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Abstract. We revisit the range minimum query problem and present
a new O(n)-space data structure that supports queries in O(1) time.
Although previous data structures exist whose asymptotic bounds match
ours, our goal is to introduce a new solution that is simple, intuitive, and
practical without increasing asymptotic costs for query time or space.

1 Introduction

1.1 Motivation

Along with the mean, median, and mode of a multiset, the minimum (equiv-
alently, the maximum) is a fundamental statistic of data analysis for which
efficient computation is necessary. Given a list A[0 : n − 1] of n items drawn
from a totally ordered set, a range minimum query (RMQ) consists of an input
pair of indices (i, j) for which the minimum element of A[i : j] must be returned.
The objective is to preprocess A to construct a data structure that supports
efficient response to one or more subsequent range minimum queries, where the
corresponding input parameters (i, j) are provided at query time.

Although the complete set of possible queries can be precomputed and stored
using Θ(n2) space, practical data structures require less storage while still en-
abling efficient response time. For all i, if i = j, then a range query must report
A[i]. Consequently, any range query data structure for a list of n items requires
Ω(n) storage space in the worst case [7]. This leads to a natural question: how
quickly can an O(n)-space data structure answer a range minimum query?

Previous O(n)-space data structures exist that provide O(1)-time RMQ (e.g.,
[4–6, 14, 18], see Section 2). These solutions typically require a transformation
or invoke a property that enables the volume of stored precomputed data to
be reduced while allowing constant-time access and RMQ computation. Each
such solution is a conceptual organization of the data into a compact table for
efficient reference; essentially, the algorithm reduces to a clever table lookup. In
this paper our objective is not to minimize the total number of bits occupied
by the data structure (our solution is not succinct) but rather to present a sim-
ple and more intuitive method for organizing the precomputed data to support
RMQ efficiently. Our solution combines new ideas with techniques from various
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previous data structures: van Emde Boas trees [16], resizable arrays [10], range
mode query [11, 12, 23], one-sided RMQ [4], and a linear-space data structure
that supports RMQ in O(

√
n) time. The resulting RMQ data structure stores

efficient representations of the data to permit direct lookup without requiring
the indirect techniques employed by previous solutions (e.g., [1, 4–6, 18, 22, 27])
such as transformation to a lowest common ancestor query, Cartesian trees, Eu-
lerian tours, or the Four Russians speedup. The data structure’s RMQ algorithm
is astonishingly simple: it can be implemented as a single if statement with four
branches, each of which returns the minimum of at most three values retrieved
from precomputed tables (see the pseudocode for Algorithm 2 in Section 3.3).

The RMQ problem is sometimes defined such that a query returns only the
index of the minimum element instead of the minimum element itself. In partic-
ular, this is the case for succinct data structures that support O(1)-time RMQ
using only O(n) bits of space [14, 19, 20, 26] (see Section 2). In order to return
the actual minimum element, say A[i], in addition to its index i, any such data
structure must also store the values from the input array A, corresponding to a
lower bound of Ω(n log u) bits of space in the worst case when element are drawn
from a universe of size u or, equivalently, Ω(n) words of space (this lower bound
also applies to other array range query problems [7]). Therefore, a range query
data structure that uses o(n) words of space requires storing the input array A
separately, resulting in total space usage of Θ(n) words of space in the worst
case. In this paper we require that a RMQ return the minimum element. Our
RMQ data structure stores all values of A internally and matches the optimal
asymptotic bounds of O(n) words of space and O(1) query time.

1.2 Definitions and Model of Computation

We assume the RAM word model of computation with word size Θ(log u), where
elements are drawn from a universe U = {−u, . . . , u− 1} for some fixed positive
integer u > n. Unless specified otherwise, memory requirements are expressed in
word-sized units. We assume the usual set of O(1)-time primitive operations: ba-
sic integer arithmetic (addition, subtraction, multiplication, division, and mod-
ulo), bitwise logic, and bit shifts. We do not assume O(1)-time exponentiation
nor, consequently, radicals. When the base operand is a power of two and the re-
sult is an integer, however, these operations can be computed using a bitwise left
or right shifts. All arithmetic computations are on integers in U , and integer di-
vision is assumed to return the floor of the quotient. Finally, our data structure
only requires finding the binary logarithm of integers in the range {0, . . . , n}.
Consequently, the complete set of values can be precomputed and stored in a
table of size O(n) to provide O(1)-time reference for the log (and log log) opera-
tions at query time, regardless of whether logarithm computation is included in
the RAM model’s set of primitive operations.

A common technique used in array range searching data structures (e.g.,
[4, 11, 23]) is to partition the input array A[0 : n − 1] into a sequence of dn/be
blocks, each of size b (except possibly for the last block whose size is [(n −
1) mod b] + 1). A query range A[i : j] spans between 0 and dn/be complete



blocks. We refer to the sequence of complete blocks contained within A[i : j] as
the span, to the elements of A[i : j] that precede the span as the prefix, and to
the elements of A[i : j] that succeed the span as the suffix. See Figure 1. One or
more of the prefix, span, and suffix may be empty. When the span is empty, the
prefix and suffix can lie either in adjacent blocks, or in the same block; in the
latter case the prefix and suffix are equal.

We summarize the asymptotic resource requirements of a given RMQ data
structure by the ordered pair 〈f(n), g(n)〉, where f(n) denotes the storage space
it requires measured in words and g(n) denotes its worst-case RMQ time for an
array of size n. Our discussion focuses primarily on these two measures of effi-
ciency; other measures of interest include the preprocessing time and the update
time. Note that similar notation is sometimes used to pair precomputation time
and query time (e.g., [4, 18]).

2 Related Work

Multiple 〈ω(n), O(1)〉 solutions are known, including precomputing RMQs for all
query ranges in 〈O(n2), O(1)〉, and precomputing RMQs for all ranges of length
2k for some k ∈ Z+ in 〈O(n log n), O(1)〉 (Sparse Table Algorithm) [4,18]. In the
latter case, a query is decomposed into two (possibly overlapping) precomputed
queries. Similarly, 〈O(n), ω(1)〉 solutions exist, including the 〈O(n), O(

√
n)〉 data

structure described in Section 3.1, and a tournament tree which provides an
〈O(n), O(log n)〉 solution. This latter data structure (known in RMQ folklore,
e.g., [25]) consists of a binary tree that recursively partitions the array A such
that successive array elements are stored in order as leaf nodes, and each internal
node stores the minimum element in the subarray of A stored in leaves below it.
Given an arbitrary pair of array indices (i, j), a RMQ is processed by traversing
the path from i to j in the tree and returning the minimum value stored at
children of nodes on the path corresponding to subarrays contained in A[i : j].

Several 〈O(n), O(1)〉 RMQ data structures exist, many of which depend on
the equivalence between the RMQ and lowest common ancestor (LCA) problems.
Harel and Tarjan [22] gave the first 〈O(n), O(1)〉 solution to LCA. Their solution
was simplified by Schieber and Vishkin [27]. Berkman and Vishkin [6] showed
how to solve the LCA problem in 〈O(n), O(1)〉 by transformation to RMQ using
an Euler tour. This method was simplified by Bender and Farach-Colton [4]
to give an ingenious solution which we briefly describe below. Comprehensive
overviews of previous solutions are given by Davoodi [13] and Fischer [17].

The array A[0 : n − 1] can be transformed into a Cartesian tree C(A) on n
nodes such that a RMQ on A[i : j] corresponds to the LCA of the respective
nodes associated with i and j in C(A). When each node in C(A) is labelled by
its depth, an Eulerian tour on C(A) (i.e., the depth-first traversal sequence on
C(A)) gives an array B[0 : 2n − 2] for which any two adjacent values differ by
±1. Thus, a LCA query on C(A) corresponds to a ±1-RMQ on B. Array B is
partitioned into blocks of size (log n)/2. Separate data structures are constructed
to answer queries that are contained within a single block of B and those that



span multiple blocks, respectively. In the former case, the ±1 property implies
that the number of unique blocks in B is O(

√
n); all O(

√
n log2 n) possible RMQs

on blocks of B are precomputed (the Four Russians technique [3]). In the latter
case, a query can be decomposed into a prefix, span, and suffix (see Section 1.2).
RMQs on the prefix and suffix are contained within respective single blocks,
each of which can be answered in O(1) time as in the former case. The span
covers zero or more blocks. The minimum of each block of B is precomputed
and stored in A′[0 : 2n/ log n − 1]. A RMQ on A′ (the minimum value in the
span) can be found in 〈O(n), O(1)〉 using the 〈O(n′ log n′), O(1)〉 data structure
mentioned above due to the shorter length of A′ (i.e., n′ = 2n/ log n).

Fischer and Heun [18] use similar ideas to give a 〈O(n), O(1)〉 solution to
RMQ that applies the Four Russians technique to any array (i.e., it does not re-
quire the ±1 property) on blocks of length Θ(log n). Yuan and Atallah [29] exam-
ine RMQ on multidimensional arrays and give a new one-dimensional 〈O(n), O(1)〉
solution that uses a hierarchical binary decomposition of A[0 : n− 1] into Θ(n)
canonical intervals, each of length 2k for some k ∈ Z+, and precomputed queries
within blocks of length Θ(log n) (similar to the Four Russians technique).

When only the minimum’s index is required, Sadakane [26] gives a succinct
data structure requiring 4n + o(n) bits that supports O(1)-time RMQ. Fischer
and Heun [19, 20] and Davoodi et al. [14] reduce the space requirements to
2n + o(n) bits. Finally, the RMQ problem has been examined in the dynamic
setting [8,13], in two and higher dimensions [2,9,15,21,26,29], and on trees and
directed acyclic graphs [5, 8, 15].

Various array range query problems have been examined in addition to range
minimum query. See the survey by Skala [28].

3 A New 〈O(n), O(1)〉 RMQ Data Structure

The new data structure is described in steps, starting with a previous 〈O(n), O(
√
n)〉

data structure, extending it to 〈O(n log log n), O(log log n)〉 by applying the tech-
nique recursively, eliminating recursion to obtain 〈O(n log log n), O(1)〉, and fi-
nally reducing the space to 〈O(n), O(1)〉. To simplify the presentation, suppose

initially that the input array A has size n = 22
k

, for some k ∈ Z+; as described
in Section 3.5, removing this constraint and generalizing to an arbitrary n is
easily achieved without any asymptotic increase in time or space.

3.1 〈O(n), O(
√
n)〉 Data Structure

The following 〈O(n), O(
√
n)〉 data structure is known in RMQ folklore (e.g.,

[25]) and has similar high-level structure to the ±1-RMQ algorithm of Bender
and Farach-Colton [4, Section 4]. While subobtimal and often overlooked in
favour of more efficient solutions, this data structure forms the basis for our new
〈O(n), O(1)〉 data structure.

The input array A[0 : n − 1] is partitioned into
√
n blocks of size

√
n. The

range minimum of each block is precomputed and stored in a table B[0 :
√
n−1].
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Fig. 1. A 〈O(n), O(
√
n)〉 data structure: the array A is partitioned into

√
n blocks of

size
√
n. The range minimum of each block is precomputed and stored in array B. A

range minimum query A[2 : 14] is processed by finding the minimum of the respective
minima of the prefix A[2 : 3], the span A[4 : 11] (determined by examining B[1 : 2]),
and the suffix A[12 : 14]. In this example this corresponds to min{3, 0, 4} = 0.

See Figure 1. A query range spans between zero and
√
n complete blocks. The

minimum of the span is computed by iteratively scanning the corresponding
values in B. Similarly, the respective minima of the prefix and suffix are com-
puted by iteratively examining their elements. The range minimum corresponds
to the minimum of these three values. Since the prefix, suffix, and array B each
contain at most

√
n elements, the worst-case query time is Θ(

√
n). The total

space required by the data structure is Θ(n) (or, more precisely, n + Θ(
√
n)).

Precomputation requires only a single pass over the input array in Θ(n) time.
Updates (e.g., set A[i] ← x) require Θ(

√
n) time in the worst case; whenever

an array element equal to its block’s minimum is increased, the block must be
scanned to identify the new minimum.

3.2 〈O(n log log n), O(log log n)〉 Data Structure

One-sided range minimum queries (where one endpoint of the query range co-
incides with one end of the array A) are trivially precomputed [4] and stored in
arrays C and C ′, each of size n, where for each i,

C[i] =

{
min{A[i], C[i− 1]} if i > 0,

A[0] if i = 0,

and C ′[i] =

{
min{A[i], C ′[i+ 1]} if i < n− 1,

A[n− 1] if i = n− 1.
(1)

Any subsequent one-sided RMQ on A[0 : j] or A[j : n − 1] can be answered in
O(1) time by referring to C[j] or C ′[j].

The 〈O(n), O(
√
n)〉 solution discussed in Section 3.1 includes three range

minimum queries on subproblems of size
√
n, of which at most one is two-sided.



In particular, if the span is non-empty, then the query on array B is two-sided,
and the queries on the prefix and suffix are one-sided. Similarly, if the query
range is contained in a single block, then there is a single two-sided query and
no one-sided queries. Finally, if the query range intersects exactly two blocks,
then there are two one-sided queries (one each for the prefix and suffix) and no
two-sided queries.

Thus, upon adding arrays C and C ′ to the data structure, at most one
of the three (or fewer) subproblems requires ω(1) time to identify its range
minimum. This search technique can be applied recursively on two-sided queries.
By limiting the number of recursive calls to at most one and by reducing the
problem size by an exponential factor of 1/2 at each step of the recursion, the
resulting query time is bounded by the following recurrence (similar to that
achieved by van Emde Boas trees [16]):

T (n) ≤

{
T (
√
n) +O(1) if n > 2,

O(1) if n ≤ 2

∈ O(log log n). (2)

Each step invokes at most one recursive RMQ on a subarray of size
√
n. Each

recursive call is one of two types: i) a recursive call on array B (a two-sided query
to compute the range minimum of the span) or ii) a recursive call on the entire
query range (contained within a single block).

Recursion can be avoided entirely for determining the minimum of the span

(a recursive call of the first type). Since there are
√
n blocks,

(√
n+1
2

)
< n distinct

spans are possible. As is done in the range mode query data structure of Krizanc
et al. [23], the minimum of each span can be precomputed and stored in a table
D of size n. Any subsequent RMQ on a span can be answered in O(1) time by
reference to table D. Consequently, tables C and D suffice, and table B can be
eliminated.

The result is a hierarchical data structure containing log log n+1 levels1 which
we number 0, . . . , log log n, where the xth level2 is a sequence of bx(n) = n ·2−2x

blocks of size sx(n) = n/bx(n) = 22
x

. See Table 1.

x 0 1 2 . . . i . . . log logn− 2 log logn− 1 log logn

bx(n) n/2 n/4 n/16 . . . n2−2i . . . n3/4 √
n 1

sx(n) 2 4 16 . . . 22i . . . n1/4 √
n n

Table 1. The xth level is a sequence of bx(n) blocks of size sx(n).

1 Throughout this manuscript, log a denotes the binary logarithm log2 a.
2 Level log logn is included for completeness since we refer to the size of the parent of

blocks on level x, for each x ∈ {0, . . . , log logn − 1}. The only query that refers to
level log logn directly is the complete array: i = 0 and j = n−1. The global minimum
for this singular case can be stored using O(1) space and updated in O(

√
n) time as

described in Section 3.1.



Generalizing (1), for each x ∈ {0, . . . , log log n} the new arrays Cx and C ′x
are defined by

Cx[i] =

{
min{A[i], Cx[i− 1]} if i 6= 0 mod sx(n),

A[i] if i = 0 mod sx(n),

and C ′x[i] =

{
min{A[i], C ′x[i+ 1]} if (i+ 1) 6= 0 mod sx(n),

A[i] if (i+ 1) = 0 mod sx(n).

We refer to a sequence of blocks on level x that are contained in a common
block on level x + 1 as siblings and to the common block as their parent. Each
block on level x + 1 is a parent to sx+1(n)/sx(n) = sx(n) siblings on level x.
Thus, any query range contained in some block at level x + 1 covers at most
sx(n) siblings at level x, resulting in Θ(sx(n)2) = Θ(sx+1(n)) distinct possible
spans within a block at level x+1 and Θ(sx+1(n) ·bx+1(n)) = Θ(n) total distinct
possible spans at level x+1, for any x ∈ {0, . . . , log log n−1}. These precomputed
range minima are stored in table D, such that for every x ∈ {0, . . . , log logn−1},
every b ∈ {0, . . . , bx+1(n)− 1}, and every {i, j} ⊆ {0, . . . , sx(n)− 1}, Dx[b][i][j]
stores the minimum of the span A[b · sx+1(n) + i · sx(n) : b · sx+1(n) + (j +
1)sx(n)− 1].

This gives the following recursive algorithm whose worst-case time is bounded
by (2):

Algorithm 1

RMQ(i, j)
1 if i = 0 and j = n− 1 // query is entire array
2 return minA // precomputed array minimum
3 else
4 return RMQ(log log n− 1, i, j) // start recursion at top level

RMQ(x, i, j)
1 if x > 0
2 bi ← bi/sx(n)c // blocks containing i and j
3 bj ← bj/sx(n)c
4 if bi = bj // i and j in same block at level x
5 return RMQ(x− 1, i, j) // two-sided recursive RMQ: T (

√
n) time

6 else if bj − bi ≥ 2 // span is non-empty
7 b← i mod sx+1(n)
8 return min{C ′x[i], Cx[j], Dx[b][bi + 1][bj − 1]}

// 2 one-sided RMQs + precomputed span: O(1) time
9 else

10 return min{C ′x[i], Cx[j]} // 2 one-sided RMQs: O(1) time
11 else
12 return min{A[i], A[j]} // base case (block size ≤ 2): O(1) time



The space required by array Dx for each level x < log log n is

O
(
sx(n)2 · bx+1(n)

)
= O (sx+1(n) · bx+1(n)) = O(n).

Since arrays Cx and C ′x also require O(n) space at each level, the total space
required is O(n) per level, resulting in O(n log log n) total space for the complete
data structure.

For each level x < log log n, precomputing arrays Cx, C ′x, and Dx is easily
achieved in O(n · sx(n)) = O(n · 22x) time per level, or O(n3/2) total time. Each
update requires O(sx(n)) time per level, or O(

√
n) total time per update.

3.3 〈O(n log log n), O(1)〉 Data Structure

Each step of Algorithm 1 described in Section 3.2 invokes at most one recursive
call on a subarray whose size decreases exponentially at each step. Specifically,
the only case requiring ω(1) time occurs when the query range is contained within
a single block of the current level. In this case, no actual computation or table
lookup occurs locally; instead, the result of the recursive call is returned directly
(see Line 5 of Algorithm 1). As such, the recursion can be eliminated by jumping
directly to the level of the data structure at which the recursion terminates, that
is, the highest level for which the query range is not contained in a single block.
Any such query can be answered in O(1) time using a combination of at most
three references to arrays C and D (see Lines 8 and 10 of Algorithm 1). We refer
to the corresponding level of the data structure as the query level, whose index
we denote by `.

More precisely, Algorithm 1 makes a recursive call whenever bi = bj , where
bi and bj denote the respective indices of the blocks containing i and j in the
current level (see Line 5 of Algorithm 1). Thus, we seek to identify the highest
level for which bi 6= bj . In fact, it suffices to identify the highest level ` ∈
{0, . . . , log log n−1} for which no query of size j−i+1 can be contained within a
single block. While the query could span the boundary of (at most) two adjacent
blocks at higher levels, it must span at least two blocks at all levels less than or
equal to `. In other words, the size of the query range is bounded by

s`(n) <j − i+ 1 ≤ s`+1(n)

⇔ 22
`

<j − i+ 1 ≤ 22
`+1

⇔ log log(j − i+ 1)− 1 ≤ ` < log log(j − i+ 1)

⇒ ` = blog log(j − i)c.

As discussed in Section 1.2, since we only require finding binary logarithms
of positive integers up to n, these values can be precomputed and stored in a
table of size O(n). Consequently, the value ` can be computed in O(1) time at
query time, where each logarithm is found by a table lookup.

This gives the following simple algorithm whose worst-case running time is
constant (note the absence of loops and recursive calls):



Algorithm 2

RMQ(i, j)
1 if i = 0 and j = n− 1 // query is entire array
2 return minA // precomputed array minimum
3 else if j − i ≥ 2
4 `← blog log(j − i)c
5 bi ← bi/s`(n)c
6 bj ← bj/s`(n)c // blocks containing i and j
7 if bj − bi ≥ 2 // span is non-empty
8 b← i mod s`+1(n)
9 return min{C ′`[i], C`[j], D`[b][bi + 1][bj − 1]}

// 2 one-sided RMQs + precomputed span: O(1) time
10 else
11 return min{C ′`[i], C`[j]} // 2 one-sided RMQs: O(1) time
12 else
13 return min{A[i], A[j]} // query contains ≤ 2 elements

Although the query algorithm differs from Algorithm 1, the data structure re-
mains unchanged except for the addition of precomputed values for logarithms
which require O(n) additional space total space. As such, the space remains
O(n log log n) while the query time is reduced to O(1) in the worst case. Pre-
computation and update times remain O(n3/2) and O(

√
n), respectively.

3.4 〈O(n), O(1)〉 Data Structure

The data structures described in Sections 3.2 and 3.3 store exact precomputed
values in arrays Cx, C ′x, and Dx. That is, for each a and each x, Cx[a] stores A[b]
for some b (similarly for C ′x and Dx). If the array A is accessible during a query,
then it suffices to store the relative index b − a instead of storing A[b]. Thus,
Cx[a] stores b− a and the returned value is A[Cx[a] + a] = A[(b− a) + a] = A[b].
Since the range minimum is contained in the query range A[i : j] we get that
{a, b} ⊆ {i, . . . , j} and, therefore,

|b− a| ≤ j − i+ 1 ≤ s`+1(n).

Consequently, for each level x, log(sx+1(n)) = 2x+1 bits suffice to encode any
value stored in Cx, C ′x, or Dx. Therefore, for each level x, each table Cx, C ′x,
and Dx can be stored using O(n · 2x+1) bits. Observe that

log logn−1∑
x=0

n · 2x+1 < 2n log n < 2n log u, (3)

where log u denotes the word size under the RAM model. Therefore, the total
space occupied by the tables Cx, C ′x, and Dx can be compacted into O(n log u)
bits or, equivalently, O(n) words of space. We now describe how to store this



compact representation to enable efficient access. For each i ∈ {0, . . . , n−1}, the
values C0[i], . . . , Clog logn−1[i] can be stored in two words by (3). Specifically, the
first word stores Clog logn−1[i] and for each x ∈ {0, . . . , log log n−2}, bits 2x+1−1
through 2x+2 − 2 store the value Cx[i]. Thus, all values C0[i], . . . , Clog logn−2[i]
are stored using

log logn−2∑
i=0

2x+1 = log n− 2 < log u

bits, i.e., a single word. The value Cx[i] can be retrieved using a bitwise left
shift followed by a right shift or, alternatively, a bitwise logical AND with the
corresponding mask sequence of consecutive 1 bits (all O(log log n) such bit
sequences can be precomputed). An analogous argument applies to the arrays
C ′x and D, resulting in O(n) space for the complete data structure.

To summarize, the query algorithm is unchanged from Algorithm 2 and the
corresponding query time remains constant, but the data structure’s required
space is reduced to O(n). Precomputation and update times remain O(n3/2)
and O(

√
n), respectively. This gives the following lemma:

Lemma 1. Given any n = 22
k

for some k ∈ Z+ and any array A[0 : n − 1],
Algorithm 2 supports range minimum queries on A in O(1) time using a data
structure of size O(n).

3.5 Generalizing to an Arbitrary Array Size n

To simplify the presentation in Sections 3.1 to 3.4 we assumed that the input

array had size n = 22
k

for some k ∈ Z+. As we show in this section, generalizing
the data structure to an arbitrary positive integer n while maintaining the same
asymptotic bounds on space and time is straightforward.

Let m denote the largest value no larger than n for which Lemma 1 applies.
That is,

m = 22
blog log nc

⇒ m ≤ n < m2

⇒ n/m <
√
n. (4)

Define a new array A′[0 : n′ − 1], where n′ = mdn/me, that corresponds to the
array A padded with dummy data3 to round up to the next multiple of m. Thus,

∀i ∈ {0, . . . , n′ − 1}, A′[i] =

{
A[i] if i < n

+∞ if i ≥ n.

Since n′ = 0 mod m, partition array A′ into a sequence of blocks of size m. The
number of blocks in A′ is dn/me < d

√
ne.

3 For implementation, it suffices to store u − 1 (the largest value in the universe U)
instead of +∞ as the additional values.



By (4) and Lemma 1, for each block we can construct a data structure to
support RMQ on that block in O(1) time using O(m) space per block. Therefore,
the total space required by all blocks in A′ is O(dn/me ·m) = O(n). Construct
arrays C, C ′, and D as before on the top level of array A′ using the blocks of
size m. The arrays C and C ′ each require O(n′) = O(n) space. The array D
requires O(dn/me2) ⊆ O(n) space by (4). Therefore, the total space required by
the complete data structure remains O(n).

Each query is performed as in Algorithm 2, except that references to C,
C ′, and D at the top level access the corresponding arrays (which are stored
separately from Cx, C ′x, and Dx for the lower levels). Therefore, the query time
is increased by a constant factor for the first step at the top level, and the total
query time remains O(1).

This gives the following theorem:

Theorem 1 (Main Result). Given any n ∈ Z+, and any array A[0 : n − 1],
Algorithm 2 supports range minimum queries on A in O(1) time using a data
structure of size O(n).

4 Directions for Future Work

4.1 Succinctness

The data structure presented in this paper uses O(n) words of space. It is not
currently known whether its space can be reduced to O(n) bits if a RMQ returns
only the index of the minimum element. As suggested by Patrick Nicholson
(personal communication, 2011), each array Cx and C ′x can be stored using
binary rank and select data structures in O(n) bits of space (e.g., [24]). That
is, we can support references to Cx and C ′x in constant time using O(n) bits of
space per level or O(n log log n) total bits. It is not known whether the remaining
components of the data structure can be compressed similarly, or whether the
space can be reduced further to O(n) bits.

4.2 Higher Dimensions

As shown by Demaine et al. [15], RMQ data structures based on Cartesian trees
cannot be generalized to two or higher dimensions. The data structure presented
in this paper does not involve Cartesian trees. Although it is possible that some
other constraint may preclude generalization to higher dimensions, this remains
to be examined.

4.3 Dynamic Data

As described, our data structure structure requires O(
√
n) time per update (e.g.,

set A[i]← x) in the worst case. It is not known whether the data structure can
be modified to support efficient queries and updates without increasing space.
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