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1. Introduction

Multivariate data is ubiquitous in modern statistics. To analyze and understand these datasets, it is
essential to extend univariate tools to the multivariate setting. Among many other applications, data depth
extends the concept of rank to the multivariate setting. Measures of data depth provide a center-outward
ordering of points in any dimension. Many definitions of data depth have been proposed, based on a wide
variety of concepts such as half-spaces [26], random simplices [11], zonoid regions [21], points represented
as curves [19], and many more [1, 5, 23, 30]. Many of these depth measures have complex definitions that
are not intuitive or can be difficult (or impossible) to compute precisely in high dimensions [23], often
requiring optimization. On the other hand, defining depth measures through integration makes them easily
approximable in high dimensions, via Monte Carlo techniques.

In 2009, Cuevas and Fraiman [3] introduced an integrated depth measure called integrated dual depth,
or ID depth for short. ID depth can be used as a measure of depth for random elements in any Banach
space with a separable dual. In this paper, we focus on random elements from distributions over Rd. We
integrate with respect to the Haar measure, following traditional projection pursuit methods [3]. Lastly,
we normalize the depth to the interval [0, 1]. This allows ID depth to be interpreted as a point’s average
univariate simplicial depth over all directions.

Definition 1 (Cuevas and Fraiman, 2009, [3]).
Let X ∼ F be a distribution over Rd, Fu(y) = Pr(X · u ≤ y · u) and S d−1 be the (d − 1)-dimensional unit
hypersphere. Additionally, let Ds(y · u; Fu) = Fu(y · u)(1 − Fu(y · u)), the univariate simplicial depth of y in a
direction u. The integrated dual depth (ID depth) of a point y ∈ Rd with respect to F is

DID(y; F) =
4

Vd

∫
S d−1

Ds(y · u; Fu) du. (1)

Cuevas and Fraiman [3] suggest the possibility of generalizing (1) to the alternate integrated depth measure
based on univariate Tukey depth

DT (y · u; Fu) = min(Fu(y · u), 1 − Fu(y · u−)).

We call this depth integrated-rank weighted depth, because the univariate depth DT can be expressed as
normalized center-outward ranks.

Definition 2.
Let Vd =

∫
S d−1 1 du. The integrated rank-weighted depth (IRW depth), DIRW(y; F), of point y ∈ Rd with

respect to a distribution F, is

DIRW(y; F) =
2

Vd

∫
S d−1

DT (y · u; Fu) du

=
1

Vd

∫
S d−1

1 − Fu(y · u) + Fu(y · u−) − |1 − Fu(y · u) − Fu(y · u−)| du.

Both IRW and ID depth admit sample versions, where F is simply replaced with Fn, the empirical distribution
function of a sample. Cuevas and Fraiman [3] mention that when F is continuous, the contours of the two
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depths admit the same level sets, including the deepest point or region. They do not compare the two
definitions beyond this statement. In this paper we investigate the properties of IRW depth. The aim
is to identify similarities and differences between the two depth measures to ascertain whether using the
integrated method with different univariate depth measures adds anything new. For example, multivariate
Tukey depth is decreasing along rays, which is an important property for a depth measure [30], however,
multivariate simplicial depth does not have this property [30]. The motivation is that, by using univariate
Tukey depth, IRW depth may also have this property. Furthermore, we aim to extend and further study
the properties of these two depth measures.

We demonstrate that many of the properties of the ID depth measure are shared with IRW depth,
including invariance under similarity transformations, maximality at centre, vanishing at infinity, continuity
under continuous distributions, consistency and asymptotic normality. It should be noted that many of
these properties, such as asymptotic normality, cannot be shown using the proof techniques of Cuevas and
Fraiman [3], making this non-trivial. We derive the asymptotic distribution of the sample IRW depth of
the deepest point under half-space symmetry. We show that it converges to the integral of a folded normal
process. We provide a result on the breakdown point of both the IRW and ID medians. We show that
IRW and ID depth are decreasing along rays under half-space symmetric distributions. We also show that
both depths are continuous under discrete and mixed distributions, except at atoms of the distribution.
We further provide a weighted average representation of the two depth measures and consequentially, an
algorithm for exact computation.

We conclude that the depths are similar in terms of properties and computation. Furthermore, we find
that when studying further properties of the ID medians, it is useful to look at both the ID and IRW
definitions. In other words, the use of DT can allow for easier proofs of some properties. This may be useful
for studying the influence function of these depth measures and their associated location estimators. In
fact, it may be useful to provide some general properties that apply to all integrated versions of a class of
univariate depth measures. The paper proceeds as follows:

In Section 2 we show that sample IRW and ID depths can be represented as a weighted average of a
finite set of univariate ranks. This naturally leads to an algorithm for exact computation of IRW depth in
any dimension, and consequentially, any function of univariate projected cumulative distribution functions,
including ID depth. We discuss the approximation algorithm for high dimensions from [3]. Next, along
with ID depth, IRW depth is also compared with other depth measures and can be described as a smoothed
version of Tukey depth. We show that like ID depth, IRW depth satisfies most of the properties for depth
measures described by Zuo and Serfling [30]. Again, like ID depth, the sample depth produced by this depth
measure is shown to be universally strongly consistent and uniformly weakly consistent using the results of
Nagy et al. [22] and, under mild conditions, asymptotically normal.

Section 3 discusses the deepest point, the maximizer of IRW depth, as a location estimator. Under
continuous distributions, this maximizer is equivalent to the maximizer of ID depth [3]. We show this
estimator is strongly consistent and relate it to the Tukey median. Using this relation, we obtain a lower
bound on the depth of the deepest point for both the ID and IRW medians. We also bound the finite sample
and asymptotic breakdown point of the IRW and ID medians below by the respective breakdown points of
the Tukey median. We also mention a related in-sample location estimator that is easier to compute when
d is very large.

In Section 4, we illustrate a potential use of IRW depth (and ID depth) in dd-plots, which are used
to assess distribution differences between two samples in any dimension [10, 12]. We produce and analyze
dd-plots for real and simulated data sets; the real data sets include the famous iris data [2, 8], as well as a
very high dimensional (d = 6033) data set obtained from male patients with and without prostate cancer
[27].

Section 5 gives a brief conclusion and some ideas for future study.

2. Integrated Rank-Weighted Depth

We start by showing that in discrete set-ups, we can represent IRW depth as a weighted average of a
finite set of univariate ranks. First, note that two points have the same projection if and only if they are
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Figure 1: (a) Division of plane into sections where the red point’s univariate depth remains the same. Its univariate rank is
labeled in each section (b) Division of the unit sphere into sections where the permutations of points remain the same.

projected onto a unit vector perpendicular to the line passing through the two points. For example, consider
a point y and some data set Xn both from R2. Then, y and a point Xi ∈ Xn have the same projection if
and only if they are projected onto a unit vector parallel to their bisector. Let us refer to these unit vectors
by their polar angle, θi. If there are n∗ ≤ n unique points in Xn, then an arbitrary point, y ∈ R2 (the query
point), has n∗ different bisectors; one for each point in the set. For each bisector, there are two unit vectors
that are parallel to it, and so the plane is thus divided into 2n∗ sections where a point’s univariate depth
remains the same. However, by symmetry of projections onto u and −u, we only need to consider n∗ sections
when determining the depth of y. This implies that y’s univariate depth is constant over unit vectors in
each of these sections. Figure 1a shows a partition of the plane determined by the red point’s projections
relative to the point set. We can rewrite IRW depth (in R2) as follows.

DIRW(y; Fn) = 2
n∗∑

i=1

wiDT (Fui , y · ui),

with

wi =
(θ(i) − θ(i−1))

π
,

and where ui ∈ (θ(i), θ(i−1)), and θ(i) is the ith ordered angle with θ(0) = θ(n∗) − π.
Computing the depth of a point y, with respect to some point set Xn, is done by calculating the n∗

bisectors between y and each unique point of Xn. We can then compute the n∗ unit vectors through each
of these bisectors. The vectors are then converted to spherical coordinates and we calculate and sort the n∗

angles θi that make up the subdivision of the plane. We then simply calculate the univariate depths in each
section, along with normalizing the differences in sorted angles to use as weights. The time is dominated by
the sorting process, thus taking O(n log n) time.

This weighted average representation and and the associated algorithm extend directly to Rd. The
expression for wi is simply modified to represent a region on the unit hypersphere, rather than an interval
of angles. Furthermore, the number of regions is ( n∗

d−1 ) if there are n∗ unique points in the data set. Two
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points have the same projection when the unit vector is contained in the hyperplane (containing the origin)
to which the line through those two points is normal. Thus, for a query point y, we have n∗ hyperplanes that
divide the hypersphere into sections; see Figure 1b. We can calculate the vertices that make up this division
of the unit hypersphere in O(nd−1) time and it remains to order them as is done in R2, resulting in a running
time of O((d − 1)nd−1 log n). In fact, any function of the projected univariate CDFs including ID depth can
be computed in this manner by simply exchanging DT with another function of projected univariate CDFs
such as ID depth.

A compelling feature of IRW depth is that computationally, in contrast to many other depth measures, it
does not require solving an optimization problem. Rather, it requires computing an average. This provides
a very straightforward Monte Carlo approximation algorithm for computing the depth of a point when d
is very large. We can sample many, say m, unit vectors uniformly over S d−1, calculate a point’s univariate
sample depth for each vector and take an average of the univariate depths. This estimate can be computed
in O(mnd) time. The law of large numbers guarantees this algorithm does indeed converge to the exact value
of the depth being estimated as m tends to infinity. This is the same algorithm described by Durocher et al.
[6] and by Cuevas and Fraiman [3].

2.1. Representation as a functional depth measure and resulting properties of IRW depth
A recent paper by Nagy et al. [22] derives various properties of a class of depth measures for functional

data, that is, functionals that measure the centrality of a given function, say f (t) : Rd → Rk, from a given
set of functions. They restrict attention to continuous functions that are defined on a compact set T ⊂ Rd.
This class of depth measures involves integrating a k-dimensional depth, say D, over T :∫

T
D( f (t); Pt) dλ(t), (2)

where Pt is a probability measure on Rk that depends on t and λ is a measure over Rd. IRW depth
can be represented in this manner: map the point of interest y ∈ Rd to a function which, with a slight
abuse of notation, we will call y(t) = y · t, t ∈ S d−1. Now let λ be the Haar measure in Rd, T = S d−1,
D = DT and Pt = Ft in (2). We note it is also possible to represent this depth in terms of the Lebesgue
measure, which is useful for technical reasons. Our functional observations in this set up come from a
subset of the general class of continuous functions on T , C(T ) considered by Nagy et al. [22]. This subset is
A = { f (t) = a⊤t : a ∈ Rd, t ∈ S d−1}, which is the set of projection functions. (Nagy et al. actually consider
observations that are vectors of functions, but we will omit that for simplicity.) The restriction to A makes
some of the properties considered by Nagy et al. [22] not applicable in this scenario. We can say loosely
that the results of Nagy et al. [22] are relevant when operations on the projection functions are equivalent to
interesting operations on the points themselves. For example, scaling the projection functions is equivalent to
scaling the points. We list the results from Nagy et al. [22] through these types of operational equivalencies.
The implications of these properties are discussed in Section 2.2.

Theorem 1.
Let P(Rd) be the set of probability measures on Rd and for a given probability measure Q, let FQ be its
distribution function. IRW depth satisfies the following properties

1. (Strong Universal Consistency) For each ϵ > 0 and Q ∈ P(Rd),

sup
x∈Rd

∣∣∣DIRW(x; FQ
n ) − DIRW(x; FQ)

∣∣∣ a.s.−→ 0 as n→ ∞,

where a.s.−→ denotes almost sure convergence.

2. (Weak Uniform Consistency) For each ϵ > 0

sup
Q∈P(Rd)

Pr
(
sup
x∈Rd

∣∣∣DIRW(x; FQ
n ) − DIRW(x; FQ)

∣∣∣ > ϵ)→ 0 as n→ ∞.
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3. (Weak Continuity as a Function of Q) Let Q ∈ P(Rd) satisfying Q(L) = 0 for all hyperplanes L ⊂ Rd.
Then, for all Qν → Q as ν→ ∞

sup
x∈Rd
|DIRW(x; FQ) − DIRW(x; FQν)| → 0 as ν→ ∞.

4. (Similarity Invariance) DIRW(y; F) is invariant under similarity transformations.

Properties 1, 2 and 3 follow from the bijection between A and Rd. Property 4 follows from expressing
IRW depth in terms of the Lebesgue measure in Rd the fact that a similarity transformation of the points
corresponds to a measure-preserving rearrangement of the projection functions. Some properties related to
measurability are satisfied via Theorem 3 and part (ii) of Theorem 12 of [22]. Other properties mentioned
in Appendix A.1 of [22] either do not imply the corresponding properties in the primal setting of the point
set in Rd or the restriction to A makes them not applicable.

2.2. Some Additional Properties
Like ID depth, integrated rank-weighted depth satisfies three of the four properties introduced by Liu [11]

and later studied by Zuo and Serfling [30]: monotonicity with respect to centre, maximality at centre and
vanishing at infinity. However, integrated rank-weighted depth is not affine invariant, it is only invariant
with respect to similarity transformations, which include any combination of rotation, uniform scaling,
translation and reflection. We establish these additional properties that do not follow from [22] and further
investigate continuity and asymptotic properties of the depth measure. We also indicate if the result extends
to ID depth. First, recall a distribution is half-space or H-symmetric about a point, γ when every closed
half-space, H, containing γ, satisfies Pr(X ∈ H) ≥ 1/2 [31].

Theorem 2.
Integrated rank-weighted depth satisfies the following properties:

1. (Maximality at Centre) If F is H-symmetric about γ, then DIRW(y; F) is maximal at γ.

2. (Vanishing at Infinity) Let c > 0, then limc→∞ DIRW(cy; F) = 0.

3. (Decreasing Along Rays) If F is H-symmetric about γ, then

DIRW(y; F) ≤ DIRW(αy + (1 − α)γ; F) ≤ DIRW(γ; F) for α ϵ [0, 1].

The proof of Theorem 2 can be found in Appendix A. Integrated rank-weighted depth is not invariant under
all affine transformations, but it is invariant under similarity transformations. The fact that it is affected by
non-uniform scaling causes axes with larger scales to have greater influence on the depth of a point than ones
with smaller scales. To remove this feature one could scale the data in a robust way, such as scaling each
coordinate by its median absolute deviation. This can be seen below as well as in Example 4. Alternatively,
if there was a sufficient reason, one could use different scales to adjust the influence of certain variables.
One could also apply a transformation to make the depths affine invariant such as described by Serfling [24],
however, it is unclear what properties would be preserved and could be a subject of future study.

Example 1: Iris Data
We use the famous Iris data [2, 8]. This data set contains 150 observations, 50 from each of three species of
flowers, with four different flower features. We will use the Petal Length and Petal Width measurements
from the different Iris species to demonstrate the use of this depth measure throughout this paper. Figure
2a shows the depth contours for the Virginica species raw data. Figure 2b shows the depth contours for
the same data, but with each coordinate scaled by its median average deviation. You can see that, in the
unscaled data, a point’s depth in the X-direction plays a larger role in its overall depth when compared
with the scaled data. Points originally not deep in the X-direction but deep in the Y-direction become
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Figure 2: Example 2.2, (a) Virginica unscaled depth contours. (b) Virginica scaled depth contours.

deeper after scaling and points originally not deep in the Y-direction but deep in the X-direction become
shallower after scaling. Notice also that the deepest regions are less affected by the scaling. This is due
to the fact that very deep points are deep in all directions. Placing an emphasis on certain directions is
then not expected to deep regions very much.

Integrated rank-weighted depth has the most general manifestation of maximality at centre; H-symmetry
is the most general description of symmetry considered when analyzing depth measures [30]. On the topic
of symmetry, we can also note that if the underlying population is antipodal-symmetric about some γ, i.e.,
X − γ d

= γ − X, so is DIRW [11]. We also note that decreasing along rays ensures that DIRW measures depth
or centrality. As we move away from the deepest point, the depth decreases. This property extends to ID
depth as well.

Vanishing at infinity shows that, as a point is pulled to infinity along a ray, its depth approaches
0. It is interesting to note that a point’s univariate depth is based on its rank; it does not provide any
information about the spread of the points or how far the lowest depth is from the remainder of the sample.
However, the average rank over all unit vectors does contain this information, as demonstrated by the
maximality at centre and decreasing along rays properties. We see next that integrated rank-weighted
depth has very good continuity properties with respect to the query point, even for discrete distributions.

θ

Figure 3: Example of discontinuity at the atom of
F. See the text on the left.

The proof can be found in Appendix A.

Proposition 1.
For a given distribution F, integrated rank-weighted and
integrated dual depth are continuous for points (in Rd) that
are not atoms of F.

Note that this theorem does not guarantee IRW and ID
depths are discontinuous at atoms of F, just that it is a
possibility. Figure 3 features three black points which we
can take as a sample whose empirical distribution we will
use to calculate depths. The univariate Tukey depth of any
of the black points in any direction is at least 1/3. However,
as the green (round) point approaches the black point along the y-axis, the proportion of angles for which
it has non-zero univariate depth is approaching θ/π < 1. Thus, the depth function is discontinuous at the
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Figure 4: (a) Birds eye view of density with points at which we calculate depth. (b) Asymptotic density estimates of the sample
depths for the points in Figure (a).

black point. We now establish the asymptotic normality of the sample IRW depths. The proof can also be
found in Appendix A.

Theorem 3.
Let A1 = {u : Fu(y · u) < 1/2}, A2 = {u : Fu(y · u) > 1/2} and A3 = {u : Fu(y · u) = 1/2}. Assume F is
continuous and is such that A3 has Haar measure 0. Then,

√
nDIRW(y; Fn) is asymptotically normal, that is,

as n→ ∞: √
n(DIRW(y; Fn) − DIRW(y; F))

d−→ N(0, σ2(y)),

where d→ denotes convergence in distribution and

σ2(y) =
(
2

Vd

)2  ∫
A1

∫
A1

Pr(X · u1 ≤ y · u1, X · u2 ≤ y · u2) − Pr(X · u1 ≤ y · u1)Pr(X · u2 ≤ y · u2) du1du2

+ 2

∫
A1

∫
A2

Pr(X · u1 ≤ y · u1, X · u2 ≥ y · u2) − Pr(X · u1 ≤ y · u1)Pr(X · u2 ≥ y · u2) du1du2

+

∫
A2

∫
A2

Pr(X · u1 ≥ y · u1, X · u2 ≥ y · u2) − Pr(X · u1 ≥ y · u1)Pr(X · u2 ≥ y · u2) du1du2

.

In other words, DIRW is asymptotically normal when there is no non-negligible proportion of unit vectors such
that Fu(y · u) = 1/2. This condition is different than the one required for asymptotically normal sample ID
depths, which requires that F is continuous and y is not a point of symmetry [3]. The condition for IRW depth
is more restrictive by additionally requiring that y does not lie in a ‘hole’ of the support of F. When A3 is non-
negligible, there is a non-degenerate region including unit vectors such that Fu(y·u) = 1/2. Recall we estimate
Fu(y ·u) with min(Fn,u(y ·u), 1−Fn,u(y ·u−)). Over this region, min(Fn,u(y ·u), 1−Fn,u(y ·u−)) < Fu(y ·u) = 1/2
thus, we will always underestimate Fu(y · u) for u ∈ A3. This fact creates left skewness in the asymptotic
distribution that depends on the size of A3. Figure 4a shows a density in R2 such that the mass is uniformly
distributed between the two disjoint rectangles shown. Figure 4b shows asymptotic density estimates, using
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Figure 5: (a) 3D plot of the IRW depth measure with respect to a 2-dimensional point set. (b) Normalized (to (0,1]) ID depth
measure with respect to the same 2-dimensional point set.

10 000 sample depths from samples of size of n = 1001, for the depth of each of the coloured points in Figure
4a. Notice that the higher proportion of angles for which Fu(y · u) = 1/2 leads to more skewness in the
asymptotic distribution.

To construct confidence intervals from the sample depths, Theorem 3 could be used to justify assuming
approximate normality, seeing as the skew effect appears to be minimal in almost all cases. The exception to
this assumption is when y is a point of perfect symmetry. The blue point in Figure 4a is a point of symmetry,
notice how skewed its asymptotic density is. If the sample depth of y is very close to 1 and one might suspect
underlying symmetry about y, and a confidence interval could be computed by substituting Fn for F and
simulating the asymptotic distribution via Monte Carlo techniques, rather than using the normality result.

It is not immediately clear why one would want to calculate a confidence interval on a depth value and so
we provide the following example. Say we have two samples, which produce empirical distribution functions
Fn and Gm, coming from populations F and G respectively. Now, consider the introduction of a new sample
point, Z, for which we would like to determine whether Z comes from F or G. A common method for doing
this is to calculate the depth of Z within in each sample and to assign Z to the sample in which it is deepest.
Say we have that D(Z; Fn) = 0.6 and D(Z;Gm) = 0.55; in this case we would assign Z to F. However, say we
also calculate the following confidence intervals for D(Z; Fn) and D(Z;Gm), respectively

(.45, .75) (.5, .6)

respectively. It is now less clear that we should assign Z to F, since the confidence interval for D(Z;Gm)
is contained in the one for D(Z; Fn). Consider a situation where it is more serious to incorrectly classify a
point as coming from F when it is coming from G. Here, we may want to use the following classification rule
instead of the one mentioned above. If the confidence intervals overlap, assign Z to G. Otherwise, assign Z
to the population in which its sample depth is the highest.

1The plots looked similar for a sample size of n = 10000.
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Figure 6: (a) Tukey depth contours. (b) IRW depth contours. (c) simplicial depth contours. (d) Projection depth contours
using the median and median average deviation. (Same point set as Figure 5.)

Additionally, Theorem 3 provides a method for constructing hypothesis tests based on the depth values,
rather than on ranks as is the convention, e.g., [14]. Suppose a quality control type scenario where we have
a known distribution F and we want to test if a new sample with empirical distribution Fn comes from F.
Let µ be the deepest point in F. One could use the test statistic

T (Fn) =

√
n
σ2(µ)

(DIRW(µ; Fn) − DIRW(µ; F))

for this test, which will be approximately normal for large n. One would however, have to check that affine
transformations of the data which are not similarity transformations do not overly affect the results of the
test. This is briefly discussed in Section 2.2.

2.3. Comparison to other depth measures
We begin with a simple graphic comparing ID depth and IRW depth, Figure 5 shows a side-by-side

comparison of the two measures for a 2-dimensional multivariate normal sample, with 5 outliers in a cluster
at the top right. This data can be found in Appendix B. Note that the steeper interior of the IRW depth
is quite clear. The use of DS causes the depth measure to weight very central points higher, relative to
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the deepest point, than would the use of DT . This is due to the steeper slope associated with the Tukey
measure. The steeper slope implies central regions or regions that admit depths greater than some constant
c as well as associated estimators such as the average of points in such a region will differ.

Another nice property of integrated depth measures is that their contours appear much smoother than
the contours of many popular depth measures. Figure 6 shows a comparison of Tukey, IRW, Liu’s simplicial
and projection depth [29] contours using the data from Figure 5. We do not include the contour plot of ID
depth as the contours are similar in shape to those of IRW depth. Notice that IRW depth contours are very
smooth compared to Tukey, projection and simplicial depth. Notice also that the deeper regions of IRW
depth are not pulled towards the outlier cluster nearly as much as the deeper regions for the other depths;
the outliers appear to affect the geometry of the inner contours of simplicial, projection and Tukey depth
more than the inner contours of IRW depth. As a result, the deeper regions of the integrated depths appear
to be less affected by outliers. It should be duly noted that Tukey, projection and Liu’s simplicial depth
measures are both affine invariant, which could be argued to give them an advantage over the integrated
depths.

One should also note that, because they are not optimization problems, ID and IRW depths are sim-
pler computationally than their competitors. The exact algorithm presented achieves computational time
complexity better or close to its competitors, which have been much more heavily studied [7, 15–17]. The
algorithms that achieve similar time complexity for competing depths are considerably more complex. In
fact, it is very possible that a faster algorithm for IRW depth exists using the techniques of [15–17]. Further,
when d is large, the Monte Carlo algorithm provides straightforward methods for constructing confidence
intervals for the exact value of the depth value being approximated, see [6]. This is due to the fact that
an integral is being approximated; this does not apply to random projection methods for depths based
on optimization problems. It is difficult to assess the variability inherent in approximations based on the
random projection method for depths based on optimization problems.

3. The IRW Deepest Point

It is natural to consider the deepest point as a measure of location; the deepest point refers to the point
of highest centrality and is usually referred to as a median. Depth based medians are often very robust. For
example, the Tukey median associated with Tukey depth (defined below and also known as half-space depth)
has been shown to be robust; it has an asymptotic breakdown point of 1/3 under symmetry assumptions
[4, 18, 26]. In other words it takes roughly 1/3 of the data to be corrupt before the Tukey median becomes
arbitrarily bad.

Definition 3.
The integrated rank-weighted median, denoted µ(F), is defined as

µ(F) = argmax
y∈Rd

DIRW(y; F). (3)

If this value is not unique, then let D = {y ∈ Rd |DIRW(y; F) = supx∈Rd DIRW(x; F)} and we define IRW median
as

µ(F) =

∫
D y dy∫
D dy

.

Note that the IRW median is the same as the ID median in the case of continuous F. In this case, the sample
IRW median µ(Fn) is an alternate estimator for the ID depth population median. It would be interesting
to compare the efficiency and mean squared error of these estimators in different scenarios. The maximizer
of IRW depth is not always unique. In such cases, we can define the IRW median as the average of the
maximizing region. We suggest computing this median via convex optimization, or hill-climbing techniques,
even though it is not in general convex and it has not been shown that IRW depth is decreasing along rays
in all set ups. We conjecture that in fact it is always decreasing along rays. Note that when d is large, we
can use the following estimator to save time in computing.

10



Definition 4.
The in-sample integrated rank-weighted median of a sample Xn, denoted µ̂(Fn), is defined as

µ̂(Fn) = argmax
y∈Xn

DIRW(y; Fn).

If this value is not unique, then let D̂ = {y ∈ Xn|DIRW(y; F) = supx∈Xn
DIRW(x; F)} and we define IRW median

as
µ̂(Fn) =

1

|D̂|

∑
y∈D̂

y ,

where |D̂| denotes the cardinality of D̂.

This can be paired with the Monte Carlo algorithm described in Section 2 to compute the approximate
deepest point in O(mn2d) time. This algorithm can be used to produce an approximation that converges to
the deepest point in the sample as m→ ∞.

3.1. Properties
Before discussing the properties of the estimator (3), it is useful to discuss the relationship between IRW

depth and (multivariate) Tukey depth. From this point on, when we refer to Tukey depth we refer to the
traditional Tukey depth normalized to the interval [0, 1] and denote it by DTU . It is defined as follows

DTU(y; F) = 2 inf
u∈S d−1

DT (y; F).

The Tukey median of a distribution F, denoted Tu(F), is the point which maximizes Tukey depth. If this
point is not unique, it is the average of all such points that maximize Tukey Depth [26]. We now relate
Tukey depth to IRW depth and ID depth.

Theorem 4.
For any query point y ∈ Rd, integrated dual and integrated rank-weighted depths satisfy

DTU(y; F) ≤ DIRW(y; F) ≤ DID(y; F).

Corollary 1.
For any distribution F, the IRW median and consequentially, the ID median satisfy

2

n

⌊ n
d + 1

⌋
≤ DIRW(µ(F); F) ≤ DID(µ(F); F) ≤ 1.

Theorem 4 follows from the definitions. Corollary 1 ensures that the depth of the deepest point is at least
2/d + 1. It follows directly from the fact [4] that

sup
y∈Rd

DTU(y; F) ≥
⌊ n
d + 1

⌋ 2
n
.

A common measure of robustness for location estimators is the breakdown point. The breakdown point
refers to the proportion of the data which must be arbitrarily corrupt in order for the estimator to become
infinite. The finite sample breakdown point, ϵ∗(T, n) of an estimator, T , can be defined as

ϵ∗(T, n) =
1

n
max{m : sup

Ym

|T (Xn−m ∪Ym) − T (Xn−m)| = ∞}.

The asymptotic breakdown point is simply limn→∞ ϵ
∗(T, n). The next theorem bounds the breakdown point

of the IRW median and as a consequence the ID median below. It shows both medians have a breakdown
point at least as high as the Tukey median. The proof can again be found in Appendix A.
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Theorem 5.
The finite sample breakdown of the IRW median satisfies

ϵ∗(µ(Fn), n) ≥ ϵ∗(Tu(Fn), n).

A direct consequence of Theorem 5 is the following, which is given without proof.

Corollary 2.
The finite sample breakdown of the IRW median satisfies

ϵ∗(µ(Fn), n) ≥
⌈ n

d ⌉
⌈ n

d ⌉+ n
.

The asymptotic breakdown point of the IRW median satisfies

lim
n→∞
ϵ∗(µ(Fn), n) ≥

1

d + 1

for all F and
lim
n→∞
ϵ∗(µ(F), n) ≥ 1

3

when F is half-space symmetric.

A direct consequence of Corollary 2 is that these bounds hold for the breakdown point of the ID median.
Next, we establish the consistency of the IRW medians.

Theorem 6.
Let F be a distribution on Rd and Fn be the resulting empirical distribution function from a sample from
F. Then

µ(Fn)
a.s.−→ µ(F) as n→ ∞ and µ̂(Fn)

a.s.−→ µ̂(F) as n→ ∞.

Theorem 1 implies both IRW medians are strongly consistent for their population counterparts. The differ-
ence between µ(F) and µ̂(F) is subtle. µ̂(F) is always in the support of F, whereas it is possible for µ(F) to
be outside of the support of F. This can occur in scenarios where the support is a proper subset of Rd.

Example 2: Iris Data cont.
Here we demonstrate the robustness of the IRW median. Figure 7 shows a scatter plot of the Iris data
with 20% of the data in each group corrupted. The corrupted data was randomly mislabelled to one of
the other two groups. The sample mean vector and IRW median before and after corruption are shown.
Even with this high proportion of corrupted data, the IRW median remains close to the uncorrupted
median. The group in the bottom left has mislabelled data very far from its correctly labelled ones,
however, the IRW median barely moves. The green sample’s median estimator is pulled half as far as the
sample mean of the green sample is pulled, but both are pulled farther than in the bottom left group. The
close proximity of some of the green points labelled as red points make them more difficult to interpret
as outliers. It may be surprising that ‘closer’ mislabelled points have a greater impact on the estimator
than ‘far’ ones. One could think that it is easier to identify ‘far’ observations as mislabelled rather than
‘closer’, more ambiguous, ones.

Note that we can write
µ(F) ≈ argmin

y∈Rd

∫
S d−1

∣∣∣∣1
2
− Fu(y · u)

∣∣∣∣ du.

This is equal in the case of continuous F. In effect, this estimator’s projections have the minimum average
distance d to the univariate median, where d(x, y) = |x − y|. One could replace d with a different distance
measure, such as d∗(x, y) = |x − y|a, a > 0. In fact, setting a to 2 gives the ID median.

12
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Figure 7: Example 3.1, Corrupted Iris Data and the IRW median.

4. An Application of IRW Depth

We now demonstrate and discuss a basic use of IRW depth, aside from the location estimation described
above. We continue with the Iris data along with a second example featuring a very high dimensional
dataset. All of the coding has been done with the R software.

Specifically, we demonstrate the use of the dd-plot, a dimension free plot used to assess how similar the
parent distributions of two samples are. See the excellent description by Li and Liu in [10] or the original
paper by Liu et al. [12]. To construct the plot we calculate the depth, with respect to each sample, of each
point in the combined sample. Therefore for each point we have two depths which are plotted as pairs in
R2. In other words, for each x ∈ Xn1 ∪Xn2 , we plot (DIRW(x; Fn1),DIRW(x;Gn2)), where Fn1 is the empirical
distribution of Xn1 and Gn2 is the empirical distribution of Xn2 . This is similar to a qq-plot except that we
are plotting depths against each other rather than quantiles. These plots describe different distributional
characteristics depending on how the data is transformed.

To assess location, the dd-plot should be made from the raw data or scale normalized data (using a
robust measure of scale) if the scales differ widely. This is different from affine invariant depths, where
the scale does not play a role in assessing location with dd-plots. Figure 8a-8c show dd-plots for samples
from distributions that are the same, that differ only in location and differ only in scale respectively. In
particular, in Figure 8a, the points follow a linear pattern and are somewhat evenly scattered about the
y = x line, which is typical when there is no distributional difference. Notice in Figure 8b that the location
shift is associated with triangular shaped patterned dd-plots, with the tip of the triangle being somewhere
around the bottom left or top right. To assess scale we must shift each group by its median. Note that
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even though the depth measure is translation invariant, we will see a difference in the plots since the depth
values are taken with respect to each sample, which are shifted by two different values. Scale differences
are characterized by banana shaped dd-plots as in Figure 8c. Other characteristics such as kurtosis and
skewness can be assessed; see [12] for more details. Li and Liu [10] also describe formal location and scale
tests associated with dd-plots.

Example 3: Iris Data cont.
Figures 9a-9c shows dd-plots for the three pairs of classes with the uncontaminated, raw Iris data. The
location differences between the three classes are apparent; all three exhibit that lower triangle appearance.
Figure 10a-10c show the dd-plots for the same three pairs, but each class has been centred by the IRW
median. Note the banana shape is most pronounced in the first and last plots, and is less distinct in the
middle one. This is a reflection of a more pronounced scale difference, which is apparent in Figure 7.

Our experience is that dd-plots using IRW depth for very high dimensional, sparse data do not exhibit the
same patterns as data with n > d. It seems that in-sample depth values from a sparse sample tend to be
somewhat uniform. For example, as will be seen below, the in-sample depth values in the prostate data
for the control group are in the range (0.5,0.54). This uniformity can change the way location differences
appear in the plot. It is useful to do a small simulation study of dd-plots using the same n and d as the
specific dataset at hand before using a dd-plot to compare samples.

Example 4: Prostate Data
We now look at a data set which has very high dimensions compared to its sample size. We use the
prostate cancer data set obtained by Welsh et al. [27], which consists of 102 observations of 6033 different
gene expression values. There are 50 subjects in the control group and 52 with prostate cancer. To
compute approximate depth values for the sample depth of each point, we use the Monte Carlo algorithm
described in Section 2 with 100 000 uniformly generated random vectors.

Figure 11 shows the dd-plot of the raw prostate data. Notice the range of depth values in the samples
is very small, which is a reflection of the large dimension and/or sparseness. In this case the lower bound
on the deepest point is 1/3017, this lower bound reflects the curse of dimensionality. The points are,
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Figure 8: dd-plot for equal distributions, location shift and scale difference.
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Figure 9: dd-plots for different pairs of iris species using the raw data
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Figure 10: dd-plots for different pairs of iris species using location centred data.

however, relatively far away from the y = x line, and thus we would suspect a location difference between
these two groups. A dd-plot (not shown) was also made for the same data after the axes were brought
to the same scale (after splitting into control and cancer). There was an even more pronounced location
difference. The discrepancy between these two plots suggests that some of the features that displayed
more variability in the raw data set may have less of a location difference than ones that displayed less
variability.

Figure 12a and 12b show the dd-plots for the five and two most significant genes in terms of a t-test
for location difference on each coordinate, respectively. Notice the much clearer triangular appearance.
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Figure 11: dd-plot of raw prostate data, red for the cancer
group and green for the control, using the 6033 gene expression
values.

After reducing the dimension, the plots seem
to take more of the ‘standard’ appearance in
the presence of a location shift. This leads us
to consider taking many, say k, subsets of the
data features or variables and producing plots
for those subsets. Further, one could perform
a modified version of the dd-plot test for distri-
butional differences [10], by performing the test
on each subset. The final test statistic could
be the average of those k statistics, such as is
done in [28]. Performing a test of this type may
eliminate the sparsity issues while keeping some
of the geometrical features of the data. Note
simply testing each coordinate fails to account
for dependencies between variables; it does not
preserve geometrical features.

5. Discussion

We conclude that IRW and ID depth measures are, as suspected, very similar in terms of properties
and computation. Furthermore, we find that when studying further properties of the ID medians, it is
useful to look at both the ID and IRW definitions. In other words, the use of DT can allow for easier
proofs of some properties. This may be useful for studying the influence function of these depth measures
and their associated location estimators. In fact, it may be useful to provide some general properties
that apply to all integrated versions of a class of univariate depth measures. The integrated depths have
advantages over traditional depths in terms of computation and asymptotic distributions. However, they
suffer from not being affine invariant. The next approach should be to try the strong invariant coordinate
system transformation procedure described by Serfling [24] to transform these integrated depths into affine
invariant depths. However, one has to be careful to preserve the computational efficiency and the ability to
use Monte Carlo methods or the point is moot.
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Figure 12: (a) dd-plot of raw prostate data using the 5 gene expression values with the largest location difference. (b) dd-plot
of raw prostate data using the 2 gene expression values with the largest location difference.
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If one is willing to forego invariance under non-uniform scaling, then it would be interesting to try the
many depth-based statistical tools with higher dimensional data. One could, for instance, define a location
estimator based on these depths, using the weighted functional technique, such as the projection weighted
medians, see [29]. This would provide an estimator defined in terms of a double integral, which would allow
for easy Monte Carlo approximation. Depth measures have many other uses, including but not limited to,
classification, outlier trimming and scale assessment. Classification is done via simply assigning the new
observation to the group in which it has the largest depth, for more information see [21]. Outlier trimming,
for instance, can be done by removing observations of low depth. One could also compute a weighted sample
mean, where the weights are based on the depth value. This is done with the projected medians and Stahel-
Donoho estimator [29]. Scale can be assessed via a scale curve. A scale curve plots the volume of the convex
hull of the deepest ⌊np⌋ points, as p goes from 0 to 1. Scale curves however can be difficult to compute in
high dimensions, one exception is the curve introduced by Lopez-Pintado and Romo [19]. For more ways in
which depth measures can be used in analysis see [12, 13, 23].

We emphasized that integrated depths is computable in high dimensions, however the usual problems
in high dimensional analysis still remain. For example, in their current form, scale curves are not easily
computable in high dimensions as they involve convex hulls. On top of this, in d > n scenarios the convex
hull is a lower dimensional structure. Another method for measuring scale in high dimensions and sparse
situations would be very useful. In fact it would be beneficial to better understand the application of depth-
based analysis to sparse scenarios, such as the ones in Example 4. It would also be interesting to test the
performance of the rank test introduced by Li and Liu [10] against other methods, especially ones developed
for high dimensional settings.

Cuevas and Fraiman [3] introduced IDD for Banach spaces with separable dual. Another direction for
future research would be to investigate how IRW depth generalizes to Banach spaces. This is a different
problem in some sense because Banach spaces do not have the same geometry as Rd. For example, the
algorithm for computing IRW depth discussed in Section 2 relies on orthogonality concepts that do not hold
in a general Banach space, but would hold in a Hilbert space. Further, the computing algorithm relies on
the finite dimensional geometry of Rd in order to determine which ‘patch’ on the unit sphere to step to next.
It is also important to verify that IRW depth still measures depth with respect to the objects being studied
in such infinite dimensional spaces, or if there are better depth functionals for the problem at hand. In other
words, the meaning of depth may change as one moves to studying objects in infinite dimensional space and
therefore the desirable properties of the functional will change. Further, infinite dimensional Banach spaces
are ‘large’ and in many cases it may be better to restrict attention to a non-linear subspace over which the
objects are defined, and then design a suitable depth measure for this subspace, e.g., see [25].
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Appendix A Proofs

The following notations will be used: F and G represent distributions over Rd.

Proof. Theorem 2

Property 1:
Without loss of generality assume that γ = 0. Let H be a closed half-space and let h denote its boundary.
Assume that h contains 0. Now, by assumption Hc ∪ h is also a closed half-space containing 0. By definition
of half-space symmetry, we have both

1

2
≤ Pr(X ∈ H) and 1

2
≤ Pr(X ∈ Hc ∪ h).
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Now, define u as a unit vector normal to h. Then, we have that,

Fu(0) = Pr(X · u ≤ 0) = min(Pr(X ∈ H),Pr(X ∈ Hc ∪ h)) =
1

2
.

Since there is a bijection between S d−1 and half-spaces that contain 0, Fu(0) = 1/2 for all u. Therefore
DIRW(0; F) = 1 which is the maximum depth that can be achieved.

Property 2:
Let y be non-zero, also note u is always non-zero. From the elementary properties of univariate cumulative
distribution functions, it is easy to see that

lim
c→∞

min(Fu(c(y · u)), 1 − Fu(c(y · u)−)) = min(1, 0) = 0.

There may be one or more u’s such that cy · u = 0, but the integrand is bounded above by 1 (and below by
0) and converges to 0 almost surely. Consequently, by the bounded convergence theorem,

lim
c→∞

∫
S d−1

min(Fu(c(y · u), 1 − Fu(c(y · u)−) du =

∫
S d−1

lim
c→∞

min(Fu(c(y · u), 1 − Fu(c(y · u)−) du = 0,

since the range on integration is independent of c.

Property 3:
Without loss of generality again assume that γ = 0., and y is on the positive x-axis; y = (y1, 0, . . . , 0), y1 > 0.
Recall

u = (cos ϕ1, sin ϕ1 cos ϕ2, . . . , sin ϕd−1),

where ϕ1, . . . , ϕd−1 are the usual spherical coordinates. Note that u · y = y1 cos ϕ1, ϕ1 ∈ [0, π]. Note
also that u · y ≥ 0 on ϕ1 ∈ [0, π/2] and u · y ≤ 0 on ϕ1 ∈ [π/2, π]. Since Fu(0) = 1/2, we know that
min(Fu(y·u), 1−Fu(y·u−)) = 1−Fu(y·u−) for ϕ1 ∈ [0, π/2] and min(Fu(y·u), 1−Fu(y·u−)) = Fu(y·u) otherwise.
Note that the same applies to Fu(αy · u), (α ∈ [0, 1]). Now for ϕ1 ∈ [0, π/2], 1 − Fu(y · u−) ≤ 1 − Fu(αy · u−)
since y · u ≥ αy · u. Similarly on ϕ1 ∈ [π/2, π] Fu(y · u) ≤ Fu(αy · u) since y · u ≤ αy · u (recall that y · u < 0).
After projecting onto any unit vector, αy has univariate depth greater than or equal to that of y. Hence, it
must have greater average depth. Therefore DIRW(y; F) < DIRW(αy; F) and the proof is complete.

Proof. Proposition 1

Case 1:
F is discrete. Let supp(F) be the support of F and assume that it is finite. Let z ∈ Rd, δ1 ∈ R. Let y
be a point not in the support of F. Choose δ1 small enough such that the graph of vertices on the unit
hypersphere where the univariate depth of y changes is the same for z. Further, assume that 0 < ∥y − z∥ < δ1
and let N denote the number of sections into which the graph divides the unit hypersphere. We have

DIRW(y; F) − DIRW(z; F)| ≤ 2
N∑

i=1

|(wi(y) − wi(z))|DT (y; Fui) ≤ 2
N∑

i=1

|(wi(y) − wi(z))|. (4)

All that we need to show is that ∑N
i=1 |wi(y) − wi(z)| < ϵ/2N.

Assume x is some vector in the support of F. We are now interested in the vertices of these sections
on the unit sphere. The angles in spherical coordinates, denoted by ϕi, ..., ϕd−1, such that x and y have
that same projection is given by ϕi =

∏d−1
j=d−1−i tan(ϕ j)atan( f1(x, y)) for i > 2 and ϕ1 = atan( f1(x, y)), where

f1 is a continuous function in y. (We know this because f1 is a product and composition of continuous
trigonometric functions.) The functions atan() and tan() are also continuous, thus, for each i, there is a δ2i
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such that ∥y − z∥ < δ2i implies |wi(y) − wi(z)| < ϵ/2N. Choose δ = min(δ1, δ21, . . . , δ2N). Then, if ∥y − z∥ < δ,
we have that

|DIRW(y; F) − DIRW(z; F)| ≤ 2
N∑

i=1

|(wi(y) − wi(z))|DT (y; Fui)) < 2
N∑

i=1

|(wi(y) − wi(z))| < ϵ.

Consider the case where y lies in a (d − 1)-dimensional hyperplane (but still not in supp(F)) with d distinct
points in the support of F, call this set of points B. In this case, if z lies outside this hyperplane determined
by B, there does not exist a δ1 small enough such that the graph of vertices on the unit hypersphere where
the univariate depth of y is the same as z. Rather, if δ1 is small enough, the univariate depth will be the
same in all sections on the hypersphere, except for one. There will be one section, call it s, such that the
univariate depth of z differs from the univariate depth of y by ±k, k < n/2. This section is contained inside
one of the sections in which the univariate depth of y does not change. Let N denote the number of sections
into which y divides the unit hypersphere, and consequently z divides the hypersphere into N + 1 sections.
Let wN+1 be the size of the section s. In this case, we have

|DIRW(y; F) − DIRW(z; F)| ≤ 2
N∑

i=1

|(wi(y) − wi(z))|+ 2k wN+1(z).

Note wN+1 is the size of the region enclosed by the d hyperplanes, each of which contains z and d − 1 points
in B. Thus, the size of this region is strictly decreasing as z approaches this plane; it is decreasing in δ1.
Thus, there is a δ1 such that wN+1(z) < ϵ/2N + 2k whenever ∥y − z∥ < δ1. As above, there are for each i,
δ2i > 0 such that |wi(y) − wi(z)| < ϵ/2N + 2k whenever ∥y − z∥ < δ2i. Choose δ = min(δ1, δ21, . . . , δ2N). Then,
if ∥y − z∥ < δ, we have that

|DIRW(y; F) − DIRW(z; F)| < 2
N∑

i=1

|(wi(y) − wi(z))|+ 2k wN+1(z) < (2N + 2k)
ϵ

2N + 2k
= ϵ,

still implying continuity. Clearly this extends to uncountable scenarios, where δ = inf{δ1, δ21, . . . }.

Case 2:
F is absolutely continuous. Since F is continuous, min(Fu(y · u), 1 − Fu(y · u−)) is continuous in y. Therefore
DIRW(y; F) is continuous in y.

Case 3:
F is mixed. By the linearity property of integration and the previous two cases, the result is clear.

Clearly, this also extends to ID depth, as the weights are the same, and (4) still applies. The proof is
complete.

Proof. Theorem 5
Let 0 < α, β < 1. Set m = ⌊nϵ∗(T, n)⌋−1; the proportion of points for which the Tukey median is not corrupt.
Without loss of generality assume that n−m points lie inside the unit hypersphere and the other points may
be located anywhere (we can simply scale the points down and recenter them at 0). Let Fn be the empirical
distribution determined by X ∪ Y. We know from the finite sample breakdown of the Tukey median [18], T ,
and the relationship between IRW depth and Tukey depth that:

DIRW(y; Fn) = α
(
2
⌊m

n

⌋)
+ (1 − α)2a > 2

⌊m
n

⌋
,

where a > 2
⌊
m/n

⌋. Now, it should be clear that in order for du(y; Fn) > m, the projection of y onto u
must lie in the unit hypersphere. Consider an arbitrary point outside S d−1, call it cu∗, where c > 1 and
u∗ is a unit vector. Note that cu∗ has IRW depth that satisfies DIRW(cu∗; Fn) < β(2

⌊
m/n

⌋
) + (1 − β), where

1 − β is the proportion of unit vectors for which cu∗’s projection lies inside the unit hypersphere. 1 − β is
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a function of the space between the hyperplanes u∗ · u = 1/c and u∗ · u = 0 which is approaching 0 as c
approaches infinity. Clearly this is decreasing in c. We choose c large enough such that 1 − β < (1 − α)a,
then DIRW(cu∗; Fn) < DIRW(T, Fn). Therefore, the deepest point lies inside the hypersphere with center at
the origin and radius c. From this, ϵ∗(µ(F), n) ≥ ϵ∗(T, n) and limn→∞ ϵ

∗(µ(F), n) ≥ limn→∞ ϵ
∗(T, n).

Proof. Theorem 3
We use the central limit theorem. Let A1 = {u : Fu(y · u) < 1/2}, A2 = {u : Fu(y · u) > 1/2},
A3 = {u : Fu(y · u) = 1/2}, An,1 = {u : Fn,u(y · u) < 1/2}, An,2 = {u : Fn,u(y · u) > 1/2}. Since Vol(A3) = 0,
we have

DIRW(y; Fn) =
2

Vd

∫
S d−1

min(Fn,u(y · u), 1 − Fn,u(y · u−)) du

=
2

Vd

( ∫
A1

Fn,u(y · u) du +

∫
A2

1 − Fn,u(y · u−) du + Bn1 + Bn2

)
,

where
Bn1 =

∫
A1∩An,2

(1 − Fn,u(y · u) − Fn,u(y · u−)) du,

and
Bn2 =

∫
A2∩An,1

(Fn,u(y · u−) + Fn,u(y · u) − 1) du.

Note that |Fn,u(y · u−) + Fn,u(y · u) − 1| ≤ 1, which implies the following simple bounds:

|Bn1| ≤
∫

A1

1

(
Fn,u(y · u) >

1

2

)
du,

|Bn2| ≤
∫

A2

1

(
Fn,u(y · u) <

1

2

)
du.

(5)

Now, we prove that
√

nBn1 and
√

nBn2 are op(1) by showing that their expectation and variance converge to
0. Let δn = n−(

1
3+ϵ), 0 < ϵ < 1/6, and Aδn1 = {u : Fu(y · u) ∈ (1/2− δn, 1/2)}. We can now write the following.

E(|Bn1|) ≤ E
(∫

A1

1

(
Fn,u(y · u) >

1

2

)
du

)
,

=

∫
Aδn1

Pr
(
Fn,u(y · u) >

1

2

)
du +

∫
(Aδn1 )c∩A1

Pr
(
Fn,u(y · u) >

1

2

)
du.

Note that for the second term, we can use the Bernoulli special case of Hoeffding’s inequality (rf. [9]) with
t = δn. That is, if H(n) is a binomially distributed random variable with n trials and success probability p,
for t > 0

Pr(H(n) ≥ (p + t)n) ≤ exp{−2t2n}.
In our case, this inequality implies∫

(Aδn1 )c∩A1

Pr
(
Fn,u(y · u) >

1

2

)
du ≤ C1(F, y) exp{−2n

1
3−2ϵ},

where C1(F, y) is a finite, bounded constant that depends on F and y. Now, looking at the second term, let
∆n = n−(

1
3+ϵ

′), 0 < ϵ′ < ϵ. Choosing ∆n in this way implies that, for u ∈ Aδn1 ,

∆n <

∣∣∣∣∣∣ ⌊n/2⌋+ 1

n
− Fu(y · u)

∣∣∣∣∣∣ .
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Thus, ∫
Aδn1

Pr
(
Fn,u(y · u) >

1

2

)
du ≤

∫
Aδn1

∑
| in−Fu |>∆n

(
n
i

)
(Fu(y · u))i(1 − Fu(y · u))n−idu.

By [20], (see (8) on page 15), for any k > 0,∫
Aδn1

∑
| in−Fu |>∆n

(
n
i

)
(Fu(y · u))i(1 − Fu(y · u))n−idu ≤

∫
Aδn1

C2(k)
nk du ≤ Vd

C2(k)
nk .

From the fact that C2 is finite and does not depend on u, we can say the first term is o
(
n−k

)
. Thus,

E(|Bn1|) = o
(
n−k

)
. (6)

Now note that from (5) (
|Bn1|

Vol(A1)

)2
<
|Bn1|

Vol(A1)
< 1,

which implies
E(B2

n1) < E(|Bn1|)Vol(A1).

Thus,
E(B2

n1) = o
(
n−k

)
, (7)

(6) and (7) together imply
√

nBn1
p→ 0. By a similar (but lengthier) argument, we have

√
nBn2

p→ 0. This
leads to

√
nDIRW(y; Fn) =

2
√

n
Vd

[∫
A1

Fn,u(y · u) du +

∫
A2

1 − Fn,u(y · u−) du + op(n−
1
2 )

]
=

2
√

nVd

 ∫
A1

n∑
i=1

1(Xi · u ≤ y · u) du +

∫
A2

n∑
i=1

1(Xi · u ≥ y · u) du

 + op(1).

By switching the order of summation, we now get that

√
nDIRW(y; Fn) =

2
√

nVd

n∑
i=1

 ∫
A1

1(Xi · u ≤ y · u) du +

∫
A2

1(Xi · u ≥ y · u) du

 + op(1),

=
1
√

n

n∑
i=1

2

Vd
h(Xi) + op(1), (8)

where h(Xi) do not depend on n and are given by

h(Xi) =
2

Vd

[∫
A1

1(Xi · u ≤ y · u) du +

∫
A2

1(Xi · u ≥ y · u) du
]
.

Now note,

E(h(X)) = 2

Vd

[∫
A1

Fu(y · u) du +

∫
A2

1 − Fu(y · u−) du
]
= DIRW(y; Fn)),

E(h(X)2) =
(
2

Vd

)2  ∫
A1

∫
A1

Pr(X · u1 ≤ y · u1, X · u2 ≤ y · u2) du1du2

+ 2

∫
A1

∫
A2

Pr(X · u1 ≤ y · u1, X · u2 ≥ y · u2) du1du2

+

∫
A2

∫
A2

Pr(X · u1 ≥ y · u1, X · u2 ≥ y · u2) du1du2

.
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This implies,

Var(h(X)) =
(
2

Vd

)2  ∫
A1

∫
A1

Pr(X · u1 ≤ y · u1, X · u2 ≤ y · u2) − Pr(X · u1 ≤ y · u1)Pr(X · u2 ≤ y · u2) du1du2

+ 2

∫
A1

∫
A2

Pr(X · u1 ≤ y · u1, X · u2 ≥ y · u2) − Pr(X · u1 ≤ y · u1)Pr(X · u2 ≥ y · u2) du1du2

+

∫
A2

∫
A2

Pr(X · u1 ≥ y · u1, X · u2 ≥ y · u2) − Pr(X · u1 ≥ y · u1)Pr(X · u2 ≥ y · u2) du1du2

.
Notice (8) is written in the form n−1/2

∑n
i=1 h(Xi) + op(1), where h(Xi) is independent of n (and has finite

variance). By the central limit theorem and Slutsky’s lemma,
√

n(DIRW(y; Fn) − E(h(X)))√
Var(h(X))

d−→ Z , Z ∼ N(0, 1).

This completes the proof.

Appendix B Simulated Data

Data from Figure 6
x-values y-values x-values y-values

1.608 1.43 0.319 1.2
0.608 1.96 2.526 0.013
-0.464 0.948 1.346 0.834
0.763 0.045 1.604 1.293
1.75 0.952 1.529 0.424

-0.521 1.302 0.758 -0.229
1.358 1.861 2.391 2.176
-0.164 -0.43 0.985 0.756
-0.375 0.28 1.734 1.07
1.967 1.197 -0.074 1.05
-0.789 2.159 0.89 0.395
0.299 0.291 2.273 0.823
-1.22 1.731 -1.406 0.37
0.776 0.625 3.186 3.965
0.258 -0.101 3.22 3.631
1.61 1.918 2.948 3.816

-0.846 -0.234 3.148 3.608
3.002 4.096
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