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We consider the problem of load-balanced routing, where a dense network is modelled
by a continuous square region, and origin-destination node pairs correspond to pairs of
points in that region. The objective is to define a routing policy that assigns a continuous
path to each origin-destination pair while minimizing the traffic, or load, passing through
any single point. While the average load is minimized by straight-line routing, such a
routing policy distributes the load non-uniformly, resulting in higher load near the center
of the region. We consider one-turn rectilinear routing policies that divert traffic away from
regions of heavier load, resulting in up to a 33% reduction in the maximum load while
simultaneously increasing the path lengths by an average of less than 28%. Our policies are
simple to implement, being both local and oblivious. We provide a lower bound that shows
that no one-turn rectilinear routing policy can reduce the maximum load by more than
39% and we give a polynomial-time procedure for approximating the optimal randomized
policy.
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1. Introduction

1.1. Motivation

The problem of routing in multi-hop wireless networks has received extensive atten-
tion in the last decade2,17,20,24,29. Many of the proposed routing protocols attempt
to find shortest paths between pairs of nodes, or seek to bound the stretch factor
of the paths, while trying to ensure that the paths are loop-free. These approaches
consider individual packets traversing the network and attempt to optimize per-
formance for a single packet. Obtaining a more global and, in many cases, more
realistic perspective on the performance of a routing protocol requires considering
many simultaneous traffic flows in the network. In this case, congestion occurs when
several packets need to be forwarded by a common intermediate node at the same
time. This congestion is often proportional to the latency experienced by a packet.
Therefore, a routing protocol should attempt to avoid creating highly-congested
nodes. Not only does such a protocol improve packet latency, it also improves the
lifetime of a wireless network, where heavily loaded nodes may run out of battery
power and disconnect the network.

In this paper, we investigate routing protocols for wireless networks with the aim
of minimizing the congestion experienced at nodes. We consider a multi-hop ad hoc
network consisting of identical location-aware nodes, uniformly and densely deployed
within a given planar region. Several papers in the literature (e.g., Ref. 30) refer to
such networks as massively wireless. Furthermore, we assume that the traffic pattern
is uniform point-to-point communication, i.e., each node has the same number of
packets to send to every other node in the network. This is sometimes called the
all-to-all communication pattern. A routing policy must define, for every ordered
pair of nodes (u, v), a path in the network to get from u to v. The load at a given
node v is the number of paths that pass through v. The average (maximum) load
for a network for a given routing policy is the average (respectively, maximum) load
over all nodes in the network. The fundamental question we wish to answer is: what
routing policy minimizes the maximum load in the network?

Shortest-path routing minimizes the average load in a convex planar region (see
Section 2.2). However, this same routing strategy results in non-uniform load distri-
bution and, furthermore, causes high load near the region’s geometric center; several
studies confirm the crowded center effect for shortest-path routing on various convex
planar regions10,13,14,15,16,21,25,26. This suggests that if load balancing is a primary
objective, then a good routing policy should redirect some of the traffic away from
the geometric center and other areas of high load. However, load balancing cannot
be the only concern: taking unnecessarily long paths just to bypass the center can
drastically increase the stretch factor and the average load of nodes in the network
and, consequently, can result in inefficient energy consumption. Furthermore, it is
critical that the forwarding strategy required to implement the routing policy be
simple and have low memory requirements. Ideally, the routing policy should be
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oblivious (the route between u and v depends only on the identities or locations of u

and v) and the forwarding strategy should be local (the forwarding node can make
its decision based only on knowledge of itself, its neighbors, and the packet header,
which contains only the address of the destination).

The problem of load-balanced routing when nodes are uniformly distributed
in a given convex planar region has been considered when the region is a unit
disk13,14,15,16,25,26 and, recently, a unit square16. However, little research has been
done on finding a simple (easily implementable in a scalable distributed fashion)
routing policy that succeeds at both minimizing the maximum load and achieving
a reasonable stretch factor.

In this paper, we investigate the problem of load-balanced routing when the
nodes are uniformly and densely packed in a square or rectangular region. As in
Refs. 16 and 26, our approach is to model nodes in the region by a continuous
space rather than by a discrete set of points. This permits analysis of the average
and maximum load induced by a routing policy without regard to the topology of
the actual network. At the same time, the results should predict the behavior of
a network with very densely and uniformly deployed nodes. Shortest-path routing
corresponds to straight-line routing in this setting. We derive the average and max-
imum load for straight-line routing in a unit square and confirm the crowded center
effect for squares and rectangles. In keeping with the goal of minimizing load while
ensuring a reasonable stretch factor, we investigate the class of one-turn rectilinear
routing policies that assign to each origin-destination pair of nodes one of the two
possible rectilinear paths containing only a single intermediate point. In particular,
we consider one-turn rectilinear routing policies that are simple and realistic in the
ad hoc network setting; the routing policy is oblivious and the forwarding algorithm
is local. We propose and analyze several one-turn rectilinear strategies, the best of
which reduces the maximum load by about 33% compared to the straight-line pol-
icy. We also characterize the optimal randomized rectilinear policy as the solution
to an optimization problem and provide an efficient procedure for approximating it.

1.2. Overview of Results

Our main contributions are summarized below:

• We derive an exact expression for the load induced by the straight-line rout-
ing policy at an arbitrary point in the unit square. We show that the average
and maximum load for the straight-line routing policy are 0.5214 and 1.1478
respectively.

• We show that the average load for every one-turn rectilinear routing policy
is 2/3. The maximum and average stretch factor for such policies are shown
to be

√
2 and 1.2737 respectively.

• We propose several one-turn rectilinear routing policies and derive their max-
imum load. The best of these, called the diagonal rectilinear policy, achieves a
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maximum load of 0.7771, which represents a 33% improvement over straight-
line routing. Furthermore, this policy can easily be implemented in a local
and oblivious distributed routing environment.

• We prove a lower bound of 0.7076 on the the maximum load for any one-turn
rectilinear policy.

• We characterize the optimal randomized one-turn rectilinear policy as the
solution to an optimization problem and provide an efficient procedure for
approximating it. Numerical results suggest that the maximum load for the
best possible one-turn rectilinear policy is close to 0.73.

• We generalize our results to derive the maximum and average loads for
straight-line as well as diagonal rectilinear routing policies on k × 1 rect-
angles.

2. Definitions

2.1. Routing Policies and Traffic Load

Given a convex region A ⊆ R2, a routing policy P assigns a route to every origin-
destination pair (u, v) ∈ A2, where the route from u to v, denoted routeP (u, v), is
a plane curve segment contained in A, whose endpoints are u and v. For a given
routing policy P on a region A, the traffic load at a point p is proportional to the
number of routes that pass through p. Formally,

Definition 2.1. Given a routing policy P on a region A, the load at point p is

λP (p) =
∫∫

A
fP (p, u, v) du dv, where fP (p, u, v) =

{
1 if p ∈ routeP (u, v),
0 otherwise.

The average load of routing policy P on region A is given by

λavg(P ) =
1

Area(A)

∫
A

λP (p) dp, (2.2)

where Area(A) =
∫
A dp denotes the area of region A. The average length of a route

determined by policy P between two points in A is given by

lengthavg(P ) =
1

Area(A)2

∫∫
A

length(routeP (p, q)) dq dp. (2.3)

Since length(routeP (u, v)) =
∫
A fP (p, u, v) dp, Proposition 2.1 follows from (2.2) and

(2.3):

Proposition 2.1. Given routing policy P on a region A,

λavg(P ) = Area(A) · lengthavg(P ). (2.4)

In addition to average load, a routing policy P on a region A is also characterized
by its maximum load, given by

λmax(P ) = max
p∈A

λP (p). (2.5)
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Thus, a primary objective of this work is to identify routing policies P that minimize
(2.5).

2.2. Straight-Line Routing Policy

The straight-line routing policy, denoted S, assigns to every pair (u, v) the route
consisting of the line segment between u and v. In straight-line routing,

length(routeS(p, q)) = ||p− q|| =
√

(px − qx)2 + (py − qy)2. (2.6)

Since the line segment from u to v is the shortest route from u to v, it follows that
straight-line routing minimizes (2.3). Consequently, for any convex region A and
any routing policy P 6= S,

λavg(S) ≤ λavg(P ). (2.7)

The average stretch factor and maximum stretch factor of routing policy P on region
A are respectively given by

stravg(P ) =
1

Area(A)2

∫∫
A

length(routeP (p, q))
length(routeS(p, q))

dq dp (2.8)

and strmax(P ) = max
{p,q}⊆A

length(routeP (p, q))
length(routeS(p, q))

. (2.9)

2.3. One-Turn Rectilinear Routing Policies

In this paper, we consider the case when region A is bounded by a square or a
rectangle. As we show in Sections 4.3 and 8.1, the load in straight-line routing on a
square or a rectangle is maximized at its center. The maximum load can be decreased
by redirecting routes that pass near the center to areas of lower load. This motivates
the examination of one-turn rectilinear routing policies which we now define.

A monotonic rectilinear routing policy assigns to every pair (u, v) a route con-
sisting of a monotonic rectilinear path from u to v, i.e., a path comprised of a series
of axis-parallel line segments such that any axis-parallel line intersects the path at
most once. A one-turn rectilinear routing policy assigns to every pair (u, v) a mono-
tonic rectilinear path consisting of one horizontal line segment and one vertical line
segment joining u to v via an intermediate point w. Point w may coincide with u or
v.

For any monotonic rectilinear routing policy P ,

length(routeP (p, q)) = |px − qx|+ |py − qy|. (2.10)

In general, there are two possible one-turn rectilinear routes from a given origin
(ux, uy) to a given destination (vx, vy). We refer to these as row-first and column-
first, where the row-first route passes through the intermediate point (vx, uy) and
the column-first route passes through the intermediate point (ux, uy).
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3. Related Work

In this section, we briefly describe other efforts to address the load-balancing prob-
lem. See Toumpis30 for a survey of results related to physically-based wireless net-
works, including a section on load-balanced routing in ad hoc wireless networks.

Experimental Approaches. One body of work on congestion detection and con-
trol in wireless networks is experimental and takes a cross-layer approach, where
transport and MAC layers are involved. Routes are changed reactively (i.e., they
are non-oblivious), and an all-to-all communication pattern is not assumed. We
mention two of the papers in this area to give a flavor of the techniques used. Hull
et al.12 look at mitigating the congestion using mechanisms such as hop-by-hop flow
control, source-rate limiting schemes, and a prioritized MAC layer. Wan et al.31 pro-
pose an approach in which nodes monitor the channel to detect congestion, in the
event of which they broadcast backpressure messages upstream towards the source,
which in turn can reduce its sending rate. In addition, a closed-loop multi-source
regulation mechanism is employed.

Network Layer Approaches. Another class of strategies to reduce maximum load
consists of using multiple paths to distribute routing load. Pham and Perreau25 pro-
pose the use of multiple paths to mitigate the crowded center effect. They analyze
and compare reactive single-path and multi-path routing with load-balance mech-
anisms in ad hoc networks, in terms of overhead, traffic distribution and connec-
tion throughput. RMRP is an AODV-based multi-path routing protocol in which
sensor nodes set up double routing paths toward sink nodes in an AODV fashion
and select one of them randomly for forwarding a packet18. However, Ganjali and
Keshavarzian7 suggest that the load distribution in multi-path routing would be
almost identical to that in single-path routing unless an infeasibly large number of
paths is used.

Load versus Stretch Factor. The tradeoff between load and stretch factor in
wireless networks has been studied by Meyer et al.23 and Gao and Zhang9. For
growth-bounded wireless networks, Gao and Zhang9 describe routing policies that
achieve a stretch factor of c and a load-balancing ratio of O((n/c)1−1/k), where k

denotes the growth rate and the ratio measures maximum load for a given routing
policy relative to the optimal policy. They also derive a routing policy for unit disk
graphs with bounded density and show that if the density is constant, shortest-path
routing has a load-balancing ratio of Θ(

√
n). The communication patterns consid-

ered are arbitrary, the lower bound does not derive from the all-to-all communication
pattern, and the routing policies are not oblivious. Gao and Zhang8 give a routing
policy that achieves a good tradeoff between stretch factor and load balance for the
special case when all nodes are located in a narrow strip of width at most

√
3/2 times

the transmission radius. Their analysis is not specific to the all-to-all communication
pattern.
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Graphs Network Models. The all-to-all communication pattern has been studied
extensively in the context of interconnection networks, and particularly in WDM
optical networks. In this context, Chung et al.4 define the forwarding index of a
communication network with respect to a specific routing policy to be the maximum
number of paths going through any vertex in the graph. The forwarding index of the
network itself is the minimum over all possible routing policies for the network. This
notion was extended to the maximum load on an edge11, which is more appropriate
to wired networks. For wireless networks, however, the node forwarding index is a
better representative of the load on a wireless node. While the node forwarding index
for specific networks, including ring and torus networks, has been derived exactly4,
it has not been studied for two-dimensional grid networks, which would perhaps be
a good approximation for the dense wireless networks of interest to us. Our results
in Section 7 provide an approximation for the forwarding index in grid graphs for
the class of one-turn rectilinear routing schemes.

Planar Region Network Models. Few results address the problem of reducing
load in all-to-all communication on networks contained in a continuous region in the
plane – the model of interest in this paper. The average load for straight-line routing
in a continuous convex region is proportional to the expected distance between
two points selected at random in that region (see Proposition 2.1); Bailey et al.1,
Dunbar5, and Santaló28 evaluate this distance for various convex regions including
squares, rectangles, and disks. Hyytiä et al.13, Hyytiä and Virtamo14,15,16, Pham and
Perreau25, and Popa et al.26 analytically derive the load of straight-line routing at
an arbitrary point in a disk on the plane; as in this paper, the network is modelled as
a continuous region rather than as a discrete set of nodes. In a recent result, Hyytiä
and Virtamo16 consider load balancing on the unit disk and the unit square in terms
of vector flow fields. Although they derive a flow on the unit square whose maximum
load is theoretically lower than that of our diagonal rectilinear policy, there is no
obvious way to implement this strategy. In particular, Hyytiä and Virtamo16 state
that “future work includes developing efficient algorithms to find optimal paths in
[a] distributed and scalable fashion”.

Some recent papers propose implementable routing stretegies with the aim of re-
ducing maximum congestion; exact bounds for the average or maximum load induced
by their strategies are not given. For example, Busch et al.3 analyze load-balanced
routing on graphs embedded in the plane via an intermediate node selected at ran-
dom near the perpendicular bisector of the origin and destination; although their
result is on discrete networks, the strategy described by Busch et al. is geometric
and can be generalized to the continuous setting (see Section 9). No non-trivial
bounds on load have been provided for this strategy. Popa et al.26 propose a routing
policy called curveball routing and present experimental results comparing straight-
line routing to curveball routing in disk-, square- and rectangular-shaped regions,
providing evidence that curveball routing achieves a reduction in maximum load in
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such regions. No theoretical bounds are given on either the stretch factor or the
maximum load in the network. At present, therefore, our diagonal rectilinear rout-
ing policy remains the best simple (easily-implementable in a scalable distributed
fashion) path selection strategy with a provable upper bound on maximum load.

4. Straight-Line Routing on a Square

In this section we examine the load of straight-line routing on the unit square and
derive formulas for the load at an arbitrary point p, the maximum load, and the
average load.a These values serve as benchmarks against which the optimality of all
other routing policies on the unit square are compared.

4.1. Average Load

By Proposition 2.1, the average load in the unit square under straight-line routing is
equal to the expected distance between two points selected at random in the square.
This value is a box integral with the following solution1,5,28:

lengthavg(S) =

1 1 1 1∫∫∫∫
0 0 0 0

√
(ux − vx)2 + (uy − vy)2 dvy dvx duy dux

=
2 +

√
2 + 5 ln(1 +

√
2)

15
≈ 0.5214. (4.1)

By (2.7), the average load (and maximum load) of any routing policy on the unit
square is bounded from below by (4.1).

4.2. Load at an Arbitrary Point

Since straight-line routing is symmetric in the x- and y-dimensions, we derive the
load at an arbitrary point p located in the first octant of the unit square. The load
at an arbitrary point in the unit square is then easily found using the appropriate
coordinate transformation.

Theorem 4.1. Given a point p = (px, py) such that 1/2 ≤ py ≤ px ≤ 1, the load
at p using straight-line routing is given by (4.4).

Proof. A route passes through point p if and only if point p lies on the line seg-
ment between the origin u and the destination v. Thus, the load at p is calculated

aAfter these results appeared in conference form6 and shortly before submission of this manuscript,
the authors learned that the result of Theorem 4.2 was recently independently derived by Hyytiä
and Virtamo16 using methods involving vector flow fields and will appear in the 2008 Conference
on Next Generation Internet Networks. We include our independent proof of Theorem 4.2 for
completeness.
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by integrating over all lines through p, all origin points u on the line segment be-
tween p and the boundary of the square, and all destination points v on the line
segment between p and the opposite boundary of the square, where the integrand
is appropriately weighted such that points are distributed uniformly in the square.

p
y

p
x

b(  )θ

a(  )θ γ

δ
α

β

γβ

δ
α

θ
θ

1−p

1−py

x

p

Fig. 1. Deriving the load at a point p by straight-line routing

Let lθ denote the line through p parallel to the vector (cos θ, sin θ). Let a(θ)
and b(θ) denote the lengths of the corresponding line segments of lθ contained in
[0, 1]2 that lie above and below p, respectively. The values of a(θ) and b(θ) can be
expressed in terms of θ, px, and py by considering the different cases as θ increases
and lθ intersects different edges of the square’s boundary. As illustrated in Figure 1,
let α = tan−1(py/px), β = tan−1((1 − px)/(1 − py)), γ = tan−1((1 − px)/py), and
δ = tan−1((1 − py)/px). This divides the interval [0, π] into six intervals: [0, α],
[α, π/2 − β], [π/2 − β, π/2], [π/2, π/2 + γ], [π/2 + γ, π − δ], and [π − δ, π]. The
corresponding values for a(θ) and b(θ) are given in Table 1. Let λθ

S(p) denote the
contribution to load at p for routes that lie on lθ. Since θ rotates about p, origins
and destinations must be weighted by their distance from p. As is done in Refs. 13
and 15, this weighting gives

λθ
S(p) = a(θ)b(θ)[a(θ) + b(θ)]. (4.2)

Table 1. Values of a(θ), b(θ), and a(θ)b(θ)[a(θ) + b(θ)]

range of θ a(θ) b(θ) a(θ)b(θ)[a(θ) + b(θ)]

[0, α] (1− px) sec θ px sec θ (1− px)px · sec3 θ

[α, π/2− β] (1− px) sec θ py csc θ (1− px)2py · sec2 θ csc θ

+(1− px)p2
y · sec θ csc2 θ

[π/2− β, π/2] (1− py) csc θ py csc θ (1− py)py · csc3 θ

[π/2, π/2 + γ] (1− py) csc θ py csc θ (1− py)py · csc3 θ

[π/2 + γ, π − δ] (1− py) csc θ −(1− px) sec θ (1− py)(1− px)2 · csc θ sec2 θ

−(1− py)2(1− px) · csc2 θ sec θ

[π − δ, π] −px sec θ −(1− px) sec θ −px(1− px) · sec3 θ
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For all θ, (4.2) can be decomposed into functions fi1(px, py) ·gj1(θ) or fi1(px, py) ·
gj1(θ) + fi2(px, py) · gj2(θ) such that fik is independent of θ and gjk

is independent
of px and py for k ∈ {1, 2}. Function fik corresponds to one of seven functions that
are quadratic in px or py, whereas gjk

corresponds to one of four functions that are
cubic in sec θ or csc θ. See Table 1. Below are indefinite integrals with respect to θ

for each of the four possible functions gjk
:

Let h1(θ) =
∫

sec3 θ dθ =
{

1
2 [tan θ sec θ + ln(sec θ + tan θ)] , if θ ∈ [0, π/2],
1
2 [tan θ sec θ + ln(− sec θ − tan θ)] , if θ ∈ [π/2, π],

h2(θ) =
∫

csc3 θ dθ =
1
2

[− cot θ csc θ + ln(csc θ − cot θ)] ,

h3(θ) =
∫

csc2 θ sec θ dθ =
{
− csc θ + ln(sec θ + tan θ), if θ ∈ [0, π/2],
− csc θ − ln(− sec θ + tan θ), if θ ∈ [π/2, π],

h4(θ) =
∫

csc θ sec2 θ dθ = sec θ + ln(csc θ − cot θ). (4.3)

The load at p is given by

λS(p) =
∫ π

0
λθ

S(p) dθ

=
∫ π

0
a(θ)b(θ)[a(θ) + b(θ)] dθ,

=
∫ α

θ=0
(1− px)px sec3 θ dθ +

∫ π/2−β

θ=α
(1− px)2py csc θ sec2 θ + (1− px)p2

y csc2 θ sec θ dθ

+
∫ π/2

θ=π/2−β
(1− py)py csc3 θ dθ +

∫ π/2+γ

θ=π/2
(1− py)py csc3 θ dθ

+
∫ π−δ

θ=π/2+γ
(1− py)(1− px)2 csc θ sec2 θ − (1− py)2(1− px) csc2 θ sec θ dθ

+
∫ π

θ=π−δ
−px(1− px) sec3 θ dθ

= (1− px)px

[∣∣∣α
θ=0

h1(θ)
]

+ (1− px)2py

[∣∣∣π/2−β

θ=α
h4(θ)

]
+ (1− px)p2

y

[∣∣∣π/2−β

θ=α
h3(θ)

]
+ (1− py)py

[∣∣∣π/2

θ=π/2−β
h2(θ)

]
+ (1− py)py

[∣∣∣π/2+γ

θ=π/2
h2(θ)

]
+ (1− py)(1− px)2

[∣∣∣π−δ

θ=π/2+γ
h4(θ)

]
− (1− py)2(1− px)

[∣∣∣π−δ

θ=π/2+γ
h3(θ)

]
− px(1− px)

[∣∣∣π
θ=π−δ

h1(θ)
]

. (4.4)

Expression (4.4) has a closed-form polylogarithmic representation (free of any
trigonometric terms). The complete expression is not reproduced here due to the
large number of terms but can be easily reconstructed from (4.3) and (4.4). Figure 8
displays a plot of (4.4) for p ∈ [0, 1]2.
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4.3. Maximum Load

We now derive the maximum load for straight-line routing on the unit square and
show that this value is realized at the center of the square.

Theorem 4.2. The maximum load for straight-line routing on the unit square is

λmax(S) =
1√
2

+
3
8

ln(
√

2 + 1)− 1
8

ln(
√

2− 1) ≈ 1.1478, (4.5)

realized uniquely at the center of the square.

Proof. Choose any point p = (px, py) in the unit square [0, 1]2.
Case 1. Suppose p lies in the first octant of the square. That is, 1/2 ≤ py ≤ px ≤

1.
Case 1a. Suppose px 6= py. We show that if px decreases (i.e., p moves left toward

the diagonal px = py) then the load increases. It suffices to show that a(θ)b(θ)[a(θ)+
b(θ)] increases for all θ, where a(θ) and b(θ) are defined as in (4.2). Choose any
θ ∈ [0, π]. Consider again the six intervals θ ∈ [0, α], [α, π/2 − β], [π/2 − β, π/2],
[π/2, π/2 + γ], [π/2 + γ, π− δ], and [π− δ, π], where α, β, γ, and δ are defined as in
the proof of Theorem 4.1.

It is straightforward to see that for four of the intervals, a(θ)b(θ) and a(θ)+ b(θ)
are either unchanged or increased. See Table 2. The only decrease occurs when
θ ∈ [0, α] or θ ∈ [π − δ, π]. However, a(θ) + b(θ) remains unchanged over both of
these intervals, i.e., a(θ) = k − b(θ), where k = a(θ) + b(θ) is constant. Since the
function x(k − x) is decreasing on the interval x ∈ [k/2, k], it follows that a(θ)b(θ)
increases as p moves left.

Table 2. Analyzing the magnitude of a(θ)b(θ) and a(θ) + b(θ) as p
moves along the x-axis towards the square’s diagonal

range of θ a(θ) b(θ) a(θ)b(θ) a(θ) + b(θ)

[0, α] increases decreases ? unchanged
[α, π/2− β] increases unchanged increases increases
[π/2− β, π/2] unchanged unchanged unchanged unchanged
[π/2, π/2 + γ] unchanged unchanged unchanged unchanged
[π/2 + γ, π − δ] unchanged increases increases increases
[π − δ, π] decreases increases ? unchanged

Case 1b. Suppose px = py. Observe that α = β = π/2. Consequently, the interval
[α, π/2 − β] is empty. Using argument analogous to that used in Case 1, it follows
that a(θ)b(θ)[a(θ) + b(θ)] increases as p moves along the diagonal px = py toward
the center of the square.

Together, Cases 1a and 1b imply that if p lies in the first octant then the maxi-
mum load is achieved at p = (1/2, 1/2).

Case 2. Suppose p does not lie in the first octant of the square. Using an argument
analogous to Case 1 for the corresponding octant, it follows that the maximum load
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increases as p approaches (1/2, 1/2).
The result follows upon substituting p = (1/2, 1/2) in (4.4).

5. One-Turn Rectilinear Routing on a Square

In this section we consider various one-turn rectilinear routing policies on the unit
square and compare these against straight-line routing. Our objective in designing
these policies was to reduce the maximum load by redirecting routes for selected re-
gions of origin-destination pairs away from high-traffic areas and towards low-traffic
areas while maintaining a low stretch factor. Sections 5.1 and 5.2 begin by deriving
the average load and stretch factor for any monotonic rectilinear routing policy. In
Section 5.3 we introduce diagonal rectilinear routing, and derive the corresponding
load at an arbitrary point and the maximum load. In Section 5.4 we describe other
one-turn rectilinear routing policies considered whose maximum load is worse than
that of diagonal rectilinear routing. These results are summarized in Section 5.5.

5.1. Average Load

Theorem 5.1. The average load for any monotonic rectilinear routing policy on
the unit square is 2/3.

Proof. By Proposition 2.1 and (2.10), the average load is equal to the average `1

distance between two points in the unit square. This value is

λavg(P ) =

1 1 1 1∫∫∫∫
0 0 0 0

|ux − vx|+ |uy − vy| dvy dvx duy dux =
2
3
. (5.1)

5.2. Average Stretch Factor

It is straightforward to see that the maximum stretch factor for any monotonic
rectilinear routing policy is

√
2. We now consider the average stretch factor.

Theorem 5.2. The average stretch factor for any monotonic rectilinear routing
policy P on the unit square is

stravg(P ) =
1
6

(
10 ln(2 +

√
2) + 2

√
2− 4− 5 ln(2)

)
≈ 1.2737. (5.2)

Proof. The result follows by reparameterizing (2.8) first to two parameters and
then into polar coordinates. By (2.6), (2.8), and (2.10),

stravg(P ) =

1 1 1 1∫∫∫∫
0 0 0 0

|ux − vx|+ |uy − vy|√
(ux − vx)2 + (uy − vy)2

dvy dvx duy dux (5.3)
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By symmetry, it suffices to consider routes for which the destination appears above
and to the right of the origin, resulting in a scalar factor of 4. The number of param-
eters can be reduced to two because stretch factor is invariant under translation.
That is, every combination of length and orientation of line segment is weighed by
the measure of the set of all similar line segments within the unit square. For each
(x, y), let Lx,y denote the set of line segments contained within the unit square that
are parallel to and of equal length to the line segment from (0, 0) to (x, y); the set
Lx,y has measure (1 − x)(1 − y), resulting in the following reparameterization of
(5.3):

=

1 1∫∫
0 0

4(1− x)(1− y)
x + y√
x2 + y2

dy dx (5.4)

Next we express (5.4) in polar coordinates by substituting x = r cos θ and y = r sin θ.
Angle θ is in the range [0, π/2] since the destination is above and to the right of
the origin. The range [π/4, π/2] is symmetric with the range [0, π/4] on the unit
square. Consequently, a factor of 2 is introduced since θ ranges over [0, π/4] in our
calculation. A multiplicative factor of r is necessary for scaling by the distance from
the point of rotation. This gives the following reparameterization of (5.4):

= 2
∫ π/4

0

∫ sec θ

0
4(1− r cos θ)(1− r sin θ)r

(
r cos θ + r sin θ

r

)
dr dθ

=
1
6

(
10 ln(2 +

√
2) + 2

√
2− 4− 5 ln(2)

)
.

5.3. Diagonal Rectilinear Routing

We define a routing policy in terms of the partition of the unit square induced by
its two diagonals. Let R1 through R4 denote the four regions of the partition such
that R1 is at the bottom of the square and the regions are numbered in clockwise
order. If the origin lies in R1 or R3, the row-first route is selected. Otherwise, the
column-first route is selected. See Figure 2. We refer to this routing policy, denoted
PD, as diagonal rectilinear routing.

R1

R3

R4R2

u

u

row first column first

Fig. 2. The row-first route is selected if the origin u lies in regions R1 or R3 (regardless of the
location of the destination). Otherwise, the column-first route is selected.

As we did in Section 4.2, we derive the load at an arbitrary point p located in an
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octant of the unit square since PD is symmetric in the x- and y-dimensions. The load
at an arbitrary point in the unit square is then easily found using the appropriate
coordinate transformation.

Theorem 5.3. Given a point p = (px, py) such that 0 ≤ py ≤ px ≤ 1/2, the load
at p using diagonal rectilinear routing is

λPD
(p) = 2p3

x − 5p2
x +

7
2
px − 2pxpy +

3
2
py − 3p2

y + 2p3
y. (5.5)

Proof. Let u = (ux, uy) denote the origin and let v = (vx, vy) denote the desti-
nation. The relative positions of u, v, and p can be divided into seven cases such
that the load at p corresponds to the sum of the measure of the regions of possible
origin-destination combinations in each case. In Cases 1a through 1d, u lies in region
R1 or R3 and, consequently, the row-first route is selected. In Cases 2a through 2c,
u lies in region R2 or R4 and, consequently, the column-first route is selected. See
Figure 3.

1a 1b 1c 1d 2a 2b 2c

Fig. 3. Illustration in support of Theorem 5.3. The white dot denotes point p. In Cases 1a, 1b,
and 2c the origin u lies on the highlighted line segment and the destination v lies in the shaded
region; the reverse is true in the remaining cases.

Table 3. Measuring load in Cases 1a through 2c

Case
Region

Assumptions
Measure of set of possible

containing u origin-destination pairs

1a R1 ∪R3 uy = py, ux ≤ px, and vx ≥ px (px − py)(1− px)
1b R1 ∪R3 uy = py, ux ≥ px, and vx < px (1− px − py)px

1c R1 ∪R3 uy ≤ py, vx = px, and vy ≥ py py(1− py)2

1d R1 ∪R3 uy ≥ py, vx = px, and vy < py py(1/2− py + p2
y)

2a R2 ∪R4 ux ≤ px, vx ≥ px, and vy = py px(1− px)2

2b R2 ∪R4 ux ≥ px, vx < px, and vy = py px(1/2− px + p2
x)

2c R2 ∪R4 ux = px and vy ≤ py py(1− 2px)

Case 1a. Suppose u ∈ R1 ∪R3, uy = py, ux ≤ px, and vx ≥ px. See Figure 3(1a).
Point u must lie on the highlighted line segment of length px − py. Point v may
lie anywhere in the shaded region of area (1 − px). Therefore, the set of possible
origin-destination pairs has measure (px − py)(1− px).

Cases 1b through 2c follow by analogous arguments. See Table 3. Summing these
seven cases gives (5.5).



July 31, 2009 11:23 WSPC/INSTRUCTION FILE dkknJOIN2009

Balancing Traffic Load Using One-Turn Rectilinear Routing 15

Figure 8 displays a plot of (5.5) for p ∈ [0, 1]2. It is straightforward to find
the roots of the derivatives of (5.5) with respect to px and py, respectively. Upon
substitution back into (5.5), this gives:

Corollary 5.1. The maximum load for diagonal rectilinear routing on the unit
square is

λmax(PD) =
1
27

[√
11− 31

2

]
≈ 0.7771,

realized at

px =
5
6
− 1

3

√
3− 1

2

√
11 ≈ 0.4472 and py =

2
3
−
√

11
6

≈ 0.1139.

5.4. Additional Policies Considered

We describe additional one-turn rectilinear routing policies that were considered
good candidates for reducing the maximum load. In each case, the maximum load
was shown to be strictly greater than that of diagonal rectilinear routing. Recall
that all one-turn rectilinear routing policies have equal average load (Theorem 5.1).
Values and bounds on maximum load for these policies are summaries in Table 4.

5.4.1. Equal Distribution

An equal-distribution policy is a one-turn rectilinear routing policy that assigns the
pairs (u, v) and (v, u) different one-turn rectilinear routes for all u and v whenever
u and v do not lie on the same row or column. Any such policy P corresponds
to a bijection between the set of possible one-turn rectilinear routes and the set
of origin-destination pairs. Such policies include assigning the one-turn rectilinear
route that follows the row-first route, the route that follows a clockwise turn, or
assigning each one-turn rectilinear route at random (in this case, the policy’s load
corresponds to its expected load). A simple equal-distribution strategy to consider
is to assign to each origin-destination pair (u, v) the row-first route. For any point
p ∈ [0, 1]2, λPR

(p) = λP (p), where PR denotes the row-first routing policy and P

denotes any equal-distribution policy.

Theorem 5.4. Given a point p = (px, py), the load at p using a one-turn rectilinear
routing policy PR with equal distribution is

λPR
(p) = 2[px(1− px) + py(1− py)]. (5.8)

Proof. Let u = (ux, uy) denote the origin and let v = (vx, vy) denote the destina-
tion. As illustrated in Figure 4, four cases are possible:

Case 1. Suppose uy = py and vx ≤ px. Node u lies on the line segment of length
1 − px. Node v lies in the rectangular region of area px. Therefore, the space of
possible origin-destination pairs has measure px(1− px).



July 31, 2009 11:23 WSPC/INSTRUCTION FILE dkknJOIN2009

16 Durocher, Kranakis, Krizanc, and Narayanan

1 2 3 4

Fig. 4. Illustration in support of Theorem 5.4. The white dot denotes point p.

Case 2. Suppose uy = py and vx > px. Again, we get px(1− px).
Case 3. Suppose vx = px and uy ≥ py. Analogously, we get py(1− py).
Case 4. Suppose vx = px and uy < py. Again, we get py(1− py).
Summing these four cases gives (5.8).

Figure 8 displays a plot of (5.8) for p ∈ [0, 1]2. It is straightforward to find
the roots of the derivatives of (5.8) with respect to px and py, respectively. Upon
substitution back into (5.8), this gives:

Corollary 5.2. The maximum load for any one-turn rectilinear routing policy PR

with equal distribution is λmax(PR) = 1, realized uniquely at p = (1/2, 1/2).

5.4.2. Outer Turn

Consider the routing policy that selects the one-turn rectilinear route whose inter-
mediate point is furthest from the center of the square. If the two intermediate points
are equidistant from the origin, then a route is assigned as in the equal distribution
policy. See Figure 5.

o

u

vi

i’

Fig. 5. The outer-turn rectilinear routing policy selects the route passing through intermediate
point i′, since point i′ is further from the center of the square (o) than is point i.

Theorem 5.5. The outer-turn rectilinear routing policy P has maximum load
bounded by

λmax(P ) ≥ 1
3
[2 + ln(2)] ≈ 0.8977. (5.9)
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Proof. We show that λP (p) = (5.9) for p = (1/2, 0). Let u = (ux, uy) denote the
origin and let v = (vx, vy) denote the destination. Let i = (ux, vy) and i′ = (vx, uy)
denote the two possible intermediate points. Let o denote the center of the square.
Since py = 0, any route that passes through p implies that uy = 0 or vy = 0.

Case 1. Suppose uy = 0 and vx ≥ 1/2. The outer-turn policy selects the route
passing through p if and only if |o−i| ≤ |o−i′|. Observe that the position of i′ is fixed
for any given value of vx. Furthermore, the measure of the set of possible positions
for i corresponds to the area of the intersection of the circle of radius |o−i′| centered
at o and the left half of the unit square. Let R denote this region. See Figure 6A.
Region R can be divided into two symmetric circular sectors and four symmetric
right-angle triangles. Let x = vx − 1/2 and let θ = arctan(2x) denote the angle of
the triangle opposite the side of length x. The area of each right-angle triangle is
x/4. The area of each circular sector is (π/4− θ)(x2 +1/4). Therefore, region R has
area 2(π/4− θ)(x2 + 1/4) + x. See Figure 6B.

i v

o

i’
u p

x

A B

θ

θ

Fig. 6. Illustration in support of Theorem 5.5. Region R is shaded.

Therefore, the set of possible values for ux, vx, and vy has measure∫ 1/2

0
2
(π

4
− arctan(2x)

)(
x2 +

1
4

)
+ x dx =

1
12

[2 + ln(2)]. (5.10)

Case 2. Suppose uy = 0 and vx < 1/2. Analogously, we get (5.10).
Case 3. Suppose vy = 0 and ux ≥ 1/2. Again, we get (5.10).
Case 4. Suppose vy = 0 and ux < 1/2. Again, we get (5.10).
Summing these four cases gives (5.9).

5.4.3. Line Division

Given an origin-destination pair (u, v), where u 6= v, let l denote the line passing
through origin u and destination v. If l does not pass through the center of the
square, o, select the one-turn rectilinear route whose intermediate point is opposite
l from o. If l passes through o, then a route is assigned as in the equal distribution
policy.
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Theorem 5.6. The line-division rectilinear routing policy P has maximum load
bounded by λmax(P ) ≥ 7/8.

Proof. We show that λP (p) = 7/8 for p = (1/2, 0). Let u = (ux, uy) denote the
origin and let v = (vx, vy) denote the destination. Since py = 0, any route that
passes through p implies that uy = 0 or vy = 0.

o

pu

v

Fig. 7. Illustration in support of Theorem 5.6. Region R is shaded.

Case 1. Suppose uy = 0 and vx ≥ 1/2. It is straightforward to see that v must lie
in the shaded region R as illustrated in Figure 7. Region R has area 1/2−(1/2−ux)/4.
The corresponding set of possible values for ux, vx, and vy has measure∫ 1/2

0

1
2
− 1

4

(
1
2
− ux

)
dux =

7
32

. (5.11)

Case 2. Suppose uy = 0 and vx < 1/2. Analogously, we get (5.11).
Case 3. Suppose vy = 0 and ux ≥ 1/2. Again, we get (5.11).
Case 4. Suppose vy = 0 and ux < 1/2. Again, we get (5.11).
Summing these four cases gives 7/8.

5.5. Comparison and Summary of Results

In this section we introduced diagonal rectilinear routing along with additional one-
turn rectilinear routing policies. The corresponding values for maximum load are
compared against that of straight-line routing in Table 4. Also included in Table 4
is a lower bound on maximum load for any one-turn rectilinear routing policy (see
Section 6). We derived the load at an arbitrary point in the unit square for the
diagonal and equal-distribution policies; plots of these loads are illustrated in Fig-
ure 8 along with the corresponding plot for straight-line routing. The plots provide
intuition as to how the load is distributed to reduce the maximum load under the
constraint that average load remains constant at 2/3. With respect to the objec-
tive of minimizing the maximum load, the diagonal rectilinear routing policy, PD,
achieves the lowest maximum load (0.7771), significantly lower than the maximum
load of straight-line routing (1.1478) and not much greater than the lower bound
(0.7076).



July 31, 2009 11:23 WSPC/INSTRUCTION FILE dkknJOIN2009

Balancing Traffic Load Using One-Turn Rectilinear Routing 19

1
0 0.81

0.2

0.8

0.4

0.6

0.6

0.6

0.8

x0.4

1

0.4y

1.2

0.20.2
00

1
0 0.81

0.2

0.8

0.4

0.6

0.6

0.6

0.8

x0.4

1

0.4y

1.2

0.20.2
00

1
0 0.81

0.2

0.8

0.4

0.6

0.6

0.6

0.8

x0.4

1

0.4y

1.2

0.20.2
00

Fig. 8. These plots display λP (p) for p ∈ [0, 1]2 for three routing policies: (left to right) straight-line
S, equal distribution PR, and diagonal PD.

6. Lower Bounds on Load for One-Turn Rectilinear Routing
Policies

Naturally, no monotonic rectilinear routing policy can have a maximum load less
than the average load of 2/3. In this section we establish a stronger lower bound on
the maximum load of any one-turn rectilinear routing policy.

Theorem 6.1. No one-turn rectilinear routing policy can guarantee a maximum
load less than 0.7076.

In brief, the proof capitalizes on the observation that load is low near the corner
regions of the square for any one-turn rectilinear routing. An upper bound on the
average load in the corner regions provides a corresponding lower bound on the
average load and, therefore, maximum load, in the remaining region of the unit
square.

Let R1 denote the lower left corner region of the unit square [0, 1]2 bounded
by the diagonal from (0, k) to (k, 0) for a fixed k ∈ (0, 1/2). Let λR1

avg(P ) denote
the average load for points in R1 under policy P on the unit square. The proof of
Theorem 6.1 relies on the following lemma.

Lemma 6.1. For any one-turn rectilinear routing policy P on the unit square,

λR1
avg(P ) ≤ 2k3

15
− 4k2

3
+ 2k.

Proof. Choose any one-turn rectilinear routing policy P . Let p = (px, py) denote
a point in R1. Let u = (ux, uy) and v = (vx, vy) denote the origin and destination,
respectively, of a one-turn rectilinear route that passes through p. Up to two routes
are possible for every such u and v, one of which passes through p. We consider eight
cases with respect to the relative positions of p, u, and v. See Figure 9. An upper
bound on average load in R1 is given by considering the load at p for the route that
contributes the greatest load to R1 in each case, summing these contributions for
all cases, and integrating over all p in R1.
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Case 1. Suppose ux = px, uy ≥ py, vx ≤ px, and vy ≤ py. By symmetry, this
is equivalent to the case in which u and v are interchanged (the same holds for
Cases 2 through 8). Both routes from u to v have equal contributions to load in R1

but only one of these passes through p. The contribution to load at p is at most
(1− py)pxpy + py(1− px)(1− py).

Case 2. Suppose ux = px, uy ≥ py, vx ≥ px, and vy ≤ py. The route from u to v

that maximizes load in R1 passes through p. Therefore, the contribution to load at
p is at most 2(1− py)py(1− px).

Case 3. Suppose ux = px, uy ≤ py, vx ≥ px, and vy ≥ py. An argument analogous
to Case 1 shows that the contribution to load at p is at most (1− py)pxpy + py(1−
px)(1− py).

Case 4. Suppose ux = px, uy ≤ py, vx ≤ px, and vy ≥ py. The route from u to v

that maximizes load in R1 avoids p. Therefore, the contribution to load at p is 0.

7 8654321

Fig. 9. Illustration in support of Theorem 6.1. The white dot denotes point p. Cases 2. & 8. The
route must pass through p since it maximizes the load in R1. Cases 1., 3., 5. & 7. Both routes
contribute equally to the load in R1. Cases 4. & 6. This route will not pass through p since it
does not maximize the load in R1.

Analogous arguments give (1−px)pxpy for Case 5, 0 for Case 6, px(1−py)(1−px)
for Case 7, and 2(1− px)px(1− py) for Case 8. The load at p is bounded from above
by the sum of the upper bounds on the contributions of Cases 1 though 8:

∀p ∈ R1, λP (p) ≤ 3px(1− px) + 3py(1− py) + 2pxpy(px + py)− 4pxpy. (6.2)

By (2.2) and (6.2),

λR1
avg(P ) =

1
Area(R1)

∫ k

0

∫ k−x

0
λP (p) dpy dpx ≤

2k3

15
− 4k2

3
+ 2k.

The upper bound on average load in corner regions implies a corresponding lower
bound on average load in the complementary region, which in turn provides a lower
bound on the maximum load over the entire unit square. We now prove Theorem 6.1.

Proof. Choose any one-turn rectilinear routing policy P . Region R1 is symmetric
to the three other corner regions of the unit square, denoted by R2, R3, and R4. Let
R = R1 ∪R2 ∪R3 ∪R4, let Q = [0, 1]2−R, and let λQ

avg(P ) denote the average load
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in Q. By (2.2), Theorem 5.1, and Lemma 6.1,

λavg(P ) = Area(R)λR1
avg(P ) + Area(Q)λQ

avg(P )

⇔ 2
3

= 2k2λR1
avg(P ) + (1− 2k2)λQ

avg(P )

⇔ λQ
avg(P ) =

2
3 − 2k2λR1

avg(P )
1− 2k2

≥ 10− 4k5 + 40k4 − 60k3

15(1− 2k2)
. (6.4)

Exp. (6.4) is maximized when k ≈ 0.3271; the exact value of k corresponds to the
unique root of

6k5 − 40k4 + 25k3 + 40k2 − 45k + 10 = 0

whose value lies in the interval (0, 1/2). Substituting this value for k in (6.4) gives
λQ

avg(P ) ≥ 0.7076. Let λQ
max(P ) denote the maximum load in Q. By (2.2) and (2.5),

and because Q ⊆ [0, 1]2,

λmax(P ) ≥ λQ
max(P ) ≥ λQ

avg(P ) ≥ 0.7076.

7. Optimal Randomized One-Turn Rectilinear Routing Policies

In this section we give a characterization of the optimal randomized one-turn rec-
tilinear policy as the solution of an optimization problem and provide an efficient
procedure for approximating it. A deterministic one-turn rectilinear policy is equiv-
alent to a function P : [0, 1]4 → {0, 1} where P (u, v, s, t) = 1 if and only if the route
from (u, v) to (s, t) uses the column-first path. (Note that in all rectilinear schemes
if u = s or v = t the straight-line path is always taken. In this case we define
P (u, v, u, t) = P (u, v, s, v) = 1.) We can generalize this to randomized rectilinear
schemes by considering Q : [0, 1]4 → [0, 1] where if Q(u, v, s, t) = q then a packet
travelling from point (u, v) to (s, t) takes the the column-first path with probability
q and the row-first path with probability 1− q. For a given Q the expected load at
a point (x, y) is given by

λ(x, y) =
∫ 1

x

∫ x

0

∫ 1

0
Q(s, t, u, y) + 1−Q(u, y, s, t) dt ds du

+
∫ x

0

∫ 1

x

∫ 1

0
Q(s, t, u, y) + 1−Q(u, y, s, t) dt ds du

+
∫ y

0

∫ 1

0

∫ 1

y
Q(x, v, s, t) + 1−Q(s, t, x, v) dt ds dv

+
∫ 1

y

∫ 1

0

∫ y

0
Q(x, v, s, t) + 1−Q(s, t, x, v) dt ds dv.

The optimal policy is given by the solution to the following optimization problem:

min
Q

max
(x,y)

λ(x, y).
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While we cannot directly solve this problem, we can approximate it by considering
finer and finer partitions of the square into n2 subsquares of size 1/n by 1/n and
giving a policy for all packets routing between each pair of subsquares. Now our
problem is equivalent to finding a randomized one-turn rectilinear routing policy for
an n × n grid that minimizes the number of packets using any particular node of
the grid under an all-to-all communication pattern.

Let pijkl, 1 ≤ i, j, k, l ≤ n, be the probability that a packet starting in subsquare
(i, j) going to subsquare (k, l) uses the column-first path. The expected load at any
point in subsquare (r, s) for the case when 1 ≤ r, s ≤ dn/2e is bounded from above
by:

λ(r, s) ≤ 1
n3

(
n∑

i=r+1

r∑
k=1

n∑
l=1,l 6=s

(pklis + 1− piskl) +
r−1∑
i=1

n∑
k=r

n∑
l=1,l 6=s

(pklis + 1− piskl)

+
s−1∑
j=1

n∑
k=1,k 6=r

n∑
l=s+1

(prjkl + 1− pklrj) +
n∑

j=s+1

n∑
k=1,k 6=r

s−1∑
l=1

(prjkl + 1− pklrj)

+ 2(n− s)(s− 1) + 2(n− r)(r − 1) + (n− 1)(n− r + n− s)

+ 2(r − 1) + 2(s− 1) +
2(n− r)2

n− 1
+

2(n− s)2

n− 1
+ 1

)
.

Bounds for the cases dn/2e < r ≤ n, 1 ≤ s ≤ dn/2e; dn/2e < s ≤ n, 1 ≤ r ≤
dn/2e; and dn/2e < r, s ≤ n are similar. Our problem now reduces to

min
pijkl

max
r,s

λ(r, s),

which is equivalent to the following linear program with n4+1 variables and 2n4+n2

constraints (solvable in polynomial time):

Minimize z subject to
0 ≤ pijkl ≤ 1,

1 ≤ i, j, k, l ≤ n,

z − λ(r, s) ≥ 0,

1 ≤ r, s ≤ n.

Table 5 shows an upper bound on the maximum load achieved by the policy
obtained by using an n×n grid to approximate the unit square for 2 ≤ n ≤ 20. The
results indicateb that the optimal policy achieves a maximum load of approximately
0.73. The solutions were found using the Gnu Linear Programming Kit19. We were
unable to obtain results for larger n due to memory limitations.

bAlthough the sequence converges, due to increased load in the central subsquare when n is odd, the
difference between successive values for maximum load alternates in magnitude; observe that the
differences between successive odd values of n and successive even values of n are both decreasing
sequences that converge to zero.
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The approach taken here can easily be extended to find the optimal randomized
policy for a k × 1 rectangle using a grid of size n × kn. A similar mixed integer
linear program could be developed to approximate the best deterministic one-turn
rectilinear scheme. This would be equivalent to computing the forwarding index of
the n× n grid when the paths are restricted to one-turn rectilinear paths. We were
unable to determine if the resulting problem is solvable in polynomial time. (The
forwarding index problem is NP-hard in general27.) One could extend this idea to
obtain a linear program approximation to the best monotonic rectilinear scheme
but the resulting linear program would have an exponential number of variables (for
each of the exponential number of potential paths).

8. Generalizing to Rectangular Regions

In this section we briefly mention generalizations of our results to a k×1 rectangular
region. These results follow by arguments analogous to those used to prove the
corresponding results on square regions; as such, the proofs are straightforward to
derive and have been omitted.

8.1. Straight-Line Routing

The proof of Theorem 4.2 generalizes to rectangles. The corresponding maximum
load under straight-line routing for any k is

λmax(S) =
1
4

[
2k
√

k2 + 1 + k3 ln(1 +
√

k2 + 1)− k3 ln(k) + ln(k +
√

k2 + 1)
]
.

As shown by Santaló28, the average distance between two points in the rectangle is

lengthavg(S) =
1
15

[
k3 +

1
k2

+
√

1 + k2

(
3− k2 − 1

k2

)
+

5
2

(
1
k

ln
(
k +

√
1 + k2

)
+ k2 ln

(
1 +

√
1 + k2

k

))]
,

for all k ≥ 1. By Proposition 2.1 it follows that λavg(S) = k · lengthavg(S).

8.2. Diagonal Rectilinear Routing

Theorem 5.3 also generalizes, giving that for any k the load under diagonal rectilinear
routing at a point p = (px, py) is

λPD
(p) =


7
2kpx − k2py − 5p2

x + 5
2kpy

−3kp2
y + 2kp3

y + 2
kp3

x − 2pxpy, if px ∈ [0, k/2], py ∈ [0, px/k],
7
2kpy − 5kp2

y − px + 5
2kpx

−3kp2
x + 2

kp3
x − 2pxpy + 2kp3

y, if px ∈ [0, kpy], py ∈ [0, 1/2],

(8.2)

where 0 ≤ px ≤ k/2 and 0 ≤ py ≤ 1/2. For k ≥ 3/2, we conjecture that (8.2) achieves
maxima at p ∈ {(k/2, 0), (k/2, 1)} with corresponding load λmax(PD) = 3k2/4. By
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Proposition 2.1, the average load for any monotonic rectilinear routing policy P is

λavg(P ) = k·lengthavg(PD) =
1
k

k 1 k 1∫∫∫∫
0 0 0 0

|ux−vx|+|uy−vy| dvy dvx duy dux =
k(k + 1)

3
,

providing a generalization of Theorem 5.1. Observe that

lim
k→∞

λavg(P )
λavg(S)

= 1,

where P denotes any monotonic rectilinear routing policy. An argument based on
bisection width gives a lower bound of k2/2 on maximum load for any routing policy.

9. Discussion

Applicability to the Discrete Network Setting. We have investigated the class
of one-turn rectilinear routing policies on square and rectangular regions with the
aim of reducing the maximum load while maintaining a low stretch factor. Our
techniques model a dense wireless network with uniformly distributed nodes as a
continuous space, enabling us to analyze the maximum or average load for various
routing policies. We now consider how our results in the continuous setting relate
to a discrete network setting. In particular, how would straight-line or one-turn
rectilinear routing policies actually be implemented? Straight-line routing can be
approximated by using either greedy22 or compass routing20. The calculation that
a forwarding node performs to determine the next node is entirely local; a node
only needs to know its own coordinates, the coordinates of its neighbors, and the
coordinates of the destination.

For one-turn rectilinear routing policies, suppose a message originating at a node
located at (ux, uy) is trying to reach its destination node located at (vx, vy) using
a row-first rectilinear route. The node can approximate a straight-line route to the
point (vx, uy) (where there may or may not be a network node located) and then
approximate a straight-line route to the final destination. The packet header needs
only to contain the final destination’s address and one bit to indicate whether a row-
first or a column-first rectilinear route is being followed. In the diagonal rectilinear
policy, for instance, a node can determine from its own coordinates whether a row-
first or column-first route should be chosen, set the appropriate bit in the packet
header, and forward appropriately.

In curveball routing26, every node must store or compute its spherical coordi-
nates in addition to knowing its Cartesian coordinates within the unit disk. This
information is not local; to compute its spherical coordinates, a node requires knowl-
edge of its relative position between the center and the boundary of the disk. The
network flows described in Ref. 16 have no obvious simple implementation on a
discrete network.
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Directions for Future Research. The results of Section 7 make it clear that
randomization can help in lowering the maximum load induced by a rectilinear
policy. Finding a simple randomized rectilinear policy that would improve on the
diagonal rectilinear policy would be an interesting challenge. While the results for
squares translate easily to rectangles, it would be interesting to investigate other
convex regions, as well as regions that contain holes.

While the focus of this paper is on one-turn rectilinear routing policies, many
other strategies could result in possible solutions and remain to be analyzed. For
example, instead of selecting one of two rectilinear intermediate points at random
as in the equal distribution routing policy, an intermediate point could be selected
at random from a subregion of the unit square. An intermediate point selected uni-
formly at random from the entire unit square and then connected to the origin and
destination by straight-line routes results in an expected load exactly double that of
straight-line routing. Perhaps a better strategy is one similar to that described by
Busch et al.3 for graphs embedded in the plane, which can be generalized to convex
regions. In this case, an intermediate point is selected at random from an interval
of the perpendicular bisector of the origin and destination nodes. At this point, no
non-trivial bounds on maximum load are known for this strategy. Popa et al.26 men-
tion empirical results for adapting the curveball routing policy to the unit square.
Theoretical bounds on load for this strategy remain to be analyzed. Finally, Hyytiä
and Virtamo16 have recently analyzed flows and vector fields to define generalized
routing strategies on the unit disk and unit square. Although these results provide
values for loads that can theoretically be achieved, these loads remain to be realized
by a simple distributed routing policy. These are some of the several directions that
remain to be explored to identify simple routing strategies on convex planar regions
with the objective of minimizing maximum load and stretch factor.
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Table 4. Comparing routing policies on the
unit square

routing policy avg. load max. load

straight-line S 0.5214 1.1478
diagonal PD 2/3 0.7771
equal distribution PR 2/3 1
outer turn 2/3 ≥ 0.8977
division line 2/3 ≥ 7/8
lower bound 0.7076

Table 5. Approximations to the optimal randomized policy using an n×n
grid, for n ≤ 20

n max. load 5 0.8009 9 0.7610 13 0.7435 17 0.7353
2 1.0000 6 0.7813 10 0.7530 14 0.7404 18 0.7329
3 0.8889 7 0.7759 11 0.7499 15 0.7393 19 0.7325
4 0.8264 8 0.7650 12 0.7446 16 0.7364 20 0.7310


