Computing the \boldsymbol{k}-Crossing Visibility Region of a Point in a Polygon

Yeganeh Bahoo ${ }^{1}$, Prosenjit Bose ${ }^{2}$, Stephane Durocher ${ }^{1}$, and Thomas Shermer ${ }^{3}$
${ }^{1}$ University of Manitoba, Winnipeg, Canada \{bahoo,durocher\}@cs.umanitoba.ca
${ }^{2}$ Carleton University, Ottawa, Canada jit@scs.carleton.ca
${ }^{3}$ Simon Fraser University, Vancouver, Canada shermer@sfu.ca

Abstract

Two points p and q in a simple polygon P are k-crossing visible when the line segment $p q$ crosses the boundary of P at most k times. Given a query point q, an integer k, and a polygon P, we propose an algorithm that computes the region of P that is k-crossing visible from q in $O(n k)$ time, where n denotes the number of vertices of P. This is the first such algorithm parameterized in terms of k, resulting in asymptotically faster worst-case running time relative to previous algorithms when k is $o(\log n)$, and bridging the gap between the $O(n)$-time algorithm for computing the 0 -visibility region of q in P and the $O(n \log n)$-time algorithm for computing the k-crossing visibility region of q in P.

Keywords: Computational Geometry • Visibility • Radial Decomposition

1 Introduction

Given a simple n-vertex polygon P, two points p and q inside P are said to be mutually visible when the line segment $p q$ does not intersect the exterior of P. Problems related to visibility are motivated by many applications that require covering a given region using a minimum number of resources, some of which refer to visual coverage (e.g., guarding with cameras $[21,16]$) or to providing wireless connectivity coverage [19,23]. Unlike the visible-light model, in which a viewer's line of sight typically terminates upon encountering a wall, radio transmissions can pass through some walls, suggesting a more general notion of visibility. Mouad and Shermer [20] introduced a generalized model of visiblity in polygons; this model was subsequently extended by Dean et al. [11] and Bajuelos et al. [4] to define k-crossing visibility. When p and q are in general position relative to the vertices of P (i.e., no vertex of P is collinear with p and q), p and q are mutually k-crossing visible when the line segment $p q$ intersects the boundary of P in at most k points. Various applications require computing the region of P that is visible or k-crossing visible from a given query point q in P [1]. This region is called the k-crossing visibility polygon of q in P. See Figure 1.

Our goal is to design an algorithm that reduces the time required for computing the k-crossing visibility polygon for a given point q in a given simple polygon $P . O(n)$-time algorithms exist for finding the visibility polygon of q in

Fig. 1. a polygon P, a point q, and the k-crossing visibility polygon of q in P when $k=2$
P (i.e., when $k=0$) $[13,18,17]$, whereas the best known algorithms for finding the k-crossing visibility polygon of q in P require $\Theta(n \log n)$ time in the worst case for any given $k[3]$. A natural question that remained open is whether the k-crossing visibility polygon of q in P can be found in $o(n \log n)$ time. In particular, can the problem be solved faster for small values of k ? This paper presents the first algorithm parameterized in terms of k to compute the k-crossing visibility polygon of q in P. The proposed algorithm takes $O(n k)$ time, where n denotes the number of vertices of P, resulting in asymptotically faster worst-case running time relative to previous algorithms when k is $o(\log n)$, and bridging the gap between the $O(n)$-time algorithm for computing the 0 -visibility polygon of q in P and the $O(n \log n)$-time algorithm for computing the k-crossing visibility polygon of q in P.

The paper begins with an overview of related work, followed by definitions, the presentation of the algorithm, and an analysis of its running time.

2 Related Work

Given a polygon P with n vertices and a query point q inside P, a fundemental problem in visibility is to compute the visibility polygon for q : the portion of P visible from q. This problem was first introduced by Davis and Benedikt [10], who gave an $O\left(n^{2}\right)$-time algorithm. The number of vertices of the visiblity polygon of q in P is proportional to the number of vertices of P in the worst case, i.e., $\Theta(n)[13,18]$. Algorithms for computing the visibility polygon for any given q and P in $O(n)$ time were given by Gindy and Avis [13], Lee [18], and Joe and Simpson [17].

This paper focuses on finding the k-crossing visibility polygon of q in P without preprocessing P. A related problem is that of preprocessing a given polygon P to construct a query data structure that answers one or more subsequent visibility queries for points given at query time. Using an $O\left(n^{3}\right)$-space data structure precomputed in $O\left(n^{3} \log n\right)$ time, the visibility polygon of any point q given at
query time can be reported in $O(\log n+m)$ time, where m denotes the number of vertices in the output polygon [6]. Finally, an $O\left(n^{2}\right)$-space data structure precomputed in $O\left(n^{2} \log n\right)$ time can report the visibility polygon of any point q given at query time in $O\left(\log ^{2} n+m\right)$ time [2].

Motivated by applications in wireless networks, in which a radio transmission can pass through some walls before the signal fades, the problem of k-crossing visibility has attracted recent interest. Mouad and Shermer [20] first introduced the concept of k-crossing visibility, in what they originally called the Superman problem: given a simple polygon P, a sub-polygon $Q \subseteq P$, and a point q outside P, determine the minimum number of edges of P that must be made opaque such that no point of Q is visible to q. Dean et al. [11] studied pseudo-star-shaped polygons, in which the line of visibility can cross one edge, corresponding to k-crossing visibility where $k=1$. Bajuelos et al. [4] subsequently explored the concept of k-crossing visibility for an arbitrary given k, and presented an $O\left(n^{2}\right)$ time algorithm to construct the k-crossing visible region of q in P for an arbitrary given point q. Recently, Bahoo et al. [3] examined the problem under the limitedworkspace mode, and gave an algorithm that uses $O(s)$ words of memory and reports the k-visiblity polygon of q in P in $O\left(n^{2} / s+n \log s\right)$ time. When memory is not constrained (i.e., $\Omega(n)$ words of memory are available) their algorithm computes the k-visiblity polygon in $O(n \log n)$ time.

Additional results related to k-crossing visibility include generalizations of the well-known Art Gallery problem to the setting of k-crossing visibility. A set of points W in a polygon P is said to guard P if every point in P is k crossing visible from some point in W. Each point (guard) in W is called a k-modem. The Art Gallery problem seeks to identify a set of point of minimum cardinality that guards a given polygon P. Aichholzer et al. [1] showed that $\lfloor n / 2 k\rfloor k$-modems are sometimes necessary and $\lfloor n /(2 k+2)\rfloor$ are always sufficient for guarding monotone polygons. They also proved that a monotone orthogonal polygon can be guarded by $\lfloor n /(2 k+4)\rfloor k$-modems. Duque et al. [12] showed that at most $O(n / k) k$-modems are needed to guard a simple polygon P; however, given a polygon P, determining the minimum number of modems to guard P is $N P$-hard [7]. k-crossing visibility can be considered in the plane with obstacles, where the goal is to guard the plane or the boundary of a given region. Ballinger et al. [5] developed upper and lower bounds for the number of k-modems needed to guard a set of orthogonal line segments and other restricted families of geometric objects. Finally, given a set of line segments and a point q, Fabila et al. [14] examined the problem of determining the minimum k such that the entire plane is k-crossing visible from q.

3 Preliminaries and Definitions

3.1 Crossings and k-Crossing Visibility

Two paths P and Q are disjoint if $P \cap Q=\varnothing$. To provide a general definition of visibility requires a comprehensive definition for a crossing between a line
segment and a polygon boundary, in particular, for the case when points are not in general position.

Definition 1 (Weakly disjoint paths [Chang et al. (2014)[8]]) Two paths P and Q are weakly disjoint if, for all sufficiently small $\epsilon>0$, there are disjoint paths \tilde{P} and \tilde{Q} such that $d_{\mathcal{F}}(P, \tilde{P})<\epsilon$ and $d_{\mathcal{F}}(Q, \tilde{Q})<\epsilon$.
$d_{\mathcal{F}}(A, B)$ denotes the Fréchet distance between A and B.
Definition 2 (Crossing paths [Chang et al. (2014)[8]]) Two paths cross if they are not weakly disjoint.

Definitions 1 and 2 apply when P and Q are Jordan arcs. We use Definition 2 to help define k-crossing visibility.

Definition 3 (k-crossing visibility) Two Jordan arcs (or polygonal chains) P and Q cross k times, if there exist partitions P_{1}, \ldots, P_{k} of P and Q_{1}, \ldots, Q_{k} of Q such that P_{i} and Q_{i} cross, for all $i \in\{1, \ldots, k\}$. Points p and q in a simple polygon P are k-crossing visible if the line segment $p q$ and the boundary of $P d o$ not cross k times.

Given a simple polygon P, we refer to the set of points that are k-crossing visible from a point q as the k-crossing visibility region of q with respect to P, denoted $\mathcal{V}_{k}(P, q)$. When the polygon P is clear from the context, we simply refer to set as the k-crossing visibility region of q and denote it as $\mathcal{V}_{k}(q)$. Our goal is to design an efficient algorithm to compute the k-crossing visibility region of a point q with respect to a simple polygon P.

To simplify the description of our algorithms, we assume that the query point q and the vertices of the input polygon P are in general position, i.e., q, p_{i} and p_{j} are not collinear for any vertices p_{i} and p_{j} in P. Under the assumption of general position, two points p and q are k-crossing visible if and only if the line segment $p q$ intersects the boundary of P in fewer than k points. That is, Definition 3 is not necessary under general position. All results presented in this paper can be extended to input that is not in general position.

3.2 Trapezoidal and Radial Decompositions

A polygonal decomposition of a simple polygon P is a partition of P into a set of simpler regions, such as triangles, trapezoids, or quadrilaterals. Our algorithm uses trapezoidal decomposition and radial decomposition. A trapezoidal decomposition (synonymously, trapezoidation) of P partitions P into trapezoids and triangles by extending, wherever possible, a vertical line segment from each vertex p of P above and/or below p into the interior of P, until its first intersection with the boundary of P. A radial decomposition of P is defined relative to a point q in P. For each vertex p of P, a line segment is extended, wherever possible, toward/away from p into the interior of P on the line determined by p and q, until its first intersection with the boundary of P. A radial decomposition
partitions P into quadrilateral and triangular regions. The number of vertices and edges in both decompositions is proportional to the number of vertices in P (i.e., $\Theta(n)$). Note that a trapezoidal decomposition corresponds to a radial decomposition when the point q has its y-coordinate at $+\infty$ or $-\infty$ (outside P). Chazelle [9] gives an efficient algorithm for computing a trapezoidal decomposition of a simple n-vertex polygon in $O(n)$ time.

$4 \quad k$-Crossing Visibility Algorithm

4.1 Overview

Given as input an integer k, an array storing the coordinates of vertices whose sequence defines a clockwise ordering of the boundary of a simple polygon P, and a point q in the interior of P, our algorithm for constructing the k-crossing visibility polygon of q in P executes the following steps, each of which is described in detail in this section:

1. Partition P into two sets of disjoint polylines, corresponding to the boundary of P above the horizontal line ℓ through q, and the boundary of P below ℓ.
2. Nesting properties of Jordan sequences are used to close each set by connecting disjoint components to form two simple polygons, P_{a} above ℓ and P_{b} below ℓ.
3. The two-dimensional coordinates of the vertices of P_{a} and P_{b} are mapped to homogeneous coordinates, to which a projective transformation, f_{q}, is applied, with q as the center of projection.
4. Compute the trapezoidal decompositions of $f_{q}\left(P_{a}\right)$ and $f_{q}\left(P_{b}\right)$ using Chazelle's algorithm [9].
5. Apply the inverse tranformation f_{q}^{-1} on the trapezoidal decompositions to obtain radial decompositions of P_{a} and P_{b}.
6. Merge the radial decompositions of P_{a} and P_{b} to obtain a radial decomposition of P with respect to q.
7. Traverse the radial decomposition of P to identify the visibility of cells in increasing order from visibility 0 through visibility k, moving away from q and extending edges on rays from q to refine cells of the decomposition as necessary.
8. Traverse the refined radial decomposition to reconstruct and output the boundary of the k-crossing visibility region of q in P.

Steps 1-6 can be completed in $O(n)$ time and Steps $7-8$ can be completed in $O(n k)$ time.

4.2 Partitioning P into Upper and Lower Polygons

We begin by describing how to partition the polygon P in two across the line ℓ, where ℓ denotes the horizontal line through q. By our general position assumption, no vertices of P lie on ℓ. Let ϵ denote the minimum distance between any
vertex of P and ℓ. Let the upper polygon, denoted as P_{a} (respectively, the lower polygon, denoted P_{b}) refer to the closure of the region of the boundary of P that lies above (respectively, below) ℓ; see Figure 2. Let $\left\{x_{1}, \ldots, x_{m}\right\}$ denote the sequence of intersection points of ℓ with the boundary of P, labelled in clockwise order along the boundary of P, such that x_{1} is the leftmost point in $P \cap \ell$. This sequence is a Jordan sequence [15]. We now describe how to construct P_{a} and P_{b}.

Between consecutive pairs $\left(x_{2 i-1}, x_{2 i}\right)$ of the Jordan sequence, for $i \in\{1, \ldots$, $m / 2\}$, the polygon boundary of P lies above ℓ. Similarly, between pairs $\left(x_{2 j}, x_{2 j+1}\right)$, for $j \in\{1, \ldots, m / 2-1\}$, and between $\left(x_{m}, x_{0}\right)$, the boundary of P lies below ℓ. We call the former upper pairs of the Jordan sequence, and the latter lower pairs. These pairs possess the nested parenthesis property [22]: every two pairs $\left(x_{2 i-1}, x_{2 i}\right)$ and $\left(x_{2 j-1}, x_{2 j}\right)$ must either nest or be disjoint. That is, $x_{2 j-1}$ lies between $x_{2 i-1}$ and $x_{2 i}$ in the sequence if and only if $x_{2 j}$ lies between $x_{2 i-1}$ and $x_{2 i}$.

As shown by Hoffmann et al. [15], the nested parenthesis property for the upper pairs determines a rooted tree, called the upper tree, whose nodes correspond to pairs of the sequence. The nodes in the subtree rooted at the pair $\left(x_{2 i-1}, x_{2 i}\right)$ consist of all nodes corresponding to pairs that are nested betweeen $x_{2 i-1}$ and $x_{2 i}$ in the Jordan sequence order. The leaves of the tree correspond to pairs that are consecutive in the sorted order. If a node $\left(x_{2 j-1}, x_{2 j}\right)$ is a descendant of a node $\left(x_{2 i-1}, x_{2 i}\right)$ in the tree, then the points $x_{2 j-1}$ and $x_{2 j}$ are nested between $x_{2 i-1}$ and $x_{2 i}$. The lower tree is defined analogously.

If the boundary of P intersects ℓ in more than two points, the resulting disconnected components must be joined appropriately to form the simple polygons P_{a} and P_{b}. To build the lower polygon P_{b}, we replace each portion of the boundary of P above ℓ from $x_{2 i-1}$ to $x_{2 i}$ with the following 3-edge path: $x_{2 i-1}, u, v, x_{2 i}$. The first edge $\left(x_{2 i-1}, u\right)$ is a vertical line segment of length $\epsilon / 2 d_{i}$, where d_{i} denotes the depth of the node $\left(x_{2 i-1}, x_{2 i}\right)$ in the tree. The next edge (u, v) is a horizontal line segment whose length is $\left\|x_{2 i-1}-x_{2 i}\right\|$. The third edge $\left(v, x_{2 i}\right)$ is a vertical line segment of length $\epsilon / 2 d_{i}$. See Figure 2.

The nesting property of the Jordan sequence ensures that all of the 3-edge paths cross are similarly nested and that none of them intersect. Consider two pairs $\left(x_{2 i-1}, x_{2 i}\right)$ and $\left(x_{2 j-1}, x_{2 j}\right)$. Either they are disjoint or nested. If they are disjoint, then without loss of generality, assume that $x_{2 i-1}<x_{2 i}<x_{2 j-1}<x_{2 j}$. Their corresponding 3 -edge paths cannot cross since the intervals they cover are disjoint. If they are nested, then without loss of generality, assume that $x_{2 i-1}<x_{2 j-1}<x_{2 j}<x_{2 i}$. The only way that the two paths can cross is if the horizontal edge for the pair $\left(x_{2 j-1}, x_{2 j}\right)$ is higher than for the pair $\left(x_{2 i-1}, x_{2 i}\right)$. However, since $\left(x_{2 j-1}, x_{2 j}\right)$ is deeper in the tree than $\left(x_{2 i-1}, x_{2 i}\right)$, the two paths do not cross. Thus, we form the simple polygon P_{b} by replacing the portions of the boundary above ℓ with these three edge paths. Sorting the Jordan sequence, building the upper tree, computing the depths of all the pairs and adding the 3-edge paths can all be achieved in $O(n)$ time using the Jordan sorting algo-
rithm outlined by Hoffmann et al. [15]. The upper polygon P_{a} is constructed analogously. We conclude with the following lemma.

Lemma 1. Given a simple n-vertex polygon P and a horizontal line ℓ that intersects the interior of P such that no vertices of P lie on ℓ, the upper and lower polygons of P with respect to ℓ can be computed in $O(n)$ time.

4.3 Computing the Radial Decomposition

The two-dimensional coordinates of the vertices of each polygon P_{a} and P_{b} are mapped to homogeneous coordinates, to which a projective transformation, f_{q}, is applied with q as the center of projection. These transformations take constant time per vertex, or $\Theta(n)$ total time. Chazelle's algorithm [9] constructs trapezoidal decompositions of $f_{q}\left(P_{a}\right)$ and $f_{q}\left(P_{b}\right)$ in $\Theta(n)$ time, on which the inverse transformation, f_{q}^{-1} is applied to obtain radial decompositions of P_{a} and P_{b}. Merging the radial decompositions of P_{a} and P_{b} gives a radial decomposition of the original polygon P without requiring any additional edges. All vertices x_{1}, \ldots, x_{m} of the Jordan sequence, all vertices of the three-edge paths, and their adjacent edges are removed. The remaining edges are either on the boundary of P, between two points on the boundary on a ray through q, or between the boundary and q. The entire process for constructing the radial trapezoidation takes $\Theta(n)$ time. This gives the following lemma.

Lemma 2. The radial decomposition of a simple n-vertex polygon P around a query point q can be computed in $\Theta(n)$ time.

Fig. 2. (a) a polygon P, a point q, and the horizontal line ℓ through q; (b)-(c) the upper polygon P_{a} and lower polygon P_{b} of P with the additional 3-edge paths highlighted.

4.4 Reporting the \boldsymbol{k}-Crossing Visible Region

The 0 -visibility region of q in P, denoted $\mathcal{V}_{0}(q)$, is a star-shaped polygon with q in its kernel. A vertex of $\mathcal{V}_{0}(q)$ is either a vertex v of P or a point x on the
boundary of P that is the intersection of an edge of P with a ray emanating from q through a reflex vertex r of P. In the latter case, (r, x) is an edge of $\mathcal{V}_{0}(q)$ that is collinear with q, called a window or lid, because it separates a region in the interior of P that is 0 -visible from q and an interior region that is not 0 -visible. The reflex vertex r is the base of the lid and x is its tip. There are two types of base reflex vertices. The reflex vertex r is called a left base (respectively, right base) if the polygon edges incident on r are to the left (respectively, right) of the ray emanating from q through r.

We now describe the algorithm to compute the k-crossing visible region of q in P, denoted $\mathcal{V}_{k}(q)$. The algorithm proceeds incrementally by computing $\mathcal{V}_{i+1}(q)$ after computing $\mathcal{V}_{i}(q)$. We begin by computing $\mathcal{V}_{0}(q)$ in $O(n)$ time using one of the existing linear-time algorithms, e.g. [13, 18, 17]. Label the vertices of $\mathcal{V}_{0}(q)$ in clockwise order around the boundary as $x_{0}, x_{1}, \ldots, x_{m}$. Triangulate the visibility polygon by adding the edge $\left(q, x_{i}\right)$ for $i \in\{0, \ldots, m\}$; this corresponds to a radial decomposition of $\mathcal{V}_{0}(q)$ around q.

If x_{i} is a left base vertex, then notice that the triangle $\triangle\left(q x_{i} x_{i+1}\right)^{4}$ degenerates to a segment. Similarly, if x_{i} is a right base vertex, then $\triangle\left(q x_{i} x_{i-1}\right)$ is degenerate. If we ignore all degenerate triangles, then every triangle has the form $\triangle\left(q x_{i} x_{i+1}\right)$, where $\left(x_{i}, x_{i+1}\right)$ is on the boundary of P. The union of these triangles is $\mathcal{V}_{0}(q)$. To compute $\mathcal{V}_{1}(q)$, we show how to compute a superset of triangles whose union is $\mathcal{V}_{1}(q)$.

We start with an arbitrary triangle $\triangle\left(q x_{i} x_{i+1}\right)$ of $\mathcal{V}_{0}(q)$, where $\left(x_{i}, x_{i+1}\right)$ is on the boundary of P. Note that $\left(x_{i}, x_{i+1}\right)$ is either an edge of P or a segment within the interior of an edge of P. It is this segment $\left(x_{i}, x_{i+1}\right)$ of the boundary that blocks visibility. We show how to compute the intersection of $\mathcal{V}_{1}(q)$ with the cone that has apex q and bounding rays $\boldsymbol{q} \boldsymbol{x}_{\boldsymbol{i}}$ and $\boldsymbol{q} \boldsymbol{x}_{\boldsymbol{i + 1}}$, denoted $\mathcal{C}\left(q, x_{i}, x_{i+1}\right)$. We call this process extending the visibility of a triangle. We have two cases to consider. Either at least one of x_{i} or x_{i+1} is a base vertex or neither is a base vertex. We start with the latter case where neither is a base vertex.

Let Y be the set of vertices of the radial decomposition that lie on the edge $\left(x_{i}, x_{i+1}\right)$. If Y is empty, then $\left(x_{i}, x_{i+1}\right)$ lies on one face of the decomposition in addition to $\triangle\left(q x_{i} x_{i+1}\right)$ since neither x_{i} nor x_{i+1} is a base vertex. We show how to proceed in the case when Y is empty, then we show what to do when Y is not empty. Let f be the face of the decomposition on the boundary of which $\left(x_{i}, x_{i+1}\right)$ lies. By construction, this face is either a quadrilateral or a triangle. In constant time, we find the intersection of the boundary of f excluding the edge containing $\left(x_{i}, x_{i+1}\right)$ with $\boldsymbol{q} \boldsymbol{x}_{\boldsymbol{i}}$ and $\boldsymbol{q} \boldsymbol{x}_{\boldsymbol{i}+\boldsymbol{1}}$. Label these two intersection points as x_{i}^{\prime} and x_{i+1}^{\prime}. Extending the visibility of $\triangle\left(q x_{i} x_{i+1}\right)$ results in $\triangle\left(q x_{i}^{\prime} x_{i+1}^{\prime}\right)$. Note that $\triangle\left(q x_{i}^{\prime} x_{i+1}^{\prime}\right)$ is the 1 -visible region of q in $\mathcal{C}\left(q, x_{i}, x_{i+1}\right)$ and $\left(x_{i}^{\prime}, x_{i+1}^{\prime}\right)$ is on the boundary of P.

We now show how to extend the visibility of $\triangle\left(q x_{i} x_{i+1}\right)$ when Y is not empty. Label the points of Y as y_{j} for $j \geq 1$ in the order that they appear on the edge $\left(x_{i}, x_{i+1}\right)$ from x_{i} to x_{i+1}; see Figure 3. Each y_{j} is an endpoint of an edge of

[^0]

Fig. 3. Edges of the radial decomposition are extended where critical vertices cast a shadow. Portions of the polygon in the blue region that were processed in previous iterations are omitted from the figure.
the radial decomposition. Since y_{j} is a point on the boundary of P, there are 2 faces of the radial decomposition with y_{j} on the boundary. Let y_{j}^{\prime} be the other endpoint of the face on the left of y_{j} and $y_{j}^{\prime \prime}$ be the endpoint for the face on the right. Either $y_{j}^{\prime}=y_{j}^{\prime \prime}$ or $y_{j}^{\prime} \neq y_{j}^{\prime \prime}$. In the former case, we simply ignore $y_{j}^{\prime \prime}$. In the latter case, we note that either y_{j}^{\prime} is a left base of $\mathcal{V}_{0}\left(y_{j}\right)$ or $y_{j}^{\prime \prime}$ is a right base. See Figure 3 where y_{2}^{\prime} is a left base and $y_{5}^{\prime \prime}$ is a right base.

Thus, the edges of the radial composition that intersect segment $\left(x_{i}, x_{i+1}\right)$ are of the form $\left(y_{j}, y_{j}^{\prime}\right)$ or $\left(y_{j}, y_{j}^{\prime \prime}\right)$. Note that y_{1} is either x_{i} or the point closest to x_{i} on the edge. For notational convenience, if $y_{1} \neq x_{i}$, relabel x_{i} as y_{0}. Let f be the face of the radial decompostion on the boundary of which $\left(y_{0}, y_{1}\right)$ lies. Let y_{0}^{\prime} be the intersection of $\boldsymbol{q} \boldsymbol{y}_{0}$ with the boundary of f excluding the edge of f containing $\left(y_{0}, y_{1}\right)$. We call this operation extending x_{i}. Similarly, if $y_{j} \neq x_{i+1}$, relabel x_{i+1} as y_{j+1} and compute the edge $\left(y_{j+1}, y_{j+1}^{\prime}\right)$, i.e. extend x_{i+1}.

We are now in a position to describe the extension of the visibility of triangle $\triangle\left(q x_{i} x_{i+1}\right)$ when neither x_{i} nor x_{i+1} is a base vertex. The set of triangles are $\triangle\left(q y_{k}^{\prime} y_{k+1}^{\prime}\right)$ and $\triangle\left(q y_{k}^{\prime \prime} y_{k+1}^{\prime}\right)$ (when $y_{k}^{\prime \prime}$ exists). The union of these triangles is the 1 -visible region of q in $\mathcal{C}\left(q, x_{i}, x_{i+1}\right)$. Furthermore, notice that each triangle $\triangle\left(q y_{k}^{\prime} y_{k+1}^{\prime}\right)$ (respectively, $\left.\triangle\left(q y_{k}^{\prime \prime} y_{k+1}^{\prime}\right)\right)$ has the property that $\left(y_{k}^{\prime}, y_{k+1}^{\prime}\right)$ (respectively, $\left.\left(y_{k}^{\prime \prime}, y_{k+1}^{\prime}\right)\right)$ is on the boundary of P. This is what allows us to continue incrementally since at each stage we extend the visibility of a triangle $\triangle(q a b)$ where (a, b) is on the boundary of P.

Now, if x_{i} is a base vertex, then it must be a right base. Of the two edges of P incident on x_{i}, let e be the one further from q. The procedure to extend $\triangle\left(q x_{i} x_{i+1}\right)$ is identical except that we only extend x_{i} when $x_{i+1} \in e$. Similarly, if x_{i+1} is a base vertex, then it must be a left base. Of the two edges of P incident on x_{i+1}, let e be the one further from q. Again, the procedure to extend $\triangle\left(q x_{i} x_{i+1}\right)$ is identical except that we only extend x_{i+1} when $x_{i} \in e$.

The general algorithm proceeds as follows. At iteration i, the visibility region $\mathcal{V}_{i}(q)$ is represented as a collection of triangles around q with the property that

Fig. 4. (a) a simple polygon P and a query point q; (b) the radial decomposition of P; (c) the 0 -visibility polygon, $\mathcal{V}_{0}(q)$, of q in P computed in the first iteration; (d) the 1 -visibility polygon, $\mathcal{V}_{1}(q)$, of q in P computed in the second iteration, with extended edges highlighted in light blue; (e) the refined radial decomposition, with extended edges highlighted in light blue; (f) the 4 -visibility polygon, $\mathcal{V}_{4}(q)$, of q in P computed in the fourth iteration, with the algorithm's output highlighted in black (two components of the boundary of $\mathcal{V}_{4}(q) \cap P$), and cells of the decomposition with depth ≤ 4 coloured by depth, as computed by the algorithm.
the edge of the triangle opposite q is on the boundary of P and it is the edge blocking visibility. We wish to extend past this edge to compute $\mathcal{V}_{i+1}(q)$ from $\mathcal{V}_{i}(q)$. To do this, we extend each triangle in $\mathcal{V}_{i}(q)$. There are at most $O(n)$ triangles at each level. Therefore, the total time to extend all the triangles in $\mathcal{V}_{i}(q)$ is linear. Thus, we can compute $\mathcal{V}_{i+1}(q)$ from $\mathcal{V}_{i}(q)$ in $O(n)$ time and computing $V_{k}(q)$ takes $O(n k)$ time since we repeat this process k times.

The algorithm can report either only the subregion of P that is k-crossing visible from q, i.e., $\mathcal{V}_{k}(q) \cap P$, or the entire region of the plane that is k-crossing visible from q, including parts outside P. To obtain the region inside P, it suffices to traverse the boundary of P once to reconstruct and report portions of boundary edges that are k-crossing visible. The endpoints of these sequences of edges on the boundary of P meet an edge of the refined radial decomposition through the interior of P that bridges to the start of the next sequence on the boundary of P. The entire boundary of P must be traversed since the k-crossing visible region in P can have multiple connected components (unlike the k-crossing visible region in the plane that is a single connected region). See Figure 4 for an example. We conclude with the following theorem.

Theorem 4. Given a simple polygon P with n vertices and a query point q in P, the region of P that is k-crossing visible from q can be computed in $O(k n)$ time without preprocessing.

5 Discussion

This paper presents the first algorithm parameterized in terms of k for computing the k-crossing visible region for a given point q in a given polygon P, resulting in asymptotically faster worst-case running time relative to previous algorithms when k is $o(\log n)$, and bridging the gap between the $O(n)$-time algorithm for computing the 0 -visibility region of q in $P[13,18,17]$, and the $O(n \log n)$-time algorithm for computing the k-crossing visibility region of q in P [3]. It remains open whether the problem can be solved faster. In particular, an $O(n \log k)$-time algorithm would provide a natural parameterization for all k. Alternatively, can a lower bound of $\Omega(n \log n)$ be shown on the worst-case time when k is $\omega(\log n)$?

References

1. Aichholzer, O., Fabila-Monroy, R., Flores-Peñaloza, D., Hackl, T., Huemer, C., Urrutia, J., Vogtenhuber, B.: Modem illumination of monotone polygons. Computational Geometry 68, 101-118 (2018)
2. Aronov, B., Guibas, L.J., Teichmann, M., Zhang, L.: Visibility queries and maintenance in simple polygons. Discrete \& Computational Geometry 27(4), 461-483 (2002)
3. Bahoo, Y., Banyassady, B., Bose, P., Durocher, S., Mulzer, W.: A time-space tradeoff for computing the k-visibility region of a point in a polygon. Theoretical Computer Science (2018)
4. Bajuelos, A.L., Canales, S., Hernández, G., Martins, M.: A hybrid metaheuristic strategy for covering with wireless devices. Journal of Universal Computer Science 18(14), 1906-1932 (2012)
5. Ballinger, B., Benbernou, N., Bose, P., Damian, M., Demaine, E., Dujmović, V., Flatland, R., Hurtado, F., Iacono, J., Lubiw, A., et al.: Coverage with k transmitters in the presence of obstacles. Journal of Combinatorial Optimization 25(2), 208-233 (2013)
6. Bose, P., Lubiw, A., Munro, J.I.: Efficient visibility queries in simple polygons. Computational Geometry 23(3), 313-335 (2002)
7. Cannon, S., Fai, T., Iwerks, J., Leopold, U., Schmidt, C.: Combinatorics and complexity of guarding polygons with edge and point 2-transmitters. arXiv preprint arXiv:1503.05681 (2015)
8. Chang, H.C., Erickson, J., Xu, C.: Detecting weakly simple polygons. In: Proc. 26th ACM-SIAM Symposium on Discrete Algorithms (SODA 2014). pp. 1655-1670 (2014)
9. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete \& Computational Geometry 6(3), 485-524 (1991)
10. Davis, L.S., Benedikt, M.L.: Computational models of space: Isovists and isovist fields. Computer Graphics and Image Processing 11(1), 49-72 (1979)
11. Dean, J.A., Lingas, A., Sack, J.R.: Recognizing polygons, or how to spy. The Visual Computer 3(6), 344-355 (1988)
12. Duque, F., Hidalgo-Toscano, C.: An upper bound on the k-modem illumination problem. arXiv preprint arXiv:1410.4099 (2014)
13. El Gindy, H., Avis, D.: A linear algorithm for computing the visibility polygon from a point. Journal of Algorithms 2(2), 186-197 (1981)
14. Fabila-Monroy, R., Vargas, A., Urrutia, J.: On modem illumination problems. Proc. XIII Encuentros de Geometria Computacional (EGC 2009) (2009)
15. Hoffmann, K., Mehlhorn, K., Rosenstiehl, P., Tarjan, R.E.: Sorting Jordan sequences in linear time using level-linked search trees. Information and Control 68(1-3), 170-184 (1986)
16. Huang, H., Ni, C.C., Ban, X., Gao, J., Schneider, A.T., Lin, S.: Connected wireless camera network deployment with visibility coverage. In: Proc. IEEE International Conference on Computer Communications (INFOCOM 2014). pp. 1204-1212 (2014)
17. Joe, B., Simpson, R.B.: Corrections to Lee's visibility polygon algorithm. BIT Numerical Mathematics 27(4), 458-473 (1987)
18. Lee, D.T.: Visibility of a simple polygon. Computer Vision, Graphics, and Image Processing 22(2), 207-221 (1983)
19. Meguerdichian, S., Koushanfar, F., Qu, G., Potkonjak, M.: Exposure in wireless ad-hoc sensor networks. In: Proc. 7th ACM International Conference on Mobile Computing and Networking (MOBICOM 2001). pp. 139-150. ACM (2001)
20. Mouawad, N., Shermer, T.C.: The Superman problem. The Visual Computer 10(8), 459-473 (1994)
21. Murray, A.T., Kim, K., Davis, J.W., Machiraju, R., Parent, R.: Coverage optimization to support security monitoring. Computers, Environment and Urban Systems 31(2), 133-147 (2007)
22. Rosenstiehl, P.: Planar permutations defined by two intersecting Jordan curves. Graph Theory and Combinatorics pp. 259-271 (1984)
23. Wang, Y.C., Hu, C.C., Tseng, Y.C.: Efficient deployment algorithms for ensuring coverage and connectivity of wireless sensor networks. In: Proc. 1st IEEE Conference on Wireless Internet (WICON 2005). pp. 114-121 (2005)

[^0]: ${ }^{4}$ All indices are computed modulo the size of the corresponding vertex set: $m+1$ in this case.

