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Abstract9

A polyline (resp., straight-line) drawing Γ of a planar graph G on a10

set Lk of k parallel lines is a planar drawing that maps each vertex of11

G to a distinct point on Lk and each edge of G to a polygonal chain12

(resp., straight line segment) between its corresponding endpoints, where13

the bends lie on Lk. The height of Γ is k, i.e., the number of lines used in14

the drawing. In this paper we establish new upper bounds on the height15

of polyline drawings of planar graphs using planar separators. Specifi-16

cally, we show that every n-vertex planar graph with maximum degree ∆,17

having an edge separator of size λ, admits a polyline drawing with height18

4n/9 + O(λ), where the previously best known bound was 2n/3. Since19

λ ∈ O(
√
n∆), this implies the existence of a drawing of height at most20

4n/9 +o(n) for any planar triangulation with ∆ ∈ o(n). For n-vertex pla-21

nar 3-trees, we compute straight-line drawings, with height 4n/9 +O(1),22

which improves the previously best known upper bound of n/2. All these23

results can be viewed as an initial step towards compact drawings of pla-24

nar triangulations via choosing a suitable embedding of the graph.25
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1 Introduction32

A polyline drawing of a planar graph G is a planar drawing of G such that each33

vertex of G is mapped to a distinct point in the Euclidean plane, and each edge34

is mapped to a polygonal chain between its endpoints. Let Lk = {l1, l2, . . . , lk}35

be a set of k horizontal lines such that for each i ≤ k, line li passes through the36

point (0, i). A polyline drawing of G is called a polyline drawing on Lk if the37

vertices and bends of the drawing lie on the lines of Lk. The height of such a38

drawing is k, i.e., the number of parallel horizontal lines used by the drawing.39

Such a drawing is also referred to as a k-layer drawing in the literature [21, 25].40

Let Γ be a polyline drawing of G. We call Γ a t-bend polyline drawing if each of41

its edges has at most t bends. Thus a 0-bend polyline drawing is also known as42

a straight-line drawing. G is called a planar triangulation if every face of G is43

bounded by a cycle of three vertices. Figure 1(a) shows a planar graph G, and44

Figure 1(b) illustrates a 1-bend polyline drawing of G on L8.45
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Figure 1: (a) A triangulation G. (b) A polyline drawing of G with height 8.

Drawing planar graphs on a small integer grid is an active research area in46

graph drawing [4, 9, 17, 24, 15], which is motivated by the need of compact47

layout of VLSI circuits and visualization of software architecture. In visualiza-48

tion applications, the constraint on area is imposed naturally by the size of the49

display screen. For VLSI circuit layout, compact drawings reduce the microchip50

area. Minimizing area often requires the edges to have bends. Since simul-51

taneously optimizing the width and height of the drawing is very challenging,52

researchers have also focused their attention on optimizing one dimension of the53

drawing [7, 18, 21, 25], while the other dimension is unbounded.54

In this paper we develop new techniques that can produce drawings with55

small height. We distinguish between the terms ‘plane’ and ‘planar’. A plane56

graph is a planar graph with a fixed combinatorial embedding and a specified57

outer face. While drawing a planar graph, we allow the output to represent58

any planar embedding of the graph. On the other hand, while drawing a plane59

graph, the output is further constrained to respect the input embedding.60
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Related Work: State-of-the-art algorithms that compute straight-line draw-61

ings of n-vertex plane graphs on an (O(n) × 2n/3)-size grid imply an upper62

bound of 2n/3 on the height of straight-line drawings [6, 7]. This bound is tight63

for plane graphs, i.e., there exist n-vertex plane graphs such as plane nested64

triangles graphs and some plane 3-trees that require a height of 2n/3 in any65

of their straight-line drawings [12, 22]. Recall that an n-vertex nested trian-66

gles graph is a plane graph formed by a sequence of n/3 vertex disjoint cycles,67

C1, C2, . . . , Cn/3, where for each i ∈ {2, . . . , n/3}, cycle Ci contains the cycles68

C1, . . . , Ci−1 in its interior, and a set of edges that connect each vertex of Ci to69

a distinct vertex in Ci−1. Besides, a plane 3-tree is a triangulated plane graph70

that can be constructed by starting with a triangle, and then repeatedly adding71

a vertex to some inner face of the current graph and triangulating that face.72

The 2n/3 upper bound on the height is also the currently best known bound73

for polyline drawings, even for planar graphs, i.e., when we are allowed to choose74

a suitable embedding for the output drawing. In the variable embedding setting,75

Frati and Patrignani [17] showed that every n-vertex nested triangles graph can76

be drawn with height at most n/3 + O(1), which is significantly smaller than77

the lower bound of 2n/3 in the fixed embedding setting. Zhou et al. [28] showed78

that series-parallel graphs can be drawn with 0.3941n2 area, and hence with79

height 0.628n < 2n/3. Similarly, Hossain et al. [18] showed that an universal80

set of n/2 horizontal lines can support all n-vertex planar 3-trees, i.e., every81

planar 3-tree admits a drawing with height at most n/2. They also showed that82

4n/9 lines suffice for some subclasses of planar 3-trees, and asked whether 4n/983

is indeed an upper bound for planar 3-trees.84

In the context of optimization, Dujmović et al. [13] gave fixed-parameter-85

tractable (FPT) algorithms, parameterized by pathwidth, to decide whether a86

planar graph admits a straight-line drawing on k horizontal lines. Drawings with87

minimum number of parallel lines have been achieved for trees [21]. Recently,88

Biedl [3] gave an algorithm to approximate the height of straight-line drawings89

of 2-connected outer planar graphs within a factor of 4. Several researchers90

have attempted to characterize planar graphs that can be drawn on few parallel91

lines [8, 16, 26].92

Contributions: In this paper we show that every n-vertex planar graph with93

maximum degree ∆, having an edge separator of size λ, admits a drawing with94

height 4n/9 + O(λ), which is better than the previously best known bound of95

2n/3 for any λ ∈ o(n). This result is an outcome of a new application of the96

planar separator theorem [10]. The resulting drawing is not a grid drawing, i.e.,97

the vertices and bends are not restricted to lie on integer grid points, and it is98

not obvious whether our technique can be immediately adapted to improve the99

current best 8
9n

2-area upper bound [6] on the grid drawings of planar graphs.100

However, the techniques developed in this paper have the potential to provide101

powerful tools for computing compact drawings for planar triangulations in the102

variable embedding setting.103

If the input graphs are restricted to planar 3-trees, then we can improve the104
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upper bound to 4n/9 + O(1), which settles the question of Hossain et al. [18]105

affirmatively. Furthermore, the drawing we construct in this case is a straight-106

line drawing.107

2 Preliminary Definitions and Results108

Let G be an n-vertex plane graph. G is called connected if there exists a path109

between every pair of vertices in G. We call G a k-connected graph, where110

k > 1, if the removal of fewer than k vertices does not disconnect the graph. A111

plane graph delimits the plane into topologically connected regions called faces.112

The bounded regions are called the inner faces and the unbounded region is113

called the outer face of G. The vertices on the boundary of the outer face are114

called the outer vertices, and the remaining vertices are called the inner vertices115

of G. If every face of G (including the outer face) is a cycle of length three, then116

we call G a triangulation, or a maximal planar graph. G is called an internally117

triangulated graph if every face except the outer face is a cycle of length three.118

Let G = (V,E) be an n-vertex triangulated plane graph. A simple cycle C in119

G is called a cycle separator if the interior and the exterior of C each contains120

at most 2n/3 vertices. An edge separator of G is a subset of edges M of G121

such that the graph G′ = (V,E \M) consists of two induced subgraphs, each122

containing at most 2n/3 vertices. Every planar graph with maximum degree ∆123

admits an edge separator of size 2
√

2∆n, where the corresponding edges in the124

dual graph form a simple cycle [10].125

Let v1, vn and v2 be the outer vertices of G in clockwise order on the outer126

face. Let σ = (v1, v2, ..., vn) be an ordering of all vertices of G. By Gk, 2 ≤127

k ≤ n, we denote the subgraph of G induced by v1, v2, . . . , vk. For each Gk,128

the notation Pk denotes the path (while walking clockwise) on the outer face129

of Gk that starts at v1 and ends at v2. We call σ a canonical ordering of G130

with respect to the outer edge (v1, v2) if for each k, 3 ≤ k ≤ n, the following131

conditions are satisfied [9]:132

(a) Gk is 2-connected and internally triangulated.133

(b) If k ≤ n, then vk is an outer vertex of Gk and the neighbors of vk in Gk−1134

are consecutive on Pk−1.135

Let Pk, for some k ∈ {3, 4, . . . , n}, be the path w1(= v1), . . . , wl, vk(= wl+1),136

wr, . . . , wt(= v2). The edges (wl, vk) and (vk, wr) are the l-edge and r-edge of137

vk, respectively. The other edges incident to vk in Gk are called the m-edges.138

For example, in Figure 2(c), the edges (v6, v1), (v6, v4), and (v5, v6) are the l-, r-139

and m-edges of v6, respectively. Let Em be the set of all m-edges in G. Then the140

graph Tvn induced by the edges in Em is a tree with root vn. Similarly, the graph141

Tv1 induced by all l-edges except (v1, vn) is a tree rooted at v1 (Figure 2(b)),142

and the graph Tv2 induced by all r-edges except (v2, vn) is a tree rooted at v2.143

These three trees form the Schnyder realizer [24] of G, e.g., see Figure 2(a).144
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Figure 2: (a) A plane triangulation G with a canonical ordering. The associated
realizer, where the l-, r- and m- edges are shown in dashed, bold-solid, and thin-
solid lines, respectively. (b) Tv1 . (c) Neighbors of v6 in G6. (d)–(g) Illustrating
Lemma 3.

Lemma 1 (Bonichon et al. [5]) The total number of leaves in all the trees145

in any Schnyder realizer of an n-vertex triangulation is at most 2n− 5.146

Let G be a planar graph and let Γ be a straight-line drawing on k parallel147

lines. By l(v), where v is a vertex of G, we denote the horizontal line in Γ that148

passes through v. We now have the following lemma that bounds the height149

of a straight-line drawing in terms of the number of leaves in a Schnyder tree.150

Although the lemma can be derived from known straight-line [6] and polyline151

drawing algorithms [4], we include a proof for completeness.152

Lemma 2 Let G be an n-vertex plane triangulation and let v1, vn, v2 be the153

outer vertices of G in clockwise order on the outer face. Assume that Tvn has154

at most p leaves. Then for any placement of vn on line l1 or lp+2, there exists a155

straight-line drawing Γ of G on Lp+2 such that v2 and v1 lie on lines lp+2 and156

l1, respectively. Symmetrically, there exists a straight-line drawing Γ of G on157

Lp+2 such that v1 and v2 lie on lines lp+2 and l1, respectively.158

Proof: We construct Γ by a variant of the shift algorithm [9]. The case when159

G has n = 3 vertices is straightforward, and hence we assume that n > 3. The160

construction of Γ is incremental. We start with the drawing of G3 and then161

add the other vertices in the canonical order corresponding to Tvn . Let Γ3 be162

the drawing of G3 on L3, where v1 and v2 are placed on l1 and l3, respectively,163

along a vertical line, and v3 is placed on l2 to the left of edge (v1, v2), e.g., see164

Figure 3(b). We now add the vertices vi, where 3 < i < n, maintaining the165

following invariants:166

(a) Pi is drawn as a strictly y-monotone polygonal chain.167
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(a) (b) (c)

(e)(d) (f)

v2

v3

v3

v4

v5

v4

v1

v2

v3

v3

v4
v5v6

v3

v4

v5v6

v7

v2
v3

v5

v6 v4

v8

v7

v1 v1v1

v1

v2v2

v2

v1

Figure 3: (a) A plane triangulation G with a canonical ordering of its vertices.
(b)–(f) Illustration for drawing Γi.

(b) Γi is a drawing on Lk+2, where k is the number of vertices in v3, . . . , vi168

that are leaves of Tvn .169

(c) The vertices v2 and v1 lie on the topmost and bottommost lines of Lk+2,170

respectively.171

Observe that Γ3 maintains all the above invariants. We now assume that i > 3172

and for all j < i, Γj maintains the above invariants, and consider the insertion173

of vi. Let wp, . . . , wq be the neighbors of vi on Pi−1. If q − p ≥ 2, then vi is a174

non-leaf vertex in Tvn
. In this case we place vi on l(wq−1) and add the edges175

(vi, w), where w ∈ {wp, . . . , wq}. Since Pi−1 is strictly y-monotone, we can176

place vi sufficiently far from wq−1 to the left such that the edges (vi, w) do not177

create any edge crossing, and Pi is strictly y-monotone in Γi. Figures 3(d)–(e)178

illustrate such a scenario. Since the number of leaves in v3, . . . , vi is same as the179

number of leaves in v3, . . . , vi−1, Invariants (a)–(c) hold in Γi.180

In the remaining case, q − p = 1, i.e., vi is a leaf in Tvn . Here we shift181

the vertices wq, . . . , wt(= v2) and their descendants in Tvn above by one unit182

from their current positions. Such a shift does not create edge crossings [9].183

Figures 3(b)–(c),(f) illustrate such a scenario. We then place vi on l(wq) − 1184

sufficiently far to the left such that the edges (vi, wp) and (vi, wq) do not create185

any edge crossing, and Pi is strictly y-monotone in Γi. Since the number of leaves186

in v3, . . . , vi is one more than the number of leaves in v3, . . . , vi−1, Invariants187

(a)–(c) hold in Γi.188

Since Pn−1 is strictly y-monotone in Γn−1, there exists a point c on l1 (sim-189

ilarly, on lp+2) which is visible to all the vertices on Pn−1. We place vn at c,190

and draw the edges incident to it, which completes the drawing of G. �191

Chrobak and Nakano [7] showed that every planar graph admits a straight-192
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line drawing with height 2n/3. We now observe some properties of Chrobak and193

Nakano’s algorithm [7]. Let G be a plane triangulation with n vertices and let194

x, y be two prescribed outer vertices of G in clockwise order on the outer face195

of G. Let Γ be the drawing of G produced by the Algorithm of Chrobak and196

Nakano [7]. Then Γ has the following properties:197

(CN1) Γ is a drawing on Lq, where q ≤ 2n/3.198

(CN2) For the vertices x and y, we have l(x) = l1 and l(y) = lq in Γ. The199

remaining outer vertex z lies on either l1 or lq.200

Note that the placement of z cannot be prescribed to the algorithm, i.e., the201

algorithm may produce a drawing where l(x) = l1, l(y) = lq and l(z) = l1,202

however, this does not imply that there exists another drawing where l(x) =203

l1, l(y) = lq and l(z) = lq. We end this section with the following lemma.204

Lemma 3 Let G be a plane graph and let Γ be a straight-line drawing of G on205

a set Lk of k horizontal lines, where the lines are not necessarily equally spaced.206

Then there exists a straight-line drawing Γ′ of G on a set of k horizontal lines207

that are equally spaced. Furthermore, for every i ∈ {1, 2, . . . , k}, the left to right208

order of the vertices on the ith line in Γ coincides with that of Γ′.209

Proof: A flat visibility drawing of G on Lk maps each vertex of G to a distinct210

horizontal interval on some horizontal line of Lk, and each edge of G to a211

horizontal or vertical line segment between the corresponding intervals. Given212

a straight-line drawing Γ of G on Lk, it is straightforward to transform Γ into213

a flat visibility drawing D on Lk such that for every i ∈ {1, 2, . . . , k}, the left214

to right order of the vertices on the ith line in Γ coincides with that of D, and215

for every vertex v in D, the clockwise ordering of the edges around v coincides216

with the ordering in Γ. One way to construct such a drawing D is to direct the217

edges of Γ from bottom to top, and then draw the directed paths in a depth-first218

search order from left to right. Figures 2(d)–(g) illustrate such a construction.219

In fact, this construction is inspired by the technique for computing visibility220

representation of planar graphs, as described in [27, 1].221

We now adjust the length of the vertical edges so that the layers in D become222

equally spaced. Biedl [2] showed that such a drawing D can be transformed to223

the required straight-line drawing Γ′, where for every i ∈ {1, 2, . . . , k}, the left224

to right order of the vertices on the ith line in D coincides with that of Γ′. �225

In the following sections we describe our drawing algorithms. For simplicity226

we often omit the floor and ceiling functions while defining different parameters227

of the algorithms. One can describe a more careful computation using proper228

floor and ceiling functions, but that does not affect the asymptotic results dis-229

cussed in this paper.230

3 Drawing Triangulations with Small Height231

Every planar triangulation has a simple cycle separator of size O(
√
n) [11]. In232

the preliminary version of this paper [14], we used this result to prove that233
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every n-vertex planar graph with maximum degree ∆ ∈ o(√n) admits a 4-bend234

polyline drawing with height at most 4n/9 + o(n). In this section we use edge235

separator, and prove that every planar graph with ∆ ∈ o(n) can be drawn with236

3 bends per edge and height at most 4n/9 + o(n).237

We first present an overview of our algorithm, and then describe the algo-238

rithmic details.239

3.1 Algorithm Overview240

Let G = (V,E) be an n-vertex planar graph, where n ≥ 9, and let Γ be a planar241

drawing of G on the Euclidean plane. Without loss of generality assume that G242

is a planar triangulation. Let M ⊆ E be an edge separator of G such that the243

corresponding edges in the dual graph G∗ form a simple cycle C∗. Let Vo ⊆ V244

(respectively, Vi ⊆ V ) be the vertices that lie outside (respectively, inside) of245

C∗. Diks et al. [10] proved that there always exists such an edge separator246

M ⊂ E such that |M | ≤ 2
√

2∆n and max{|Vi|, |Vo|} ≤ 2n/3. Figures 4(a)–(b)247

illustrate a planar triangulation G and an edge separator of G. Let Gi = (Vi, Ei)248

and Go = (Vo, Eo) be the subgraphs of G induced by the vertices of Vi and Vo,249

respectively. Since n ≥ 9, each of Gi and Go contains at least 3 vertices.250

Since G is a planar triangulation, there must be an outer vertex q on Gi or251

Go such that q is incident to two or more edges of M . Without loss of generality252

assume that q lies on Gi, e.g., see vertex v5 in Figure 4(c). Let a, b, c be three253

consecutive neighbors of q in G in counter clockwise order such that a ∈ Vi and254

{b, c} ⊆ Vo. We take an embedding G′ of G with q, b, c as the outer face, as255

shown in Figure 4(d) with q = v5, a = v3, b = v2, and c = v11. Consequently,256

Go and Gi lie on the outer face of each other, as illustrated in Figures 4(d)–(e).257

We first draw Go and Gi separately with small height, and then merge these258

drawings to compute the final output. The drawings of Go and Gi are placed259

side by side. Consequently, the height of the final output can be expressed in260

terms of the maximum height of the drawings of Go and Gi, and hence the area261

of the final drawing becomes small.262

3.2 Algorithm Details263

Let G′ be the embedding obtained from G by choosing q, b, c as the outer face.264

We first construct a graph G′o from Go by adding a vertex wo on the outer face265

of Go, and making wo adjacent to all the outer vertices of Go such that the266

edge (b, c) remains as an outer edge. We remove any resulting multi-edges by267

subdividing each corresponding inner edge with a dummy vertex, and then by268

triangulating the resulting graph. Note that we do not need to add dummy269

vertices on the outer edges. Figure 5(a) illustrates an example of G′o, where the270

dummy vertex d removes the multi-edges between v7 and wo. Since there are271

O(
√

∆n) edges in M , the number of vertices in G′o is at most 2n/3 +O(
√

∆n).272

We now use the algorithm of Chrobak and Nakano [7] to compute a straight-273

line drawing Γo of G′o with height x = 4n/9 + O(
√

∆n), where b, c lie on l1, lx274
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Figure 4: (a) A planar triangulation. (b) An edge separator M of G, and the
corresponding simple cycle in the dual graph. The edges of M and C∗ are shown
in thin and thick gray, respectively. (c) Go and Gi are shaded in light-gray and
dark-gray, respectively. (d)–(e) Choosing a suitable embedding G′.

and wo lies on either l1 or lx. Assume without loss of generality that wo is in275

the right half-plane of the line determined by b, c.276

We now construct a graph G′i from Gi, as follows. Observe that the vertex277

a is an outer vertex of Gi, which appears immediately after q while walking on278

the outer face of Gi. We add a vertex wd on the outer face of Gi, and make it279

adjacent to q and a. We now add another vertex wi on the outer face, and make280

it adjacent to wd and q such that the cycle wi, q, wd becomes the boundary of281

the outer face, e.g., see Figure 5(b).282

If wo lies in lx in Γo, then we make wi adjacent to all the outer vertices of283

Gi. Otherwise, we make wd adjacent to all the outer vertices of Gi. We remove284

any resulting multi-edges by subdividing each corresponding inner edge with285

a dummy vertex, and then by triangulating the resulting graph. Figure 5(b)286

illustrates an example of G′i, where d′ is a dummy vertex. Since there are287

O(
√

∆n) edges in M , the number of vertices in G′i is at most 2n/3 +O(
√

∆n).288

We now use the algorithm of Chrobak and Nakano [7] to compute a straight-289

line drawing Γi of G′i with height y = 4n/9 + O(
√

∆n) such that wd, wi lie290

on l1, ly, respectively, and the segment wdwi is vertical. Assume without loss291

of generality that all the vertices of G′i are in the right half-plane of the line292

determined by wd, wi.293

To construct a drawing of G′, we merge the drawings of G′o and G′i.294
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Figure 6: Merging Γo and Γi.

Merging the drawings of G′i and G′o: Without loss of generality assume295

that l(wo) = lx in Γo, and recall that in this case wo and wi are adjacent to all296

the outer vertices of Go and Gi, respectively. Let `i be a vertical line to the right297

of segment wdwi in Γi such that all the other vertices of Γi are in the right half-298

plane of `i. Furthermore, `i must be close enough such that all the intersection299

points with the edges incident to wi lie in between the horizontal line l(wi)300

and the horizontal line immediately below l(wi). For each intersection point,301

we insert a division vertex at that point and create a horizontal line through302

that vertex. We then delete vertex wi from Γi, but not the division vertices.303

Figures 6(c)–(d) illustrate this scenario. By Lemma 3, we can modify Γi such304

that the horizontal lines are equally spaced. Since |M | ∈ O(
√

∆n), Γi is a305

drawing on at most y + O(
√

∆n) horizontal lines. Similarly, we modify Γo, as306

follows.307
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Let `o be a vertical line to the left of wo in Γo such that all the other vertices308

of Γo are in the left half-plane of `o. Furthermore, `o must be close enough309

such that all the intersection points with the edges incident to wo lie in between310

l(wo) and l(wo)− 1. For each intersection point, we insert a division vertex at311

that point and create a horizontal line through that vertex. Delete vertex wo,312

but not the division vertices. Finally, by Lemma 3, we can modify Γo such that313

the horizontal lines are equally spaced. Note that Γo is a drawing on at most314

x+O(
√

∆n) horizontal lines. Figures 6(a)–(b) illustrate this scenario.315

Since the division vertices in Γi and Γo take a set of consecutive horizontal316

lines from their respective topmost lines, it is straightforward to merge these two317

drawings on a set of max{x, y}+ O(
√

∆n) = 4n/9 + O(
√

∆n) horizontal lines.318

Let the resulting drawing be D. Figure 6(e) shows a schematic representation of319

D. Since the division vertices correspond to the bends, each edge may contain at320

most four bends (one bend inside Γo, one bend inside Γi, and two bends to merge321

the drawings Γi and Γo). Since there are at most O(
√

∆n) edges that may have322

bends, the number of bends is at most O(
√

∆n) in total. Note that for every323

edge containing four bends, two of the bends correspond to wo and wi, and they324

are adjacent one the same horizontal line in the final drawing. Therefore, we can325

now transform D into a flat-visibility drawing, where the adjacent pair of bends326

correspond to a single vertex, and then transform the flat-visibility drawing back327

into a polyline drawing (similar to the proof of Lemma 3), where the bends that328

correspond to wo and wi are merged to a single bend. Consequently, the number329

of bends per edge reduces to 3. The following theorem summarizes the result of330

this section.331

Theorem 1 Let G be an n-vertex planar graph. If G contains a simple cycle332

separator of size λ, then G admits a 3-bend polyline drawing with height 4n/9 +333

O(λ) and at most O(λ) bends in total.334

Since every planar triangulation with maximum degree ∆ has an edge separator335

of size O(
√

∆n) [10], we obtain the following corollary.336

Corollary 1 Every n-vertex planar triangulation with maximum degree o(n)337

admits a polyline drawing with height at most 4n/9 + o(n).338

Pach and Tóth [23] showed that polyline drawings can be transformed into339

straight-line drawings while preserving the height if the polyline drawing is340

monotone, i.e., if every edge in the polyline drawing is drawn as a y-monotone341

curve. Unfortunately, our algorithm does not necessarily produce monotone342

drawings.343

4 Drawing Planar 3-Trees with Small Height344

In this section we examine straight-line drawings of planar 3-trees. We first345

introduce a few more definitions and recall some known results. Afterwards, we346

describe the algorithm details.347
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lk
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e
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Figure 7: (a)–(b) Illustrating Reshape. (c) Illustrating Stretch.

4.1 Technical Background348

Let G be an n-vertex planar 3-tree and let Γ be a straight-line drawing of G.349

Then Γ can be constructed by starting with a triangle, which corresponds to the350

outer face of Γ, and then iteratively inserting the other vertices into the inner351

faces and triangulating the resulting graph. Let a, b, c be the outer vertices of352

Γ in clockwise order. If n > 3, then Γ has a unique vertex p that is incident to353

all the outer vertices. This vertex p is called the representative vertex of G.354

For any cycle i, j, k in G, let Gijk be the subgraph induced by the vertices355

i, j, k and the vertices lying inside the cycle. Let G∗ijk be the number of vertices356

in Gijk. The following two lemmas describe some known results.357

Lemma 4 (Mondal et al. [22]) Let G be a plane 3-tree and let i, j, k be a358

cycle of three vertices in G. Then Gijk is a plane 3-tree.359

Lemma 5 (Hossain et al. [18]) Let G be an n-vertex plane 3-tree with the360

outer vertices a, b, c in clockwise order. Let D be a drawing of the outer cy-361

cle a, b, c on Ln, where the vertices lie on l1, lk and li with k ≤ n and i ∈362

{l1, l2, ln, ln−1}. Then G admits a straight-line drawing Γ on Lk, where the363

outer cycle of Γ coincides with D.364

Let G be a plane 3-tree and let a, b, c be the outer vertices of G. Assume365

that G has a drawing Γ on Lk, where a, b lie on lines l1, lk, respectively, and c366

lies on line li, where 1 ≤ i ≤ k. Then the following properties hold for Γ [18].367

Reshape. Let p, q and r be three distinct non-collinear points on lines l1, lk368

and li, respectively. Then G has a drawing Γ′ on Lk such that the outer369

face of Γ′ coincides with triangle pqr (e.g., Figures 7(a)–(b)).370

Stretch. For any integer t ≥ k, G admits a drawing Γ′ on Lt such that a, b, c371

lie on l1, lt, li, respectively (e.g., Figure 7(c)).372

For any triangulation H with the outer vertices a, b, c, let Ta,H , Tb,H , Tc,H373

be the Schnyder trees rooted at a, b, c, respectively. By leaf(T ) we denote the374

number of leaves in T . The following lemma establishes a sufficient condition for375

a plane 3-treeG to have a straight-line drawing with height at most 4(n+3)/9+4.376



12 Durocher and Mondal Drawing Planar Graphs with Reduced Height

b

a

w1 w2(= p) w3(= q) wt(= c)

≤ n′
2

≤ n′
2

≤ 4n′
9

≤ 4n′
9

≤ (n′+2)
3

Figure 8: Illustration for Lemma 6, where the graph Gabp is in shaded region.

Lemma 6 Let G be an n-vertex plane 3-tree with outer vertices a, b, c in clock-377

wise order. Let w1, . . . , wk(= p), wk+1(= q), . . . , wt(= c) be the maximal path P378

such that each vertex on P is adjacent to both a and b (e.g., see Figure 8). As-379

sume that n′ = n+ 3, and x = 4n′/9. If G∗apq ≤ (n′+ 2)/3, G∗bpq ≤ G∗abp ≤ n′/2380

and max∀i>k+1{G∗awiwi−1
, G∗bwiwi−1

} ≤ 4n′/9, then G admits a drawing with381

height at most 4n′/9 + 4.382

Proof: To construct the required drawing of G, we distinguish two cases de-383

pending on whether leaf(Tp,Gabp
) ≤ x or not. Let H be the subgraph of G384

induced by the vertices {a, b} ∪ {wk, . . . , wt}. In each case, we first construct385

a drawing of H on Lx+4, and then extend it to compute the required drawing386

using Lemmas 2–5.387

Case 1 (leaf(Tp,Gabp) ≤ x). Since G∗bqp≤n′/2, by Lemma 1, one of the trees388

in the Schnyder realizer of Gbqp has at most n′/3 ≤ x leaves. We now draw389

Gabq considering the following scenarios.390

Case 1A (leaf(Tp,Gbqp) ≤ x). We refer the reader to Figures 9(a)–(b).391

By Lemma 2 and the Stretch condition, Gabp admits a drawing Γabp on392

Lx+2 such that the vertices a, b, p lie on l1, lx+2, lx+2, respectively. Sim-393

ilarly, since leaf(Tp,Gbqp
) ≤ x, by Lemma 2 Gbqp admits a drawing Γbpq394

on Lx+2 such that the vertices q, b, p lie on l1, lx+2, lx+2, respectively, as395

shown in Figure 9(a). By the Stretch property, Γabp can be extended to a396

drawing Γ′abp on Lx+3, where a, b, p lie on l1, lx+3, lx+2, respectively. Sim-397

ilarly, Γbqp can be extended to a drawing Γ′bqp on Lx+3, where q, b, p lie398

on l1, lx+3, lx+2, respectively. Since G∗apq ≤ (n′ + 2)/3, by Lemma 5 and399

the Stretch condition, Gapq admits a drawing Γapq on L(n′+2)/3. Finally,400

by the Stretch property Γapq can be extended to a drawing Γ′apq on Lx+2401

such that a, p, q lie on l1, lx+2, l1, respectively, and by the Reshape prop-402

erty we can merge these drawings to obtain a drawing of Gabq on Lx+3.403

Figure 9(b) depicts an illustration.404

Case 1B (leaf(Tq,Gbqp) ≤ x). We refer the reader to Figures 9(a)–(b).405

By Lemma 2 and the Stretch condition, Gabp admits a drawing Γabp on406
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a

Figure 9: (a)–(b) Illustration for Case 1A. (c)–(d) Illustration for Case 1B.

Lx+2 such that the vertices a, b, p lie on l1, lx+2, l1, respectively. Similarly,407

Gbqp admits a drawing Γbpq on Lx+2 such that the vertices p, b, q lie on408

l1, lx+2, lx+2, respectively. By Lemma 5, Gapq admits a drawing Γapq on409

L(n′+2)/3 such that a, p, q lie on l1, l1, l(n′+2)/3, respectively. By Stretch,410

we modify Γapq such that a, p, q lie on l1, l1, lx+2, respectively. Finally, by411

Stretch and Reshape we can merge these drawings to obtain a drawing of412

Gabq on Lx+3. Figures 9(c)–(d) show an illustration.413

Case 1C (leaf(Tb,Gbqp) ≤ x). The drawing of this case is similar to Case414

1B. The only difference is that we use Tb,Gbqp
while drawing Gbqp.415

Observe that each of the Cases 1A–1C produces a drawing of Gabq such that a, b416

lie on l1, lx+3, respectively, and q lies on either l1 or lx+3. We use the Stretch417

operation to modify the drawing such that a, b lie on l1, lx+4, respectively, and418

q lies on either l2 or lx+3. Specifically, if q is on lx+3, then we push b to ll+4.419

Otherwise, q is on l1, and in this case we push a to l0, and then shift the drawing420

up by one layer to move a back to l1.421

If q lies on lx+3, then we place the vertices wk+1, . . . , wt(= c) on l2 and lx+3422

alternatively, as shown in Figure 10(a). Similarly, if q lies on l2, then we draw423

the path wk+1, . . . , wt(= c) in a zigzag fashion, placing the vertices on lx+3424

and l2 alternatively such that each vertex is visible to both a and b. For each425

i > k + 1, Lemma 4 ensures that the graphs Gawiwi−1
and Gbwiwi−1

are plane426

3-trees. Since max∀i>k+1{G∗awiwi−1
, G∗bwiwi−1

} ≤ x, we can draw Gawiwi−1
and427

Gbwiwi−1 using Lemma 5 inside their corresponding triangles.428

Case 2 (leaf(Tp,Gabp) > x). Since G∗abp≤n′/2, by Lemma 1, leaf(Ta,Gabp
) +429

leaf(Tb,Gabp
) ≤ n′ − leaf(Tp,Gabp

) ≤ 5n′/9. Hence we draw Gabq considering430

the following scenarios.431

Case 2A (leaf(Ta,Gabp) ≤ x and leaf(Tb,Gabp) ≤ x). We refer the reader432

to Figures 10(b)–(c). Since G∗bqp≤n′/2, by Lemma 1, one of the trees in433

the Schnyder realizer of Gbqp has at most n′/3 ≤ x leaves.434

If leaf(Tp,Gbpq
) ≤ x, then we draw Gabq on Lx+3, where a, b, p, q lie435

on l1, lx+3, lx+2, l1, respectively, as in Figure 10(b). Specifically, since436

leaf(Tb,Gabp
and leaf(Tp,Gbpq

) both are at most x, we use Lemma 2 to437
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Figure 10: (a) Illustrating Case 1. (b)–(c) Illustrating Case 2A. (d)–(e) Case
2B.

draw Gabp and Gabp. Since G∗apq ≤ (n′ + 2)/3, we can draw Gapq using438

Lemma 5. Finally, we use Stretch and Reshape to merge these drawings.439

If leaf(Tp,Gbpq
) > x, then either leaf(Tb,Gbpq

) ≤ x or leaf(Tq,Gbpq
) ≤ x.440

In this case we draw Gabq on Lx+3, where a, b, p, q lie on l1, lx+3, l2, lx+3,441

respectively, as in Figure 10(c). Specifically, we use Lemma 2 to draw442

Gbpq. Since leaf(Ta,Gabp
) ≤ x, we use Lemma 2 to draw Gabp, and since443

G∗apq ≤ (n′ + 2)/3, we draw Gapq using Lemma 5. Finally, we use Stretch444

and Reshape to merge these drawings.445

Case 2B (leaf(Ta,Gabp) > x and leaf(Tb,Gabp) ≤ n′/9). If leaf(Tp,Gbpq
) ≤446

n′/3, then we first draw Gbpq using Lemma 2 such that b, p, q lie on ln′/3+2,447

ln′/3+2, l1, respectively, and then use the Stretch condition to shift b to448

lx+3. By Lemma 2 and the Stretch condition, there exists a drawing449

of Gabp on Lx+3 with a, b, p lying on l1, lx+3, ln′/3+2, respectively. Since450

G∗apq ≤ (n′ + 2)/3, we can draw Gapq using Lemma 5 inside triangle apq.451

Figure 10(d) illustrates the scenario after applying Stretch and Reshape.452

If leaf(Tp,Gbpq
) > n′/3, then by Lemma 1 either leaf(Tb,Gbpq

) ≤ n′/3 −453

2 or leaf(Tq,Gbpq
) ≤ n′/3 − 2. Hence we can use Lemma 2 and the454

Stretch condition to draw Gbpq such that b, p, q lie on lx+3, ln′/9+2, lx+3,455

respectively. On the other hand, we use Lemma 2 to draw Gabp such456

that a, b, p lie on l1, ln′/9+2, ln′/9+2, respectively, and then use the Stretch457

condition to move b to lx+3. Since G∗apq ≤ (n′ + 2)/3, we can draw Gapq458

using Lemma 5 inside triangle apq. Figure 10(e) illustrates the scenario459

after applying Stretch and Reshape.460

Case 2C (leaf(Ta,Gabp) ≤ n′/9 and leaf(Tb,Gabp) > x). The drawing461

in this case is analogous to Case 2B. The only difference is that we use462

Ta,Gabp
while drawing Gabp.463
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Each of the Cases 2A–2C produces a drawing of Gabq such that a, b lies on464

l1, lx+3, respectively, and q lies on either l1 or lx+3. Hence we can extend these465

drawings to draw G as in Case 1. �466

4.2 Drawing Algorithm467

We are now ready to describe our algorithm.468

4.2.1 Decomposition.469

Let G be an n-vertex plane 3-tree with the outer vertices a, b, c and the repre-470

sentative vertex p. A tree spanning the inner vertices of G is called the repre-471

sentative tree T if it satisfies the following conditions [22]:472

(a) If n = 3, then T is empty.473

(b) If n = 4, then T consists of a single vertex.474

(c) If n > 4, then the root p of T is the representative vertex of G and the475

subtrees rooted at the three clockwise ordered children p1, p2 and p3 of p476

in T are the representative trees of Gabp, Gbcp and Gcap, respectively.477

Recall that every r-vertex tree T ′ has a vertex v′ such that the connected478

components of T ′ \ v′ are all of size at most r/2 [19]. Such a vertex v in T479

corresponds to a decomposition of G into four smaller plane 3-trees G1, G2, G3,480

and G4, as follows.481

- The plane 3-tree Gi, where 1 ≤ i ≤ 3, is determined by the representative482

tree rooted at the ith child of v, and thus contains at most r/2 + 3 =483

(n− 3)/2 + 3 = (n+ 3)/2 vertices.484

- The plane 3-tree G4 is obtained by deleting v and the vertices from G that485

are descendent of v in T , and contains at most (n+ 3)/2 vertices.486

4.2.2 Drawing Technique.487

Without loss generality assume that G∗3 ≤ G∗2 ≤ G∗1. If G1 is incident to the488

outer face of G, then let (a, b) be the corresponding outer edge. Otherwise, G1489

does not have any edge incident to the outer face of G. In this case there exists490

an inner face f in G that is incident to G1, but does not belong to G1. We491

choose f as the outer face of G, and now we have an edge (a, b) of G1 that is492

incident to the outer face of G. Let P=(w1, . . . , wk(= p), wk+1(= q), . . . , wt)493

be the maximal path in G such that each vertex on P is adjacent to both494

a and b, where {a, b, p}, {a, p, q}, {b, q, p} are the outer vertices of G1, G2, G3,495

respectively, e.g., see Figure 11. Assume that n′ = n + 3 and x = 4n′/9. We496

draw G on Lx+4 by distinguishing two cases depending on whether G∗4 > x or497

not.498

Case 1 (G∗4 > x). Recall that G∗2 ≤ G∗1 ≤ n′/2. Since G∗3 + G∗2 +499

G∗1 ≤ G∗ − G∗4 + 9 ≤ n′ + 6 − 4n′/9, we have G∗3 ≤ 5n′/27 + 2 ≤ n′/3 for500
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b
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wk+1(= q) wtwk(= p)
G1

G3

G2

Figure 11: Illustration for G1, G2, G3 and G4.

sufficiently large values of n. If max∀i>k+1{G∗awiwi−1
, G∗bwiwi−1

} ≤ x holds,501

then G admits a drawing on Lx+4 by Lemma 6. We may thus assume that502

there exists some j > k + 1 such that either G∗awjwj−1
> x or G∗bwjwj−1

> x.503

Hence max∀i>k+1,i6=j{G∗awiwi−1
, G∗bwiwi−1

} ≤ n′/9.504

We first show that Gabq can be drawn on Lx+3 in two ways: One drawing Γ1505

contains the vertices a, b, q on l1, lx+3, l2, respectively, and the other drawing Γ2506

contains a, b, q on l1, lx+3, lx+2, respectively. We then extend these drawings to507

obtain the required drawing of G. Consider the following scenarios depending508

on whether G∗1 ≤ x or not.509

- If G∗1 ≤ x, then G∗3 ≤ G∗2 ≤ G∗1 ≤ x. Here we draw the subgraph510

G′ induced by the vertices a, b, p, q such that they lie on l1, lx+3, lx+2, l2,511

respectively. Since G∗3 ≤ G∗2 ≤ G∗1 ≤ x, by Lemma 5, G1, G2 and G3512

can be drawn inside their corresponding triangles, which corresponds to513

Γ1. Similarly, we can find another drawing Γ2 of Gabq, where the vertices514

a, b, p, q lie on l1, lx+3, l2, lx+2, respectively.515

- If G∗1 > x, then G∗3 ≤ G∗2 ≤ n′/9. Since G∗1 < n′/2, we can use Chrobak516

and Nakano’s algorithm [7] and Stretch operation to draw G1 such that517

that a, b lie on l1, ln′/3+1, respectively, and p lies either on l2 or ln′/3. First518

consider the case when p lies on ln′/3. We then use the Stretch condition519

to push b to lx+3. To construct Γ1, we place q on l2, and to construct Γ2,520

we place q on lx+2. Since G∗3 ≤ G∗2 ≤ n′/9, for each placement of q, we521

can draw G2 and G3 using Lemma 5 inside their corresponding triangles.522

The case when p lies on l2 is handled symmetrically, i.e., first by pushing523

a downward using Stretch operation so that the drawing spans (x + 3)524

horizontal lines, then shifting the drawing upward such that a comes back525

to l1, and finally placing the vertex q on l2 (for Γ1) and lx+2 (for Γ2) .526

We now show how to extend the drawing of Gabq to compute the drawing of G.527

Consider two scenarios depending on whether G∗awjwj−1
> x or G∗bwjwj−1

> x.528

- Assume thatG∗awjwj−1
> x. Shift b to lx+4, and draw the path wk+1, . . . , wj−1529

in a zigzag fashion, placing the vertices on l2 and lx+3 alternatively, such530
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that l(wk+1) 6= l(wk+2), and each vertex is visible to both a and b. Choose531

Γ1 or Γ2 such that the edge (a,wj−1) spans at least x + 3 lines. We532

now draw Gawjwj−1
using Chrobak and Nakano’s algorithm [7]. Since533

x < G∗awjwj−1
≤ n′/2, we can draw Gawjwj−1

on at most n′/3 parallel534

lines. By the Stretch and Reshape conditions, we merge this drawing with535

the current drawing such that wj lies on either lx+3 or ln′/9+2. Since536

G∗bwjwj−1
≤ n′/9, we can draw Gbwjwj−1 inside its corresponding triangle537

using Lemma 5. Since max∀i>j{G∗awiwi−1
, G∗bwiwi−1

} ≤ n′/9, it is straight-538

forward to extend the current drawing to a drawing of G on x+ 4 parallel539

lines by continuing the path wj , . . . , wt in the zigzag fashion.540

- Assume that G∗bwjwj−1
> x. The drawing in this case is similar to the case541

when G∗awjwj−1
> x. The only difference is that while drawing the path542

wk+1, . . . , wj−1, we choose Γ1 or Γ2 such that the edge (b, wj−1) spans at543

least x+ 3 lines.544

Case 2 (G∗4 ≤ x). Observe that G∗2 ≤ G∗1 ≤ n′/2. We now show that545

G∗3+G∗2+G∗1 can be at most n−5 in the worst case. If G∗4 = 0, then G1, G2 and546

G3 spans the graph G. Let I1, I2 and I3 be the inner vertices of G1, G2 and G3,547

respectively. Then G∗3+G∗2+G∗1 = (I1+I2+I3)+9 = (n−4)+9 = n+5 = n′+2.548

Since G∗3 ≤ G∗2 ≤ G∗1, we have G∗3 ≤ (n′ + 2)/3. Hence G admits a drawing549

on Lx+4 by Lemma 6.550

The following theorem summarizes the result of this section.551

Theorem 2 Every n-vertex planar 3-tree admits a straight-line drawing with552

height 4(n+ 3)/9 + 4 = 4n/9 +O(1).553

5 Conclusion554

In this paper we have shown that every n-vertex planar graph with maximum555

degree ∆, having an edge separator of size λ, admits a polyline drawing with556

height 4n/9 +O(λ), which is 4n/9 + o(n) for any planar graph with ∆ ∈ o(n).557

While restricted to n-vertex planar 3-trees, we compute straight-line drawings558

with height at most 4n/9 +O(1). In some cases the width of the drawings that559

we compute for plane 3-trees may be exponentially large over n. Hence it would560

be interesting to find drawing algorithms that can produce drawings with the561

same height as ours, but bound the width as a polynomial function of n.562

Several natural open question follows.563

- Does every n-vertex planar triangulation admit a straight-line drawing564

with height at most 4n/9 +O(1)?565

- What is the minimum constant c such that every n-vertex planar 3-tree566

admits a straight-line (or polyline) drawing with height at most cn?567

- Does a lower bound on the height for straight-line drawings of triangula-568

tions determine a lower bound also for their polyline drawings?569
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Recently, Biedl [2] has examined height-preserving transformations of planar570

graph drawings, which shed some light on the last open question.571
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