocket vertex of
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Fig. 1: (a) An example of a reflex vertex r with the essential quadrant Q(r) (i.e.,
the open hatched quadrant) shown in pink. (b) An example of a pocket vertex u;
both vertices p and q are reflex and Q(p) ∩Q(q) 6= ∅. The edges uv and uw are
the pocket edges of the convex pocket R (red rectangle).

P if and only if (i) both the vertices p and q are reflex, and (ii) Q(p) ∩Q(q) 6= ∅.
Moreover, we refer to the edges of P that are incident to a pocket vertex as the
pocket edges of P and to the rectangular subregion of P whose sides are two of
the pocket edges of P as a convex pocket of P . See Figure 1(b).

3 A 3-Approximation Algorithm

In this section, we describe the 3-approximation algorithm for the minimum
sliding cameras (MSC) problem on simple orthogonal polygons. Given any simple
orthogonal polygon P , we first construct a grid GP associated with P as follows.
Initially, let GP be the set of all line segments in L(P ). Now, for any pair of
reflex vertices u and v where Hu dominates Hv (resp., Vu dominates Vv) in P , we
remove Hv (resp., Vv) from GP ; if two segments mutually dominate each other,
remove one of the two arbitrarily. Next, for each convex pocket R of P , we add
a segment into GP for every pocket edge of R. We call a grid segment in GP
corresponding to a pocket edge of P a pocket segment of GP . Let GP denote the
resulting grid. Each of the pocket segments remains in GP even if it is dominated
by another segment in GP . See Figure 2 for an example.

Observe that the number of grid segments in GP (i.e., |TG|) is at most n,
where n is the number of vertices of P . Moreover, GP is simple because the
construction preserves the property that the endpoints of each grid segment in
TG lie on the boundary of the polygon and, therefore, the endpoints of every grid
segment in TG lie on the outer face of GP . To see that GP is connected, it suffices
to note that (i) the grid induced by the line segments in L(P ) is connected, and
(ii) for each grid segment s ∈ L(P ) that is removed (due to domination), the set
of grid segments that are intersected by s are also intersected by s′ ∈ TG, where
s′ is the grid segment that dominates s. Therefore, GP is also connected and we
have the following result.
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Fig. 2: (a) Polygon P with the initial grid GP that consists of all line segments
in L(P ). (b) Grid GP after removing the dominated grid segments. (c) The final
grid GP after adding the segments corresponding to the pocket edges of the
convex pockets of P ; these grid segments are shown in green.

Lemma 1. Grid GP is a simple and connected grid.

g

Fig. 3: Although the grid GP induced
by P can be guarded by a single
periscope guard g, two sliding cam-
eras (shown in purple) are needed to
guard P .

As described in Section 1, we reduce
the MSC problem on P to the MPG prob-
lem on GP . In general the visibility region
of a periscope guard g cannot be guarded
entirely by a single sliding camera; see Fig-
ure 3 for an example. Two sliding cameras
suffice to guard the visibility region of a
periscope guard.

Observation 1 The visibility region of
any periscope guard g in a polygon P can
be guarded by the maximal vertical and
horizontal line segments through g in P .

By Theorem 1 we can obtain a set of periscope guards by solving the MPG
problem on GP in O(n3) time. Let M denote the set of sliding cameras obtained
by placing a pair of sliding cameras on each periscope guard. Since the algorithm
of Gewali and Ntafos [6] positions periscope guards only at the intersections of
grid segments, this ensures that the sliding cameras located in P are all aligned
with line segments in L(P ).

The procedure described above can result in a set M of sliding cameras whose
cardinality exceeds three times that of an optimal solution. See Figure 4: the
vertical segment in GP that corresponds to the vertical pocket edge of convex
pocket R cannot be guarded by periscope guard g1, forcing the algorithm to add
a second periscope guard, while a single sliding camera suffices to guard polygon
P entirely. We now describe how to modify the grid GP to bound |M |.

3.1 Pocket Segments and Desert Regions

5



g1g2

Fig. 5: A simple orthogonal polygon P and its corresponding grid GP (dashed
red). The set {g1, g2} of periscope guards guard GP . However, the sliding cameras
located by the algorithm (solid purple) do not guard P entirely. The hatched
pink region, called a desert, is not guarded by any sliding camera.

g1

g2

R

Fig. 4: By adding the two pocket seg-
ments into grid GP corresponding
to the pocket edges of every convex
pocket of P , an optimal solution to
the MPG problem uses two guards
(g1 and g2). The algorithm for the
MSC problem uses four sliding cam-
eras (red), which is four times the
size of the optimal solution (purple).

As illustrated in Figure 4, the cardinal-
ity of solution M may not be bounded by
three times the cardinality of an optimal
solution for the MSC problem. To resolve
this problem, we add into GP exactly one
of the pocket segments corresponding to
the pocket edges of every convex pocket of
P as follows: let R be a convex pocket of
P and let s1 and s2 be, respectively, the
vertical and horizontal grid segments in
GP whose corresponding maximal line seg-
ments in P enter R. Observe that the ver-
tical pocket edge (resp., horizontal pocket
edge) of R intersects s2 (resp., s1). If the
number of grid segments intersected by s1

is greater than the number of grid segments intersected by s2, then we remove
from GP the pocket segment that corresponds to the vertical pocket edge of
R; otherwise, we remove the pocket segment that corresponds to the horizontal
pocket edge of R. Note that we now have exactly one pocket segment in GP for
both the pocket edges of every convex pocket of P . We show later that by this
modification the cardinality of M obtained by solving the MPG problem on GP
is at most three times that of OPTP .

The set M might not still be a feasible solution for the MSC problem. See
Figure 5 for an example. In the following, we characterize such unguarded regions,
called the desert regions, and show that the number of desert regions is bounded
from above by |M |. To characterize desert regions, take any unguarded point p
in P and let Rp be a maximal axis-aligned rectangle contained in P that covers
p and is also not guarded by the line segments in M . Observe that (i) rectangle
Rp is visible to some line segments in GP , and that (ii) no such line segments
are in M because Rp is unguarded. Consider the maximal regions in P that lie
immediately above, below, left, and right of Rp; we denote the union of these
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Fig. 6: (a) An unguarded point p inside a polygon P with maximal unguarded
rectangle Rp. The hatched pink region of P indicates the region X; the four
regions S1, S2, S3 and S4 are labelled accordingly. (b) An illustration in support
of the proof of Lemma 2.

regions by X. See the hatched region in Figure 6(a) for an example. Any sliding
camera that sees any part of Rp must intersect some region of X. Since Rp is
unguarded, region X cannot contain any sliding camera in M ; therefore, no
periscope guard lies in X. Moreover, region X partitions the polygon into five
subregions (see Figure 6(a)): the union of X and rectangle Rp, the subregion on
the upper-left side of X (denoted by S1), the subregion on the upper-right side
of X (denoted by S2), the subregion on the lower-left side of X (denoted by S3)
and the subregion on the lower-right side of X (denoted by S4). Note that the
periscope guards in S can only lie in regions S1, S2, S3 and S4. We first show
the following results.

Lemma 2. If for some 1 ≤ i ≤ 4, the subregion Si contains no periscope guards
of S, then all reflex vertices of P in Si face the unguarded rectangle Rp.

Proof. Without loss of generality, assume that there is no periscope guard in
S3. Suppose, to the contrary of the lemma statement, that there exists a reflex
vertex u of P in S3 that is not faced towards rectangle Rp. Observe that there
are only two possibilities for such reflex vertex as shown in Figure 6(b). We now
continue the proof for the upper vertex u shown in Figure 6(b); the proof for the
other vertex is similar. Consider the maximal vertical line segment s1 that passes
through u and let Y be the set of line segments in GP that enter region S3 from
the other regions. First, note that either s1 ∈ GP or otherwise sj ∈ GP , for some
sj that dominates s1. Without loss of generality, assume that s1 ∈ GP (otherwise,
the proof will be similar by replacing s1 with sj). Since Rp is unguarded, there is
no sliding camera and, therefore, no periscope guard located on L, for all L ∈ Y .
Since there is no periscope guard in S3, we conclude that s1 is not guarded by
any periscope guard, which is a contradiction to the fact that S is a feasible
solution to the MPG problem on GP . Therefore, all the reflex vertices of P inside
S3 must face towards rectangle Rp. ut

By Lemma 2, we conclude that if there is no periscope guard in Si, for some
1 ≤ i ≤ 4, then the region Si must be bounded by at most two staircases with
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their reflex vertices all facing towards the unguarded rectangle Rp. There are
two possibilities for the staircases to lie in Si depending on the orientation of the
staircases: they can be either both horizontal or both vertical; see Figure 8 for
an illustration in which Si = S1. Moreover, Lemma 2 implies that region Si is
orthogonally convex, because otherwise there must be a reflex vertex in Si that is
not faced toward rectangle Rp and, therefore, there will be a grid segment in Si
that is not guarded by any periscope guard.

Lemma 3. If the subregion Si, for some 1 ≤ i ≤ 4, contains no periscope guards
of S, then the subregion Si has no convex pockets.

Proof. Without loss of generality, assume that there is no periscope guard in
S3. Suppose, to the contrary of the lemma statement, that there exists a convex
pocket R inside S3 and let Y be the set of grid segments in GP that intersect
at least one of the pocket edges s1 and s2 of R; see Figure 7. Without loss of
generality, assume that s1 ∈ GP . We first show that there is no periscope guard
on L, for all L ∈ Y . Take any grid segment L in Y . Note that if L is entirely
contained in S3, then there is no periscope guard on L by the assumption. If L
enters S3 from another region, then it must intersect region X and, therefore,
rectangle Rp is visible to L. Since Rp is unguarded, there is no sliding camera
(and therefore no periscope guard) on L. This means that s1 is not guarded by
any periscope guard, which is a contradiction to the fact that S is a feasible
solution to the MPG problem. This completes the proof of the lemma. ut

S3

p

Y

s1

s2

R

X

X

Fig. 7: An illustration in support of
the proof of Lemma 3.

By Lemma 3, we conclude that the
staircases of Si are joined with each other
in such a ways that they do not create any
convex pocket in Si.

3.2 Characterizing Desert Regions

Recall that the periscope guards in S can
only lie in S1 ∪S2 ∪S3 ∪S4. The structure
of a desert region depends on how many of
the four regions S1, S2, S3 and S4 contain
at least one periscope guard. In the following, we consider all the four cases and
show that the desert region in each case can be guarded entirely by a single
sliding camera. Let Z ⊆ {S1, S2, S3, S4} such that Si ∈ Z, for all 1 ≤ i ≤ 4, if
and only if Si contains at least one periscope guard.

Case 1: |Z| = 4. In this case, there is at least one periscope guard in Si, for
all 1 ≤ i ≤ 4. Since (i) the grid segments in GP are all guarded by at least one
periscope guard, and (ii) each part of region X (i.e., the parts that are immediately
above, below, to the left and to the right of rectangle Rp) is intersected by at least
one grid segment in GP , we conclude that the region Si is guarded by sliding
cameras in M , for all 1 ≤ i ≤ 4. Therefore, the desert region in this case is just
the rectangle Rp and can be guarded by a single sliding camera. See Figure 5 for
an example.
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Fig. 8: An example of a region S1 such that it contains no periscope guards of
S. The staircases in S1 must both be either (a) horizontal, or (b) vertical. Note
that S1 is an orthogonally convex region.

Case 2: |Z| = 3. Without loss of generality, assume that there is no periscope
guard in region S1. Note that the desert region in this case is the union of S1 and
rectangle Rp. Recall that the staircases in S1 must both be horizontal or both
vertical. Assume without loss of generality that the staircases are lied vertically
in S1 (i.e., Figure 8(b)). Since S1 is an orthogonally convex region the maximal
vertical line segment L that crosses the top most horizontal edge of S1 guards
the union of S1 and rectangle Rp; we call L the neighbour camera associated
with S1. Therefore, one sliding camera located on L can guard the desert region.

Case 3: |Z| = 2. Let Si and Sj , for some 1 ≤ i, j ≤ 4 and i 6= j, be the regions
that contain no periscope guard. We observe that in this case, the desert region
is the union of Si, Sj and rectangle Rp. There are two cases depending on the
positions of Si and Sj :

(a) Suppose regions Si and Sj are neighbours to each other. Without loss of
generality, assume that Si = S1 and Sj = S2 and that the staircases in S1 are
lied vertically; see Figure 9(a). Let L1 and L2 be the neighbour cameras of
S1 and S2, respectively. If the staircases in S2 are also lied vertically, then it
is straightforward to see that there exists a maximal horizontal line segment
inside P that guards the union S1, S2 and rectangle Rp (see Figure 9(a)).
If the staircases in S2 are lied horizontally, we show that L1 guards the
union of S1, S2 and rectangle Rp. First, note that L1 guards the union of S1

and rectangle Rp. Now, suppose to the contrary, that there exists a point
q ∈ S2 that is not visible to L1; see Figure 9(b). Since S2 consists of only
two staircases and such staircases in S2 are lied horizontally, they must be
joined with each other in S2 such that they form a convex pocket, which is a
contradiction to Lemma 3. Therefore, S2 is entirely visible to L1.

(b) Suppose regions Si and Sj are opposite to each other. Note that (i) each of
the regions Si and Sj consists of at most two staircases, and (ii) the staircases
in Si (or in Sj) are either both vertical or both horizontal. By an argument
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Fig. 9: An illustration in support of Case 3.

analogous to that given in Case (a), we can conclude that the union of regions
Si, Sj and rectangle Rp can be guarded by one sliding camera.

By the two cases described above, we conclude that the desert region can be
guarded by one sliding camera.

S3

p

X

X

q1

q2

X

X

L1

L3

S1
S2

Fig. 10: An illustration in support of
Case 4.

Case 4: |Z| = 1. Without loss of general-
ity, assume that all the periscope guards
lie in S4. We show that the subregion
P \ {S4}, which forms the desert region,
can be guarded by a single sliding camera.
Consider the neighbour camera L3 associ-
ated with region S3 and assume without
loss of generality that the staircases in S3

lie horizontally; see Figure 10. It is straight-
forward to see that L3 guards the union of
S3 and rectangle Rp. We now check to see
if L3 can also guard the union of S1 and S2.

If L3 guards the union of S1 and S2, then the subregion P \ {S4} can be guarded
by one sliding camera located on L3. Otherwise, there are two possibilities:

(a) Suppose exactly one of the regions S1 or S2 is guarded by L3. Without loss
of generality, assume that S2 is not guarded by L3 entirely. Thus, there is a
point q1 ∈ S2 that is not visible to L3; see Figure 10. Since L3 guards S1 the
staircases in S1 must be lied vertically. Therefore, the neighbour camera L1

(associated with region S1) is vertical and guards the union of S1, S3 and
rectangle Rp. Note that L1 also guards S2 because otherwise there must be
a point q2 ∈ S2 that is not visible to L1 (see Figure 10). But, the existence
of points q1 and q2 in S2 implies that the staircases in S2 must be joined
with each other in such a way that they form a convex pocket in S2, which
is a contradiction to Lemma 3. Therefore, in this case, L1 guards the desert
region entirely.

(b) Suppose neither S1 nor S2 is guarded entirely by L3. Since L3 is horizontal,
the staircases in regions S1 and S2 must all have lain horizontally and,
therefore, all the staircases in subregion P \ {S4} lie horizontally. It is now
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easy to observe that in this case there exists a maximal vertical line segment
inside P that guards the subregion P \ {S4}.

By the two possibilities above, we conclude that the desert region can be guarded
by one sliding camera.

We observe that in each of the Cases 1 through 4, at least one periscope guard
is required in characterizing the desert region. Therefore, by Cases 1 through 4
described above, we have the following theorem.

Theorem 2. Every point in P that is not inside a desert region is guarded by
at least one sliding camera in M . Each desert region of P consists of a set of
staircases and it can be guarded entirely by a single sliding camera. Moreover,
the number of desert regions is at most the number of periscope guards in S.

To summarize the algorithm, we first solve the MPG problem on GP and
compute the set S of optimal periscope guards. By Observation 1, we locate
two sliding cameras inside P for each periscope guard to obtain the set M . By
Theorem 2, we then guard each desert region by a single sliding camera; let M ′

denote the set of sliding cameras that guard the desert regions. By Theorem 2,
the set M ∪M ′ of sliding cameras guards P entirely.

3.3 Analyzing the Algorithm

In this section, we analyze the running time and the approximation factor of the
algorithm. To this end, we first give a lower bound on any feasible solution for
the MSC problem on P . Recall OPTP , an optimal solution to the MSC problem,
and recall OPTPG, an optimal solution for the MPG problem on GP . We show
the following result whose proof is omitted due to space constraints.

Lemma 4. |OPTP | ≥ |OPTPG|.

We know that |M | ≤ 2 · |S|. By Theorem 2, we have that |M ′| ≤ |S| and so
|M ∪M ′| ≤ 3 · |S|. Therefore, by Lemma 4 we have that |M ∪M ′| ≤ 3 · |OPTP |.
To analyze the running time of the algorithm, we note that the construction of
grid GP can be completed in O(n2) time [2]. Since |TG| = O(n), where n is the
number of vertices of P , the MPG problem can be solved on GP in O(n3) time.
Next, the desert regions of P can be detected in O(n2) time by detecting the
visibility region of cameras in M and comparing their union with P . Finally, the
desert regions can be guarded in O(n) time by locating a sliding camera inside
P , for each desert region. Therefore, we have the main result of this paper.

Theorem 3. There exists an O(n3)-time 3-approximation algorithm for the
MSC problem on any simple orthogonal polygon with n vertices.

4 Conclusion

In this paper, we gave an O(n3)-time 3-approximation algorithm for the problem
of guarding a simple orthogonal polygon P with n vertices using the minimum
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number of sliding cameras (i.e., the MSC problem). The complexity of the MSC
problem is still unknown and remains the main direction for future work. Also,
giving algorithms with better approximation factor or showing a hardness of
approximation remains open as another direction for future work.
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