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Abstract

Given an array A of size n, we consider the problem of answering range majority
queries: given a query range [i..j] where 1 ≤ i ≤ j ≤ n, return the majority
element of the subarray A[i..j] if it exists. We describe a linear space data
structure that answers range majority queries in constant time. We further
generalize this problem by defining range α-majority queries: given a query
range [i..j], return all the elements in the subarray A[i..j] with frequency greater
than α(j − i + 1). We prove an upper bound on the number of α-majorities
that can exist in a subarray, assuming that query ranges are restricted to be
larger than a given threshold. Using this upper bound, we generalize our range
majority data structure to answer range α-majority queries in O( 1

α ) time using
O(n lg( 1

α + 1)) space, for any fixed α ∈ (0, 1). This result is interesting since
other similar range query problems based on frequency have nearly logarithmic
lower bounds on query time when restricted to linear space.

1. Introduction

The majority element, or majority, of an array A[1..n] is the element, if
any, that occurs more than n

2 times in A. The majority element problem is to
determine whether a given array has a majority element, and if so, to report
that element. This problem is fundamental to data analysis and has been well
studied. Linear time deterministic and randomized algorithms for this problem,
such as the Boyer-Moore voting algorithm [8], are well known, and they are
sometimes included in the curricula of introductory courses on algorithms.

In this paper, we consider the data structure counterpart to this problem.
We are interested in designing a data structure that represents an array A[1..n]
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to answer range majority queries: given a query range [i..j] where 1 ≤ i ≤ j ≤ n,
return the majority element of the subarray A[i..j] if it exists, and∞ otherwise.
Here we define the majority of a subarray A[i..j] as the element whose frequency
in A[i..j], i.e., the number of occurrences of the element in A[i..j], is more than
half of the size of the interval [i..j].

We further generalize this problem by defining the α-majorities of a subarray
A[i..j] to be the elements whose frequencies are more than α(j − i+ 1), i.e., α
times the size of the range [i..j], for 0 < α < 1. Thus an α-majority query on
array A[1..n] can be defined as: given a query range [i..j] where 1 ≤ i ≤ j ≤ n,
return the α-majorities of the subarray A[i..j] if they exist, and ∞ otherwise.
A range α-majority query becomes a range majority query when α = 1

2 .
For the case of range majority, we describe a linear space data structure that

answers queries in constant time. We generalize this data structure to the case of
range α-majority, yielding an O(n lg( 1

α +1)) space1 data structure that answers
queries in O( 1

α ) time, for any fixed α ∈ (0, 1). Similar range query problems
based on frequency are the range mode and k-frequency problems [14]. A range
mode query for range [i..j] returns an element in A[i..j] that occurs at least as
frequently as any other element. A k-frequency query for range [i..j] determines
whether any element in A[i..j] occurs with frequency exactly k. Both of these
problems have a lower bound that requires Ω( lgn

lg lgn ) query time for any linear

space data structure [14]. In light of this lower bound, it is interesting that
a linear space data structure can answer range α-majority queries in constant
time for fixed constant values of α.

1.1. Related Work

Computing the Mode, Majority, and Plurality of a Multiset. The mode of a
multiset S of n items can be found in O(n lg n) time by sorting S and counting
the frequency of each element. The decision problem of determining whether
the frequency m of the mode exceeds one reduces to the element uniqueness
problem, resulting in a lower bound of Ω(n lg n) time in the algebraic deci-
sion tree model [5]. Better bounds have been obtained by parameterizing in
terms of m: Munro and Spira [21] and Dobkin and Munro [11] described an
O(n lg( nm )) time algorithm and corresponding lower bound of Ω(n lg( nm )) time.
Misra and Gries [20] gave O(n) and O(n lg( 1

α )) time algorithms for computing
an α-majority when α ≥ 1

2 and α < 1
2 , respectively. The problem of computing

α-majorities has also recently been studied in the approximate setting, using
the term heavy hitters instead of α-majorities [10].

The plurality of a multiset S is a unique mode of S. That is, every multiset
has a mode, but it might not have a plurality. The mode algorithms mentioned
above can verify the uniqueness of the mode without any asymptotic increase
in time. Numerous results established bounds on the number of comparisons
required for computing a majority, α-majority, mode, or plurality (e.g., [1, 2,
11, 21]).

1In this paper lgn denotes log2 n.
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Range Mode, Frequency, and Majority Queries. Krizanc et al. [19] described

data structures that provide constant time range mode queries using O(n
2 lg lgn
lgn )

space, and O(nε lg n) time queries using O(n2−2ε) space, for any fixed ε ∈ (0, 1
2 ].

Petersen and Grabowski [23] improved the first bound to constant time and

O(n
2 lg lgn
lg2 n

) space. Petersen [22] and Durocher and Morrison [13] improved

the second bound to O(nε) time and O(n2−2ε) space, for any fixed ε ∈ (0, 1
2 ].

Durocher and Morrison [13] described four O(n) space data structures that re-
turn the mode of a query range [i..j] in O(

√
n), O(k), O(m), and O(|j − i|)

time, respectively, where k denotes the number of distinct elements. Greve et
al. [14] proved a lower bound of Ω( lgn

lg(sw/n) ) query time for any range mode

query data structure that uses s memory cells of w bits. Finally, various data
structures have been designed to support approximate range mode queries, in
which the objective is to return an element whose frequency is at least ε times
the frequency of the mode, for a fixed ε ∈ (0, 1) (e.g., [7, 14]).

Greve et al. [14] examined the range k-frequency problem, in which the
objective is to determine whether any element in the query range has frequency
exactly k, where k is either fixed or given at query time. They noted that when
k is fixed a straightforward linear space data structure exists for determining
whether any element has frequency at least k in constant time; determining
whether any element has frequency exactly k requires a different approach. For
any fixed k > 1, they described how to support range k-frequency queries in
O( lgn

lg lgn ) optimal time. When k is given at query time, Greve et al. showed a

lower bound of Ω( lgn
lg lgn ) time applies to either query: exactly k or at least k.

The current best result applicable to the range α-majority problem is that
of Karpinski and Nekrich [18, Theorem 2]. They studied the problem in a
geometric setting, in which points on the real line are assigned colours, and the
goal is to find τ -dominating colours: that is, given a range Q, return all the
colours that are assigned to at least a τ fraction of the points in Q. If we treat
each entry of an array A[1..n] as a point in a bounded universe [1, n], their data
structure can be used to represent A in O(nα ) space to support range α-majority

queries in O( (lg lgn)2

α ) time.

1.2. Our Results

Our results can be summarized as follows.

• In Section 2 we present a data structure for answering range majority
queries under the word-RAM model, with word size Ω(lg n). It uses O(n)
words and answers range majority queries in constant time. The data
structure is conceptually simple and based on the idea that, for query
ranges above a certain size threshold, only a small set of candidate ele-
ments need be considered in order to determine the majority. In order
to verify the frequency of these elements efficiently, we present a novel
decomposition technique that uses wavelet trees [15].
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• In Section 3 we generalize our data structure to answer range α-majority
queries, for any fixed α ∈ (0, 1). Note that although α is fixed, it is not
necessarily a constant. For example, setting α = 1

lgn is permitted. Our

structure uses O(n lg( 1
α + 1)) words and answers range α-majority queries

in O( 1
α ) time. In order to generalize our data structure when 1

α is large,
i.e., when 1

α = ω(1), we make use of batched queries over wavelet trees.

• In Section 4 we discuss the applications of our data structure for range
α-majority queries to the coloured range searching problems defined by
Karpinski and Nekrich [18], and present improved data structures for these
problems.

• In Section 5 we improve the upper bound on the number of candidate
elements that need be stored by our data structure. These bounds are
independently interesting, and are tight for the case of α = 1

2 . Although
these bounds are not required to give an asymptotic analysis of the space
used by our data structure, they may be of practical interest as they
demonstrate that the constant factors are indeed smaller than the loose
bounds given in Sections 2 and 3.

2. Range Majority Data Structure

In this section we describe a linear space data structure that supports range
majority queries in constant time. To provide some intuition, suppose we par-
tition the input array A[1..n] into four contiguous equally sized blocks. If we
are given a query range that contains one of these four blocks, then it is clear
that a majority element for this query must have frequency greater than n

8 in A.
Thus, at most seven elements need be considered when computing the majority
for queries that contain an entire block.

Of course, not all queries contain one of these four blocks. Therefore, we
decompose the array into multiple levels in order to support arbitrary queries
(Sections 2.1 and 2.2). Using this decomposition in conjunction with succinct
data structures [16], we design a linear space data structure that answers range
majority queries in constant time (Section 2.3). The data structure works by
counting the frequency of a constant number of candidate elements in order to
determine the majority element for a given query. While a loose bound on the
number of candidates that need be considered suffices to show that our data
structures occupy linear space, it is more challenging to prove a tighter bound,
such as that of Section 5.

From this point on we make the assumption that the elements stored in
the input array A are drawn from the alphabet {1, ..., σ}, where σ ≤ n is the
number of distinct elements in A. If this is not the case, then we can apply
the well known technique of rank space reduction [9, 3] as a preprocessing step,
and store an auxiliary array of size σ to invert an element in {1, ..., σ} to its
original value. This preprocessing step takes O(n lg σ) time using a balanced
binary search tree.
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A[1..16]

T (3)

Quadruples U1

U2

U3

U4U4

Q1 Q2

for T (3)

Figure 1: An example where n = 16. Blocks in T (3) have size 2, and each of the 4 quadru-
ples contain 4 blocks. Query ranges Q1 and Q2 are associated with quadruples U1 and U3

respectively.

2.1. Quadruple Decomposition

The first stage of our decomposition is to construct a notional complete bi-
nary tree T over the range [1..n], in which each node represents a subrange of
[1..n]. Let the root of T represent the entire range [1..n]. For a node corre-
sponding to range [a..b], its left child represents the left half of its range, i.e.,

the range [a..b (a+b)
2 c], and its right child represents the right half, i.e., the range

[b (a+b)
2 c + 1..b]. For simplicity, we assume that n is a power of 2. Each leaf of

the tree represents a range of size 1, which corresponds to a single index of the
array A. We refer to ranges represented by the nodes of T as blocks. Note that
the tree T is for illustrative purposes only, so we need not store it explicitly.

The tree T has lg n+ 1 levels, which are numbered 0 through lg n from top
to bottom. For each level `, T partitions A into 2` blocks of size n

2` . Let T (`)
denote the set of blocks at level ` in T .

The second stage of our decomposition consists of arranging adjacent blocks
within each level T (`), 2 ≤ ` ≤ lg n, into groups. Each group consists of four
blocks and is called a quadruple. Formally, we define a quadruple Uq to be a

range [a..b] at level ` ≥ 2 of size 4n
2` , where a = 2(q−1)n

2` +1 and b = 2(q−1)n
2` + 4n

2` ,

for 1 ≤ q ≤ 2`−1 − 1. In other words, each quadruple at level ` contains exactly
4 consecutive blocks, and its starting position is separated from the starting
position of the previous quadruple by 2 blocks. To handle border cases, we also
define an extra quadruple U2`−1 which contains both the first two and last two
blocks in T (`). Thus, at level ` there are 2`−1 quadruples, and each block in T (`)
is contained in two quadruples. These definitions are summarized in Figure 1.

2.2. Candidates

Based on the decomposition from the previous section, we observe the fol-
lowing:

Observation 1. For every query range Q there exists a unique level ` such that
Q contains at least one and at most two consecutive blocks in T (`), and, if Q
contains two blocks, then the nodes representing these blocks are not siblings in
the tree T .
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Let U be a quadruple consisting of four consecutive blocks, B1 through B4

from T (`), where ` is the level referred to in the previous observation. We
associate Q with U if Q contains B2 or B3; for convenience we also say that Q
is associated with level `. Note that Q may contain both B2 and B3; see Q1

in Figure 1. The following lemma can be proved by an argument analogous to
that described at the beginning of Section 2:

Lemma 1. There exists a set C of at most 7 elements such that, for any query
range Q associated with quadruple U , the majority element for Q is in C.

For a quadruple U , we define the set of candidates for U to be the elements
in C. In Section 5.2 we improve the upper bound on |C| from 7 to 5, which, as
illustrated by the following example, is tight.

Example 1. Let U be a quadruple containing 4 blocks, each of size 32, and
(e)y denote a sequence of y occurrences of the element e. In ascending order
of starting position, the first block begins with an arbitrary element and is
followed by (e1)28 and (e2)3. The second block contains (e2)15, and (e3)17. The
third block contains (e1)8, (e4)17, and (e5)7. The final block contains (e5)19,
followed by any arbitrary sequence of elements. Assume the range contained
by the quadruple is [1..128]. The queries [2..72], [30..64], [33..64], [65..96] and
[65..115] are all associated with U , and have e1 through e5 as majority elements
respectively.

Next, we describe how the sets of candidates can be computed efficiently.

Lemma 2. The sets of candidates for all the quadruples can be identified in
O(n lg n) time.

Proof. Recall that the elements in A are drawn from the alphabet {1, ..., σ},
where σ ≤ n. We can count the frequencies of all the elements in quadruple U
in O(|U |) time, in a single pass over the elements in U , using an auxiliary array

of size σ. When the count of an element exceeds |U |8 , we add it to the set of
candidates for U . This implies that the sets of candidates for all the quadruples
in all of the lg n+ 1 levels of T can be found in O(n lg n) time.

2.3. Data Structures for Counting

We now describe the data structures stored for each level ` of the tree T , for
2 ≤ ` ≤ lg n. Given a quadruple Uq in level `, for 1 ≤ q ≤ 2`−1 we store the set
of candidates for Uq in an array Fq. Let Yq be a string of length |Uq|, where the
i-th symbol in Yq is f if the i-th symbol in Uq is Fq[f ], and a unique symbol
otherwise. Let Y be the concatenation of the strings Y1 through Y2`−1 . We use
a wavelet tree [15] to represent Y , which has alphabet size σ′ = |Fq| + 1 ≤ 6.
This representation uses n lg σ′(1 + o(1)) bits to provide constant time support
for the operation rankc(Y, i), which returns the number of occurrences of the
character c in Y [1..i].
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Theorem 1. Given an array A[1..n], there exists an O(n) word data structure
that supports range majority queries on A in O(1) time, and can be constructed
in O(n lg n) time.

Proof. Given a query Q = [a..b], we first want to find the level ` and the index
q of the quadruple Uq with which Q is associated. This can be reduced to finding
the length of the longest common prefix of the (lg n)-bit binary representations
of a and b, which can be done in constant time in the following way. Let
z = MSB( n

b−a+1 ), where MSB(x) returns the most significant bit of x. If (a− 1)2z

mod n = 0, or (b − 1)2z mod n = 0, or d (a−1)2z

n e 6= b (b−1)2z

n c, then ` = z;

otherwise, ` = z + 1. Let q′ = b (a−1)2`−1

n c. The quadruple Uq associated with

Q is either q = q′

2 or q = q′−1
2 depending on whether the size of the blocks at

level ` divide into the starting position a−1. Note that we interpret U0 to mean
U2`−1 . Since we can support the MSB operation in O(1) time using a table of
size o(n) bits, we can compute both ` and q in O(1) time.

Next, we show how to answer queries associated with a quadruple at levels
`, for 2 ≤ ` ≤ lg n; the case in which 0 ≤ ` ≤ 1 can be handled similarly. The

representation of quadruple Uq in Y begins at s = 4(q−1)n
2` + 1. We also must

normalize the values a and b to the starting position s, so let t = 2(q−1)n
2` +1. For

each f in [1..|Fq|], we count the frequency of Fq[f ] in [a..b] using rankf (Y, s+b−
t)−rankf (Y, s+a−1− t), or, equivalently, rankf (Y, t+b)−rankf (Y, t+a−1).
We then report Fq[f ] if it is a majority. Since Y has a constant sized alphabet,
this process takes O(1) time.

In addition to the input array, we must store the arrays Fq for each of the
O(n) quadruples, and each array requires a constant number of words. For each
of the lg n+ 1 levels in T we store a wavelet tree on an alphabet of size σ′ ≤ 6,
requiring O(n lg n) bits. To answer queries in constant time, we require o(n)
bits of additional space for a lookup table to determine ` and q. Thus, the
additional space requirements beyond the input array are O(n) words. In terms
of construction time, we can build the lists of candidates in O(n lg n) time by
Lemma 2, and the wavelet trees require O(n) time to construct per level. Thus,
the overall construction time is O(n lg n). �

Remark 1. In most cases, the upper bound on the number of candidates stored
for each quadruple is likely significantly greater than the number of candidates
actually stored by the data structure. Therefore, we expect that the constant
factor in the O(n) space term is not very large in practice.

3. Generalization to Range α-Majority Queries

In this section we generalize the data structure from Theorem 1 to report
α-majorities, for some fixed α ∈ (0, 1), supplied at construction time. Using
the same arguments presented in the beginning of Section 2, it is clear that if
an element is an α-majority for any query associated with quadruple U , then it

must appear more than α|U |
4 times in U . This implies that the set of candidate
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α-majorities has size less than 4
α . Although this loose bound will suffice to

bound the asymptotic behaviour of our data structure, we prove tighter bounds
in Section 5.

3.1. Handling Large Alphabets

For a given α, if the number of candidates, |C|, is ω(1), then we require the
following lemma about executing batched rank queries on a wavelet tree.

Lemma 3. A string S[1..n] over alphabet [m], where m ≤ n, can be represented
using a wavelet tree such that given an index i, the results of rankf (S, i) for all
f = 1, 2, ...,m can be computed in O(m) time.

Proof. If we use the original wavelet tree algorithm to perform rankf (S, i)
for a particular alphabet symbol, f , the algorithm consists of two steps. First,
in the bit vector representing the leaf, u, corresponding to f (and one other
alphabet symbol), we locate the bit that corresponds to S[i]. This step is done
by performing constant-time rank queries on bit vectors, representing internal
nodes of the wavelet tree, on the path from the root to the leaf u. The second
step is to perform a rank query in constant time on the bit vector representing u,
to compute the number of 1s up to and including the bit corresponding to S[i].
By performing batch processing of the queries rankf (S, i) for f in 1, 2, ..., σ, as
there are m − 1 nodes in a wavelet tree, the first step for all f requires O(m)
constant-time rank queries on bit vectors stored in internal nodes. Therefore,
with careful tuning, we can perform the first step of all the rankf (S, i) queries
in O(m) time. The second step requires a O(1) time rank query for each leaf,
so it uses O(m) time in total. �

With the above observation we present the following theorem:

Theorem 2. Given an array A[1..n] and any fixed α ∈ (0, 1), there exists an
O(n lg( 1

α + 1)) word data structure that supports range α-majority queries on A
in O( 1

α ) time, and can be constructed in O(n lg n lg( 1
α + 1)) time.

Proof. From Theorem 1 and Lemma 3 the query time follows, so we focus
on analyzing the space. We observe that if α < 1

4 , then we need not keep
data structures at level lg n in T , since every distinct element contained in
a query range, Q, associated with this level is a ( 1

4 − ε)-majority for Q, for
0 < ε < 1

4 . Instead, we perform a linear scan of the query range in O( 1
α ) time,

returning all the distinct elements. Continuing this argument, we observe that
we only require the array Fq, for quadruple q, if q represents a range of size
larger than O( 1

α ). Since there are O(nα) quadruples of this size, the arrays
require O(nα × 1

α lg n) = O(n lg n) bits in total. The overall space required
for the wavelet tree data structures is O(n lg( 1

α + 1)× lg n) bits, and this term
dominates the overall space requirements.

We can construct the sets of candidates for all quadruples of size larger than
O( 1

α ) in O(n lg n) time using the same technique described in Lemma 2. To
construct the wavelet trees requires O(n lg( 1

α + 1)) time per level, for an overall
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time bound of O(n lg n lg( 1
α + 1)). Thus, the construction time is dominated by

the wavelet tree construction, and requires O(n lg n lg( 1
α + 1)) time overall. �

4. Applications

In this section we describe some consequences of Theorem 2 to the more
geometric versions of the range α-majority problem described by Karpinski and
Nekrich [18]. These problems have practical applications to range searching
problems in databases, where we would like to identify attributes that are fre-
quently associated with points in a query range [18]. In the next subsections we
describe these geometric problems, which deal with coloured points instead of
elements in arrays.

4.1. Range Majority for Coloured Points in One Dimension

We are given a set, P , of points in one dimension, where each point p ∈ P is
assigned a colour c from a set, C, of colours. Let col(p) = c denote the colour of
p. We are also given a fixed parameter α ∈ (0, 1), which defines the threshold
for determining whether a colour is to be considered frequent. Let P (Q) be the
set {p | p ∈ Q, p ∈ P}, and P (Q, c) be the set {p | p ∈ P (Q), col(p) = c}.
Our goal is to design a data structure that, given query range Q, can return
the set of colours M such that for each colour c ∈ M , the size of the set
|P (Q, c)| > α|P (Q)|. To be consistent with our original formulation of the
problem, we refer to a colour c ∈ M as an α-majority for Q, and the query
Q as an α-majority query, though they are also referred to as α-dominating
colours [18].

To solve this problem, we apply the reduction to rank space technique [9, 3]
to the coordinates of the points, and store the sequence of colours in the data
structure from Theorem 2. We store the original coordinates of the points in any
linear space data structure that supports predecessor queries. Given a query,
we can use the predecessor search data structure to map the query to a rank
based query on the range α-majority data structure. We present the following
theorem:

Theorem 3. Given a set P of n points in one dimension and a fixed α ∈ (0, 1),
there is an O(n lg( 1

α + 1)) space data structure that supports range α-majority
queries on P in O(pred(P ) + 1

α ) time, where pred(P ) is the time required to
do a one-dimensional predecessor search on the coordinates of the points in P .

Remark 2. The previous theorem implies that if we only assume the points
can be compared in constant time, then we can answer range α-majority queries
in O(lg n+ 1

α ) time by storing the coordinates of the points in a balanced binary
search tree. If the points have integer coordinates, then we can store their co-
ordinates in an exponential search tree [4] and answer range α-majority queries
in O(

√
lg n/ lg lg n + 1

α ) time. Alternatively, we can store their coordinates in
a y-fast trie [24], which yields a query time of O(lg lgU + 1

α ), where U is the
value of the largest coordinate in P .
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4.2. Range Majority in Higher Dimensions

In the same manner as Karpinski and Nekrich [18], we can extend Theorem 3
to higher dimensions using the well-known range tree technique of Bentley [6].
The main problem with moving to higher dimensions is that we cannot use the
wavelet tree to verify the frequency of candidates when d ≥ 2. However, we
can use the small list of candidates generated by the data structure in con-
junction with any d-dimensional range counting data structure, such as that of
Chazelle [9]. Furthermore, by removing the wavelet trees from the data struc-
ture of Theorem 2, we remove the lg( 1

α + 1) term from the space bound. Thus,
this stripped down data structure uses O(n) space, and can return, for any
range α-majority query Q on A, a list of O( 1

α ) elements that contains all the
α-majorities for Q in O( 1

α ) time. By combining this discussion with the anal-
ysis presented by Karpinski and Nekrich [18, Section 4], we get the following
theorem that improves the space bound of their d-dimensional structure by a
factor of O( 1

α ):

Theorem 4. Given a set P of n points in d-dimensions, for any constant d ≥ 2,
and a fixed α ∈ (0, 1), there is an O(n lgd−1 n) space data structure that supports

range α-majority queries on P in O( lgd n
α ) time.

Remark 3. As in the one-dimensional case, we can exploit word-level paral-
lelism to improve the time complexity of queries in the case where the points
in P have integer coordinates. Using the data structure of JaJa et al. [17], the

query time improves to O( lgd n
α lg lgn ).

5. Tighter Bounds on the Number of α-Majorities

In this section we provide a tighter upper bound on the number of candidates
we need store from each quadruple to support α-majority queries. Specifically,
we show that the size of the set of candidates that need be stored from each
quadruple is less than:

2

⌈
1

α

⌉
+

2

lg 1
1−α

. (1)

Thus, for the case when α = 1
2 , the bound on the number of elements improves

from 7 to 5, which is tight. Furthermore, since the proof is constructive, the
bound is tight for unit fraction values of α.

5.1. Definitions

Before discussing the proof of the above bound, we require the following
definitions. We refer to the range [a..b′], where a ≤ b′ ≤ b, as a prefix of the
range [a..b]. Similarly, the range [a′..b], where a ≤ a′ ≤ b, is a suffix of [a..b]. For
a block L ∈ T (`), we refer to the successor of L, which is the block Ls ∈ T (`)
such that the range represented by Ls immediately follows the range represented
by L. The predecessor is defined analogously.
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Consider a query [a..b′] that contains block L = [a..b] ∈ T (`), where b ≤ b′ <
b+ |L|. Thus, [a..b′] contains L and a prefix of the successor of L. We refer to
a query of this form as a prefix query. We refer to the symmetric case, where
a query [a′..b] contains L and a − |L| < a′ ≤ a as a suffix query. Finally, let
|A[i..j]|t denote the frequency of an element t in A[i...j].

5.2. Relaxed Triples

Suppose we are given a block L, where Lp and Ls are the predecessor and
successor of L respectively; we call Lp ∪ L ∪ Ls a triple. In order to prove an
upper bound on the number of candidates in a quadruple, we generalize a triple
in two ways, and then prove several properties of these objects. First, we relax
the restriction that blocks in the triple have equal size, and only require that
|Lp|+ |Ls| ≤ 2|L|. Second, we relax the restriction that blocks and occurrences
of elements are of integer size; i.e., the ranges described in this section may
start and end at arbitrary real numbers. Although the ranges are real-valued,
we still refer to “occurrences” of elements. Thus, in the continuous setting
described in this section, an occurrence of an element may contain an arbitrary
fraction of a block; for example, inside a block there may be a contiguous range
of occurrences of element e that has length 5.22. We refer to these generalized
triples as relaxed triples.

Let e1, ..., em denote the m distinct α-majorities that exist for a query Q
where L ⊆ Q ⊂ (Lp ∪ L ∪ Ls); i.e., Q is a query contained in the relaxed triple
and Q contains L. For brevity, whenever we refer to a query in the context of a
relaxed triple, it is assumed to have this form. Let Q = {Q1, ..., Qm} be a set of
queries within a relaxed triple such that Qi is the smallest query for which ei is
an α-majority, breaking ties by taking the query with smallest starting position.
We refer to Q as the canonical query set for the relaxed triple. If query Qi is a
prefix query or a suffix query we refer to it as one-sided. If Qi is not one-sided,
then it is two-sided. Note that the query Qi = L is one-sided, since it is both a
suffix and a prefix query.

For two-sided canonical queries Qi ∈ Q, the element at both the starting
position and ending position of Qi must be ei; otherwise we could reduce the
size of Qi. Thus, for all two-sided canonical queries Qi ∈ Q, no Qj ∈ Q (j 6= i)
exists having the same starting or ending position as Qi. However, there may
be several occurrences of the query L in Q, since many elements can share that
particular range as a canonical query. From this point on we only consider
relaxed triples where element ei occurs only within the range Qi for 1 ≤ i ≤ m.
Since the goal of this section is to find an upper bound on m, occurrences of ei
outside range Qi can be removed without decreasing m.

Lemma 4. Given a relaxed triple and its canonical query set Q = {Q1, ..., Qm},
the elements {e1, ..., em} corresponding to the queries in Q can be rearranged
such that they each appear in at most two contiguous ranges in the relaxed
triple. This reordering induces a new canonical query set Q′ = {Q′1, ..., Q′m},
such that |Q′j | ≤ |Qj | for all 1 ≤ j ≤ m.

11



Lp LsL

P S

Qi
|P |ei occurrences of ei

Figure 2: Illustration of the relaxed triple using notation from Step 1 in Lemma 5.

Proof. First, we describe a procedure for reordering the elements in Lp. Let
L′p = Lp, Q′ = Q, and Qb ∈ Q′ be the query with the smallest starting position
in L′p. Then Qb contains a non-empty suffix of L′p; if no such query exists, then
L′p is empty and we are done. Let eb be the element corresponding to Qb. We
swap the positions of all the occurrences of eb in L′p such that they occupy a
prefix P of Qb. All elements that were in P are shifted toward L. Thus, it may
be possible to reduce the size of a query Qi ∈ Q′ that originally had a starting
position in P , and we recompute Q′. Let L′p be the largest suffix of Lp that
does not contain any occurrences of eb. At this point we recurse and compute
the next Qb.

After we have finished moving eb, at no point later in the procedure will an
occurrence of eb in Lp be touched. At the end of the procedure each element
in Lp that corresponds to a canonical query will occupy a contiguous block.
Furthermore, |Q′| = |Q|, since moving elements in P closer to the ending posi-
tion of Lp will not decrease the ratio of their frequency to canonical query size.
The procedure for reordering Ls is identical, though we process the elements in
decreasing order by ending position.

After executing the procedure on Lp and Ls, consider an element ei corre-
sponding to Qi. We can delete all k occurrences of ei in L and insert k copies
of ei immediately before the first occurrence of ei in Ls. This does not change
the relative order of any other elements in the relaxed triple, and shifts all other
elements in Ls in positions before the new first occurrence of ei closer to L.
Thus, each element appears in at most two contiguous ranges. �

Remark 4. The procedure described in Lemma 4 implies that if Qi is one-
sided, then the element corresponding to Qi can be reordered to appear in a
single contiguous range. For an arbitrary query Qi ∈ Q, one of the contiguous
ranges in which ei appears may contain a suffix of L.

Lemma 5. Given a relaxed triple and its canonical query set Q = {Q1, ..., Qm},
its elements can be rearranged, creating a new relaxed triple that has a canonical
query set Q′ = {Q′1, ..., Q′m} such that Q′i is one-sided for 1 ≤ i ≤ m.

Proof. We describe a procedure for rearranging the elements in the relaxed
triple.
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Step 1: We choose an arbitrary two-sided query, Qi ∈ Q. We apply Lemma 4
to the triple, such that all occurrences of ei appear in the prefix and suffix of
Qi. Let P represent the prefix of Qi contained in Lp, and S the suffix of Qi
contained in Ls. P is contained in c ≥ 0 queries in Q, distinct from Qi, and S
is contained in d ≥ 0 queries in Q, distinct from Qi. Without loss of generality,
assume c ≥ d. Note that |L|ei = α|L| −∆L, for some value ∆L ≥ 0; otherwise
L would be the canonical query for ei. Since |Qi|ei > α(|L|+ |P |+ |S|), we have
|P |ei = α|P |+ ∆P , and |S|ei = α|S|+ ∆S , for some values ∆P and ∆S , where
∆P +∆S > ∆L. Note that ∆P > 0 and ∆S > 0; if ∆P ≤ 0, then S∪L would be
the canonical query for ei, and the same argument applies to ∆S . This implies
that |P |ei ≥ ∆P

1−α and |S|ei ≥ ∆S

1−α . See Figure 2.

Step 2: We remove all |P |ei = α|P | + ∆P ≥ ∆P

1−α occurrences of ei from
Lp. This shifts the starting position of c queries in Q closer to L. Let Qj be
the innermost of the c queries, i.e., Qj has the largest starting position of the c
queries. Since there were no occurrences of ej in the removed block, in order for
ej to be an α-majority for Qj , there must have been at least f occurrences of ej
to pay for the removed block, where f = α(|P |ei+f). This implies f = |P |ei α

1−α .
Generalizing this formula to consider the number of occurrences of the c different
elements required to pay for the removed block, as well as the payments made
by the innermost queries, we get a recurrence relation. Let fi be the savings of
the i-th innermost of the c queries. It follows that fi = α

1−α (δp +
∑i−1
j=1 fj), for

1 ≤ i ≤ c. Thus, we have reduced the size of Lp by the total sum δp +
∑c
i=1 fc.

Step 3: We insert ∆P

1−α ≤ |P |ei elements immediately after the last occurrence
of ei in S. After this, there exists a prefix query on the relaxed triple which
returns ei as a majority. This insertion causes the ending positions of d queries
in Q to be shifted farther from L. By the same argument as before, we must
insert at most

∑d
i=1 fd elements in order to correct for this shift. Since c ≥ d,

our new arrangement satisfies the constraint |Lp|+ |Ls| ≤ 2|L|, and is therefore
a relaxed triple.

Step 4: We reorder the elements according to Lemma 4 and recompute the
canonical query set. The procedure described in the proof of Lemma 4 does not
increase the number of two-sided queries. If any two-sided queries remain, then
go to step 1.

After rearranging element ei, Qi will remain one-sided in any future iteration
of the procedure; no occurrence of ei will subsequently be moved back to Lp.
Each iteration guarantees that ei will be an α-majority for a one-sided query,
and that the size of the canonical set remains unchanged. �

Remark 5. We note that Lemma 5 only holds in the continuous setting where
we can manipulate fractional parts of elements. For an example where Lemma 5
does not hold in the discrete setting, consider the case where |L| = |Lp| = |Ls| =
3, and Lp = {e5, e5, e4}, L = {e1, e2, e3}, Ls = {e4, e6, e6}, and 2

7 < α < 1
3 . In

this example, we cannot rearrange the triple such that Q4 is one-sided, without
decreasing the size of the canonical query set.

We have shown that to give an upper bound on the number of candidates
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in a relaxed triple, it suffices to examine the worst case restricted to prefix and
suffix queries in the successor and predecessor of L, respectively. Without loss
of generality, we consider the successor, then prove an upper bound on the size
of the canonical query set in a relaxed triple. First, we require the following
recurrence relation:

Lemma 6. Consider the recurrence relation

dj =
α

1− α

(
1 +

j−1∑
i=1

(1 + di)

)
,

for j > 1, and d1 = α
1−α . For j ≥ 1,

dj =
1

(1− α)j
− 1 .

Proof. Proof by induction. Base case:

d1 =
α

1− α =
1

1− α − 1 .

Inductive step: assume the statement is true for 1 ≤ j′ < j. Thus,

dj =
α

1− α +

j−1∑
i=1

α

1− α

(
1 +

1

(1− α)i
− 1

)
.

Simplifying this we get a geometric series,

dj =

j∑
i=1

α

(1− α)i
.

Finally, summing the terms of this series we get dj = 1
(1−α)j −1, completing the

inductive step. �

Next, we bound the number of candidates for prefix queries over a relaxed triple.

Lemma 7. Let L be a block and Ls its successor in a relaxed triple. There
exists a set of elements C, of size less than⌈

1

α

⌉
+

lg(1 + |Ls|
|L| )

lg 1
1−α

,

such that for all prefix queries Q containing L, all α-majorities for Q are con-
tained in C.

Proof. We keep the set F = {f1, ..., fh} of the h = d 1
αe most frequently

occurring elements from the block L = [a..b]. Let prefix query Q1 = [a..b1],
where b1 = b initially, and increase b1 until a new element e1 6∈ F becomes
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an α-majority for Q1. We continue this process k times, where k is a value
determined later: for 1 ≤ i ≤ k, define Qi = [a..bi], where bi = bi−1 initially,
and bi is increased until a new element ei 6∈ F ∪ {e1, ..., ei−1} becomes an α-
majority. Let Ri be the largest prefix of Ls contained inQi, and di = |Ri| = bi−b

|L|

for 1 ≤ i ≤ k. In order for Qi to be a prefix query, 0 < di <
|Ls|
|L| must hold

for each 1 ≤ i ≤ k. We want to determine the maximum value of k for which
dk <

|Ls|
|L| for the specific value of α. The value h+ k provides an upper bound

on the number of elements we need examine to determine the α-majorities for
any prefix query.

To maximize k, assume that all elements in F are α-majorities for the query
Q′ = L. Applying Lemma 4, each element fi appears in a contiguous block
within L. Note that any extra occurrences of fi can be removed without de-
creasing k.

With the exception of at most one element ek+1, we can assume that L∪Ls
only contains elements e′ for which there exists some prefix query that returns e′

as an α-majority; otherwise, we could replace all occurrences of these elements
with ek+1. We have filled L entirely with elements in F , and each element ei
can only occur in a single contiguous block in Ls, for 1 ≤ i ≤ k, by Lemmas 4
and 5. Thus, each ei appears in a contiguous block immediately following ei−1.

Now we have an upper bound,

|Rj |ej ≤ dj |L| −
j−1∑
i=1

|Ri|ei ,

and a lower bound,

|Rj |ej > α(1 + dj)|L| − |L|ej ,

for 1 ≤ j ≤ k. By our construction, |L|ej = 0 for all 1 ≤ j ≤ k. Rearranging
the upper and lower bounds, we get that

dk >
α

1− α +

k−1∑
i=1

|Ri|ei
|L|(1− α)

,

which implies

dk >
α

1− α +

k−1∑
i=1

α(1 + di)

(1− α)
.

Applying Lemma 6, we get dk >
1

(1−α)k
− 1. Since |Ls|

|L| > dk, this statement

implies

1 +
|Ls|
|L| >

1

(1− α)k
.

After isolating k we get that
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h+ k <

⌈
1

α

⌉
+

lg
(

1 + |Ls|
|L|

)
lg 1

1−α
,

completing the proof. �

Extending the above lemma to arbitrary queries on relaxed triples yields the
following lemma:

Lemma 8. The canonical query set Q of any relaxed triple has size less than⌈
1

α

⌉
+

2

lg 1
1−α

.

Proof. We consider the worst case in both predecessor, Lp, and successor, Ls,
of L, noting that the contents of L are shared. We apply Lemmas 5 and 7 to Lp
and Ls. Recall the constraint |Lp|+ |Ls| ≤ 2|L|, and note that the expression

⌈
1

α

⌉
+

lg
(

1 + |Ls|
|L|

)
+ lg

(
1 +

|Lp|
|L|

)
lg 1

1−α
,

is maximized when |Ls| = |Lp| = |L|. �

We now extend Lemma 8 to the case of quadruples.

Theorem 5. For any quadruple U there exists a set C such that

|C| < 2

⌈
1

α

⌉
+

2

lg 1
1−α

,

and for any Q associated with U , all α-majorities for Q are in C.

Proof. Let Bl and its successor, Br, denote the two middle blocks of U . Let
Lp and Ls denote the predecessor of Bl and successor of Br, respectively. We
decompose U into two relaxed triples, Rl = Lp∪Bl∪Br and Rr = Bl∪Br ∪Ls.
The key observation is that in order to maximize the size of the canonical query
sets of these triples — and therefore the number of candidates in the quadruple
— the sets of elements corresponding to the canonical query sets of the two

relaxed triples should be disjoint. Thus, since 1
α grows faster than 1/

(
lg 1

1−α

)
,

we can apply Lemma 7 to both Rl and Rr, achieving the desired bound. �

At this point, we have not explained how to compute the canonical query
set of a triple, or the set of candidates for a quadruple. We present the following
lemma, which borrows notation from Lemma 5:

Lemma 9. Given a triple Lp ∪L∪Ls, the set of elements corresponding to its
canonical query set can be found in O(|L|) time, provided we have access to four
arrays of size σ in which all the entries have been initialized.
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Proof. Notice that we are proving this bound for a triple, where each block in
the triple is an array of length |L|, rather than a relaxed triple. Let F be the set
of elements in Lp ∪L∪Ls that appear more than α|L| times. We can compute
F in O(|L|) time using one array of size σ, and after computing it, return the
array to its initial state in O(|L|) time. We also compute, for each f ∈ F , the
value DL[f ], which is the value ∆L for f . Thus, |F | < 3

α , and the next step
is to remove elements in F that do not correspond to a query in the canonical
query set.

We use an array C, that will be used to store frequency counts, and an
array DS , that will be used to compute the maximum value of ∆S for each
element in F . Assume the arrays C and DS have been initialized such that
for each f ∈ F , C[f ] = 0, and DS [f ] = −∞. We perform a scan of Ls, and
when we encounter element f ∈ F at position i, we increment C[f ], and set
DS [f ] = max{DS [f ], C[f ] − α × i}. Similarly, we also perform a scan of Lp,
reusing the array C and another auxiliary array DP , in order to compute the
maximum value of ∆P for each element in F . For a given element f ∈ F , the
value DS [f ]+DL[f ] or DP [f ]+DL[f ] or DS [f ]+DP [f ]+DL[f ] is positive if and
only if f an element associated with a canonical query. This procedure requires
two scans of the triple, and therefore runs in O(|L|) time. After computing the
canonical query set, we can return the entries in the four arrays to their initial
value in O(|F |) time. �

We can extend Lemma 9 to the case of a quadruple, U , to show that computing
the set of candidates for U can be done in O(|U |) time. The idea is to decompose
the quadruple into two triples, as in Theorem 5. We then run the algorithm
from Lemma 9 on both of these triples. The distinct set of elements in the union
of these canonical query sets is the set of candidates for U .

6. Conclusions

We have presented an O(n) word data structure that answers range majority
queries in constant time, and an O(n lg( 1

α+1)) word data structure that answers
range α-majority queries in O( 1

α ) time, for any fixed α ∈ (0, 1). This result is
interesting in light of the nearly logarithmic cell-probe lower bounds of Greve et
al. for the closely related problems of range mode and range k-frequency [14].

Our data structure is based on an interesting tree decomposition method
used to preprocess an array such that each query is associated with a short list
of candidate α-majorities. Then, using techniques from the area of succinct
data structures, each element in this short list is efficiently checked in order to
determine whether it is an α-majority for the given query.

One open problem would be to determine if the space bound of O(n lg( 1
α+1))

words can be improved, while maintaining the O( 1
α ) query time. Another would

be to determine if the data structure can be made output sensitive, i.e., whether
there is a data structure that outputs the k α-majorities in a query range in
O(k) time.
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