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Abstract. A strict orthogonal drawing of a graph G = (V,E) in R2 is
a drawing of G such that each vertex is mapped to a distinct point and
each edge is mapped to a horizontal or vertical line segment. A graph G
is HV -restricted if each of its edges is assigned a horizontal or vertical
orientation. A strict orthogonal drawing of an HV -restricted graph G
is good if it is planar and respects the edge orientations of G. In this
paper we give a polynomial-time algorithm to check whether a given
HV -restricted plane graph (i.e., a planar graph with a fixed combinato-
rial embedding) admits a good orthogonal drawing preserving the input
embedding, which settles an open question posed by Maňuch, Patterson,
Poon and Thachuk (GD 2010). We then examine HV -restricted pla-
nar graphs (i.e., when the embedding is not fixed). Here we completely
characterize the 2-connected maximum-degree-three HV -restricted out-
erplanar graphs that admit good orthogonal drawings.

1 Introduction

An orthogonal drawing Γ of an undirected graph G = (V,E) in R2 is a drawing
of G in the plane, where each vertex of G is mapped to a distinct point and
each edge of G is mapped to an orthogonal polyline. Γ is called planar if no
two edges in Γ cross, however, two edges can meet at their common endpoints.
Otherwise, the drawing is a non-planar orthogonal drawing. Orthogonal drawings
have been extensively studied over the last two decades [1, 3, 8, 14, 16] because
of its applications in many practical fields such as VLSI floor-planning, circuit
schematics, and entity relationship diagrams.

An orthogonal drawing is strict if every edge in the drawing is represented
by a single vertical and horizontal line segment. In 1987, Tamassia [14] gave
a polynomial-time algorithm to decide whether a plane graph (i.e., when the
embedding is fixed) admits a strict orthogonal drawing preserving the input
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embedding. Later, Garg and Tamassia [6] proved that deciding strict orthogonal
drawability is NP-hard for planar graphs (i.e., when the embedding is not fixed).
However, polynomial time algorithms have been developed for some well-known
subclasses of planar graphs. For example, Di Battista et al. [1] showed that the
problem is polynomial-time solvable for series-parallel graphs and maximum-
degree-three planar graphs. Nomura et al. [13] showed that every maximum-
degree-three outerplanar graph admits a planar strict orthogonal drawing if and
only if it contains no cycle of three vertices.

Many variants of strict orthogonal drawings impose constraints on how the
edges of the input graph have to be drawn. One of these variants describes the
input graph G as an LRDU -restricted graph that associates each vertex-edge
incidence of G with an orientation, i.e., left(L), right(R), up(U), or down(D), and
asks to find an orthogonal drawing of G that respects the prescribed orientations.
Another variant considers HV -restricted graphs, where the orientation of an edge
is either horizontal(H), or vertical(V). By a good orthogonal drawing we denote
a planar strict orthogonal drawing that preserves the input edge orientations.

In this paper we only examine strict orthogonal drawings of HV -restricted
plane and planar graphs, and hence from now on we omit the term ‘strict’.

HV -Restricted Plane Graphs. In 1985, Vijayan and Wigderson [15] gave
an algorithm that can decide in linear time whether an LRDU -restricted plane
graph admits a good orthogonal drawing, but takes O(n2) time to construct
such a drawing when it exists. Later, Hoffmann and Kriegel [7] gave a linear-
time construction. The task of characterizing HV -restricted plane graphs is more
involved. The difficulty arises from the exponential number of choices for drawing
HV -restricted paths, where the drawing of an LRDU -restricted path is unique,
as illustrated in Figures 1(a)–(c). Recently, Maňuch et al. [10] examined several
results on the non-planar orthogonal drawings of LRDU - and HV -restricted
graphs. They proved that non-planar orthogonal drawability maintaining edge
orientations can be decided in polynomial-time for LRDU -restricted graphs,
but is NP-hard for HV -restricted graphs. An interesting open question in this
context, as posed by Maňuch et al. [10], is to determine the complexity of de-
ciding good orthogonal drawability of HV -restricted plane graphs. In Section 2
we settle this question by giving a polynomial-time algorithm to recognize HV -
restricted plane graphs. Here we assume that a planar embedding of the input
graph is given, and our algorithm decides whether there exists a solution that
respects the input embedding.

HV -Restricted Planar Graphs. A problem analogous to drawing LRDU -
restricted graphs in R2 has been well studied in R3, but polynomial-time al-
gorithms are known only for cycles [4] and theta graphs [5]. The exponential
number of possible orthogonal embeddings in R3 makes the problem very dif-
ficult. Similarly, we find the problem of characterizing HV -restricted planar
graphs that admit good orthogonal drawings in R2 nontrivial even for outerpla-
nar graphs, where the difficulty arises from the exponential number of choices
for plane embeddings of the input graph.
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To further illustrate the challenge, here we prove that the HV -restricted
outerplanar graph of Figure 1(d) does not admit a good orthogonal drawing.
Suppose for a contradiction that Γ is a good orthogonal drawing of G, and
consider the drawing of the face F = (a, b, ..., f) in Γ . Since the edges (a, b)
and (c, d) are horizontally oriented and (a, f) is vertically oriented, either (a, b)
lies above (e, f), or (e, f) lies above (a, b) in Γ . If (a, b) lies above (e, f) as in
Figure 1(e), then the drawing of cycle a, b, i, j would create an edge crossing
(irrespective of whether it lies inside or outside of F ). Similarly, if (e, f) lies
above (a, b) as in Figure 1(f), then the drawing of cycle e, f, h, g would create
an edge crossing. Drawing both of these cycles without crossing would imply a
unique drawing of F , as shown in Figure 1(g). However, in this case we cannot
draw the cycle c, d, k, l without edge crossings. In Section 3 we characterize 2-
connected maximum-degree-three outerplanar graphs that admit good orthogo-
nal drawings. Our proof is constructive, i.e., given an HV -restricted 2-connected
maximum-degree-three outerplanar graph G, in polynomial time we can decide
whether G admits a good orthogonal drawing, and find such a drawing if it
exists. Note that the construction can choose any feasible embedding (i.e., the
embedding is not fixed), and the output is not necessarily outerplanar.
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Fig. 1. (a) Drawing of an LRDU -restricted path. (b)–(c) Two different drawings of
an HV -restricted path. (d) An HV -restricted outerplanar graph G with maximum
degree three, where the horizontal and vertical orientations are shown in black and
gray, respectively. (e)–(g) Drawing of the face F .

2 Drawing HV -Restricted Plane Graphs

In this section we give a polynomial-time algorithm that checks whether a given
HV -restricted plane graph admits a good orthogonal drawing that preserves the
input embedding. If the answer is affirmative, the algorithm certifies its answer
by constructing a good orthogonal drawing.

We will first identify some necessary conditions and later show that they are
also sufficient for the existence of the good drawing. The first condition is that
every vertex has most two incident edges with label H and at most two with
label V , and if the degree is four, the labels alternate. This condition is easily
checked and from now on we assume it to be satisfied by the input.
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Assume that a good drawing exists and consider a face f in the drawing. The
face is represented by a polygon, hence, if f has k corners, then the sum of all
interior angles of f must be (k−2)π (the outer face makes an exception, here the
angles sum to (k+ 2)π). Since f is an orthogonal polygon, the angle contributed
by each corner is a multiple of π/2. From the given edge orientations we can
infer the angle of some corners precisely: if a corner has two incident edges with
the same label, then it contributes an angle of π, and if a corner corresponds to
a vertex of degree one, it contributes 2π. The interesting corners are those where
the incident edges have different labels, these corners contribute either π/2 or
3π/2. Dual to the angle condition for faces we also have the obvious condition
for vertices: around each vertex the sum of angles is 2π.

Associate a variable xc with each corner c of the plane graph. The above
conditions can all be written as linear equations in these variables. This yields
a linear system Ax = b and the unified necessary condition that the system
has a solution x̄ where each component x̄c is in {1, 2, 3, 4}. Such a solution
is called a global admissible angle assignment. Similar quests for global angle
assignments have been studied in rectangular drawing problems, where Miura et
al. [11] reduced the problem to perfect matching, and in the context of orthogonal
drawing with bends, where Tamassia [14] modeled an angle assignment problem
with minimum-cost maximum-flow.

Instead of directly using the linear system stated above, we use the fact
that the value of some variables xc is prescribed by the input. The value for
the remaining variables and hence a global admissible angle assignment can be
determined using a maximum-flow problem.

To construct the flow network start with the angle graph A(G) of the plane
graph G. The vertex set is VA(G) = VG ∪ FG, i.e., the vertices of A(G) are the
vertices and faces of G or stated in just another way: the vertices of A(G) are
the vertices of G together with the vertices of the dual G∗. The edges of A(G)
correspond to the corners of G: if v ∈ VG and f ∈ VF are incident at a corner c
then there is an edge ec = (v, f) in EA(G).

Next step is to remove an edge ec = (v, f) from A(G) when the value of the
variable xc is prescribed by the input, i.e., in the following situations:

(a) If the two edges of a corner have the same orientation and the edges are
distinct, then the corner is assigned a π angle, i.e., xc = 2.

(b) If the vertex corresponding to a corner is of degree one, then the corner is
assigned a 2π angle, i.e., xc = 4.

(c) If the two edges of a corner have different orientations and the vertex is of
degree three or more, then the corner is assigned a π/2 angle, i.e., xc = 1.

Let A?(G) be the graph after removing all these edges. Since A(G) is a plane
graph the same is true for A?(G). Figure 2(a) shows an example of a graph G
together with the network A?(G).

Since we want to use a fast maximum-flow algorithm, we describe the flow-
problem using a planar flow network with multiple sources and sinks. It only
remains to decide for some vertices of degree two in G which of its corners is of
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Fig. 2. (a) An HV -restricted plane graph G (induced by solid edges), and its corre-
sponding flow network A?(G) (induced by dotted edges). The edges with horizontal
(respectively, vertical) orientations in G are bold (respectively, thin). (b) A feasible flow
in A?(G), where each solid edge correspond to one unit of flow. (c) A corresponding
orthogonal drawing of G.

size π/2 and which is of size 3π/2. We model a π/2 corner with a flow of one
unit entering the corresponding vertex.

An original vertex v ∈ VG is incident to an edge in A?(G) if and only if v is
a vertex of degree two in G. With these vertices we assign a demand of 1. The
capacities of all the edges are also restricted to 1. Finally, we have to set the
excess of all f ∈ FG. We know the total angle sum of f and the angles that have
been assigned in the reduction step from A(G) to A?(G). Since all the remaining
angles are of size π/2 or 3π/2, we can compute how many of size 3π/2 are needed,
this number zf is the excess of f . (Note that if the computation yields a zf that is
not an integer, then G does not admit a good orthogonal realization). Similarly,
we can also compute the number z′f of π/2 angles that we need. For example, for
the face f2 in Figure 2(a), we consider 3zf2 + z′f2 = 18 and zf2 + z′f2 = 10, which
solves to (z′f2 , zf2) = (4, 6). Since all edges ec ∈ EA?(G) connect a source f to a
sink v, we may think of them as directed edges f → v. Figure 2(b) illustrates a
maximum flow for the flow-network of Figure 2(a).

We claim that a flow satisfying all the constraints (demand/excess/capacity)
exists if and only if G admits a good orthogonal drawing preserving the input
embedding. If a flow y ∈ {0, 1}EA?(G) exists, then we get a solution vector for
the linear system by defining xc = 3 − 2yc for all ec ∈ EA?(G). Together with
the variables defined by conditions (a) – (c) we obtain a global admissible angle
assignment which by definition satisfies:

1. The sum of angles around each vertex v in G is 2π.
2. For every edge (u, v) in G, the angle assignment at the corners of u and v is

consistent with respect to the two faces that are incident to (u, v).
3. The total assigned angle of every face f is the angle sum required for polygons

with that many corners. All angles are multiples of π/2, i.e., the induced
representation is orthogonal.

These conditions on an angle assignment are sufficient to construct a plane
orthogonal representation that respects the input embedding [14]. In fact the
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orthogonal drawing can be computed in linear time. Figure 2(c) shows an or-
thogonal representation corresponding to the flow of Figure 2(b).

For the converse, if G admits a good orthogonal drawing Γ respecting the
input embedding, then the angles at the degree two vertices readily imply a flow
in the network satisfying the constraints. We thus obtain the following theorem.

Theorem 1. Given an HV -restricted plane graph G with n vertices, one can
check in T (n) time whether G admits a good orthogonal drawing preserving the
input embedding, and construct such a drawing if it exists. Here T (n) is the time
to find maximum flows in multiple-source multiple-sink directed planar graphs.

Since the maximum flow problem for a multiple-source and multiple-sink di-
rected planar graph can be solved in O(n log3 n)-time [2], one can check whether
a given HV -restricted plane graph that admits a good orthogonal drawing pre-
serving the input embedding in O(n log3 n) time. Note that we precisely know the
production or demand of each node in the flow network, and hence we are actu-
ally finding a feasible flow. There are faster algorithms in such cases, e.g., Klein et
al. [9] gave an algorithm to find a feasible integral flow in O(n log2 n)-time. Later,
Mozes and Wulff-Nilsen [12] improved the running time to O(n log2 n/ log log n).

3 Drawing 2-Connected Outerplanar Graphs with ∆ = 3

In this section we give a polynomial-time algorithm to determine whether an
arbitrary 2-connected HV -restricted outerplanar graph with maximum degree
three admits a good orthogonal drawing, and construct such a drawing if it
exists. Note that the good orthogonal drawing we produce is not necessarily an
outerplanar embedding. We first introduce some notation.

Let G be an HV -restricted planar graph. By a segment of G, we denote a
maximal path inG such that all the edges on that path have the same orientation.
A graph is outerplanar if it admits a planar drawing with all its vertices on the
outer face. Let G be a 2-connected HV -restricted embedded outerplanar graph
with ∆ = 3, where ∆ is the maximum degree of G. Let e be an edge of G. Then
by λe we denote the orientation of e in G. Let F be an inner face of G. Note that
G is an embedded graph. Thus any edge of G is an inner edge if it does not lie
on the boundary of the outer face of G, and all the remaining edges of G are the
outer edges. An inner edge e of G on the boundary of F is called critical if the
two edges preceding and following e have the same orientation that is different
from λe. For example, in Figure 1(d), the edge (a, b) is a critical edge of the
inner face F = (a, b, ..., f). An edge e is h-critical (respectively, v-critical) if it
is a critical edge and λe = H (respectively, λe = V ). For some inner face F
in G, let Ev(F ) and Eh(F ) be the number of distinct edges of F with vertical
and horizontal orientations, respectively. By Cv(F ) and Ch(F ) we denote the
number of v-critical and h-critical edges of F .

Let pqrs be a rectangle, and let a and b be two points in the proper interior of
qr and rs, respectively, as shown in Figures 3(a) and (b). Construct a rectangle
sbcd, where c and d lie outside of the rectangle pqrs. Then the region consisting
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of the rectangles pqrs and sbcd is called a flag. A flag includes all the segments
on its boundary except the segment aq. The rectangles pqrs and sbcd are called
the banner and post, respectively. The segments ar and br are called the borders
of the flag.

3.1 Necessary and Sufficient Conditions

Throughout this section, G denotes an arbitrary 2-connected HV -restricted em-
bedded outerplanar graph with ∆ = 3; see Figure 3(c) for an example. We now
prove the following theorem, which is the main result of this section.

Theorem 2. Let G be a 2-connected HV -restricted embedded outerplanar graph
with maximum degree three. Then G admits a good planar orthogonal drawing if
and only if the following three conditions hold.

(C1) For every inner face f , the sequence of orientations of the edges in clock-
wise order contains HVHV as a subsequence .

(C2) For every inner face f , if Cv(f) = Ev(f), then Cv(f) is even. Similarly,
if Ch(f) = Eh(f), then Ch(f) is even.

(C3) Every vertex of G has at most two edges of the same orientation.

3.2 Necessity

We first show that Conditions (C1)–(C3) are necessary for G to admit a good
planar orthogonal drawing. We use the following two lemmas.

Lemma 1. Let Γ be a good orthogonal drawing of G, and let (b, c) be an inner
edge of some face f = (a, b, c, d, . . . , a). Figure 3(d) illustrates an example. Since
(b, c) is an inner edge, there is another face f ′ = (b, x, . . . , y, c, b) that does
not contain any edge of f except (b, c). Let H+ and H− be the two half-planes
determined by the straight line through (b, c). If (b, c) is a critical edge in f , then
either both (a, b) and (c, d) lie in H+, or both lie in H−.

Proof. Without loss of generality assume that λbc = H. Since (b, c) is a critical
edge, λbc 6= λab and λab = λcd. If (a, b) and (c, d) lie in H+ and H−, respectively,
then one of x and y must lie interior to f and the other must lie exterior to
f . Therefore, the path b, x, ..., y, c must create an edge crossing with f , which
contradicts that Γ is a good orthogonal drawing. ut
Let x(v) and y(v) denote the x- and y-coordinates of a vertex v. We now use
Lemma 1 to prove the following.

Lemma 2. Let Γ be good orthogonal drawing of G. Let f be an inner face in Γ ,
and let (a, b) and (c, d) be two edges on f (without loss of generality assume that
(a, b) is above (c, d)), where λab = λcd = H, x(a) > x(b) and x(d) > x(c). Let
P = (a, b, ..., c, d) be a path on the boundary of f in anticlockwise order, e.g., see
the path Pl in Figure 3(e). If all the vertically oriented edges of P are critical,
then the number of such critical edges on P must be odd. This property holds
symmetrically for P = (b, a, ..., d, c).
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Fig. 3. (a)–(b) Two flags, where the borders are shown in bold. (c) An outerplanar
graph G with ∆ = 3. (d) Illustration for Lemma 1. (e) Illustration for Pl and Pr, where
Pl contains three v-critical edges and Pr contains five v-critical edges.

Proof. Consider a traversal of the edges of P starting at a. Let e be a v-critical
edge on P , and let e′ and e′′ be the edges preceding and following e, respectively.
By Lemma 1, e′ and e′′ must lie on the same side of e in Γ . Therefore, if we
traverse e′ from left to right, then we have to traverse e′′ from right to left,
and vice versa. In other words, every v-critical edge reverses the direction of
traversal. Since we traverse (a, b) and (c, d) from opposite directions and all the
vertically oriented edges of P are critical, we need an odd number of v-critical
edges on P to complete the traversal. ut

We are now ready to prove the necessity part of Theorem 2.
If (C1) does not hold for some f , then the face f does not admit a planar

orthogonal drawing. Because, drawing f would require the sum of the interior
angles of the corresponding polygon to be at least 2π.

If (C2) does not hold, then without loss of generality assume that for some
f , Cv(f) = Ev(f) and Cv(f) is odd. Let Γf be a drawing of f such that lt and
lb are topmost and bottommost horizontal edges in Γf . Then we can find two
disjoint paths Pl and Pr by traversing f anticlockwise and clockwise from lt to
lb, respectively, as shown in Figure 3(e). Since Cv(f) is odd, either Pl or Pr must
contain an even number of v-critical edges, which contradicts Lemma 2.

If (C3) does not hold at some vertex v, then the drawing of its incident edges
would contain edge overlapping.

3.3 Sufficiency

To prove the sufficiency we assume that G satisfies (C1)–(C3), and then construct
a good orthogonal drawing of G. The idea is to first draw an arbitrary inner face
f of G, and then the other faces of G by a depth first search on the faces of G
starting at f .

Let f = (v1, v2, . . . , vr, . . . , vs, . . . , vt(= v1)) be the vertices of f in clockwise
order. Let P = (vr, . . . , vs, . . . , vt) be a maximal path on f such that all the
edges on path Pv = (vr, . . . , vs) (respectively, Ph = (vs, . . . , vt)) have vertical
(respectively, horizontal) orientation. The maximality of P ensures that λv1v2 =
V and λvr−1vr = H. An example of such a path P in the face of Figure 4(a)
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is a(= vr), b, c(= vs), d, e(= vt). Observe that λv1v2 = λeg = V and λvr−1vr =
λia = H. We now have the following lemma.

Lemma 3. Given an inner face f of G that satisfies conditions (C1)–(C3), and
a drawing of two consecutive segments Ph and Pv of f . One can find a good
orthogonal drawing Γf of f that satisfies the following properties.

- Lemma 1 holds for every critical edge e in Γf , i.e., the two edges preceding
and following e lie in the same side of e.

- Γf is contained in a flag F with borders Ph and Pv.
- If Ph is a critical edge, then the post of F (if exists) is incident to Pv. Similarly,

if Pv is a critical edge, then the post of Γf (if exists) is incident to Ph. (Note
that since ∆ = 3, both Ph and Pv cannot be critical).

Proof. Due to space constraints, here we only sketch the steps of the proof.
We first prove that if f satisfies Conditions (C1)–(C3), then f admits a good

orthogonal drawing such that Lemma 1 holds for every critical edge of f . Our
proof is constructive. We construct two drawings Γf1 and Γf2 of f , and prove
that one of these two drawings satisfies the lemma. Since f satisfies (C1), P
must contain at least three vertices. We first draw the path P maintaining edge
orientations.Let the drawing be ΓP . We next draw P ′ = (v1, v2, . . . , vr) in two
different ways that give the drawings Γf1 and Γf2 , as follows.

Construction of Γf1 . We construct Γf1 in three steps. At Step 1, we draw
P ′ starting at v1 such that every v-critical edge e of P ′ satisfies Lemma 1.
However, the position of vr in the drawing of P ′ may not coincide with its
position in ΓP . Let the resulting drawing of P ′ be ΓP ′ . At Step 2, we modify ΓP ′

such that Lemma 1 holds for every h-critical edge, except possibly (vr−1, vr).
While modifying ΓP ′ , we ensure that the v-critical edges still satisfy Lemma 1.
Therefore, after Step 2, the resulting drawing Γ ′P ′ has all its critical edges, except
possibly (vr−1, vr), satisfying Lemma 1. At Step 3, we modify the drawing such
that the positions of vr in Γ ′P ′ and ΓP coincide. Thus after Step 3, we obtain
a drawing Γf1 of f that respects all the edge orientations, furthermore, all the
critical edges, except possibly (vr−1, vr), satisfy Lemma 1.

Construction of Γf2 . To construct Γf2 , we start drawing P ′ at vr of ΓP , and
then the construction is symmetric, i.e., here we treat the horizontal (respec-
tively, vertical) orientations as the vertical (respectively, horizontal) orientations.

Either Γf1 or Γf2 satisfies Lemma 3. We first prove that one of Γf1 and Γf2

is a good orthogonal drawing and Lemma 1 holds for each of its critical edge.
The idea of the proof is as follows. We first prove that both Γf1 and Γf2 are
good. We next prove that if Lemma 1 does not hold for the critical edges in
Γf1 , then P ′ cannot contain any v-critical edge and Ph cannot be an h-critical
edge. We show that in such a scenario, Lemma 1 must hold for every critical
edge in Γf2 . As a byproduct of our construction, we obtain the remaining two
properties of Γf , i.e., Γf is contained in a flag F with borders Ph and Pv, and if
Ph (respectively, Pv) is a critical edge, then the post of F (if exists) is incident
to Pv (respectively, Ph). ut
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We are now ready to describe the drawing ofG. We first construct the drawing
Γf for some inter face f of G. We then draw the other inner faces of G by a
depth first search on the faces of G, such that after adding a new inner face, the
resulting drawing remains

(P1) a good orthogonal drawing, and
(P2) each critical edge respects Lemma 1.

Let Γk be a drawing of the set of inner faces f1(= f), f2, . . . , fk that we have
already constructed. Let fk+1 be an inner face of G that has not been drawn
yet, but has an edge (b, c) in common with some face fj , where 1 ≤ j ≤ k.
Without loss of generality assume that λbc = V in Γk. Furthermore, since G is
outerplanar, fk+1 cannot have any edge other than (b, c) in common with fj .
Let lv be a segment of fk+1 that contains (b, c), and let lh be another segment
of fk+1 incident to lv. We now construct Γk+1 considering the following cases.

Case 1 (None of b and c is an end vertex of lv): In this case none of the
end vertices of the path formed by lv and lh belongs to Γk. Since G satisfies
Condition (C3), the edges of fj that are incident to b and c must be horizon-
tal, i.e., (b, c) must be a v-critical edge of fj . Since Γk is a good orthogonal
drawing, there is enough space to create a flag F with borders lv and lh such
that the banner and post of F do not create any edge crossing. Figure 4(c)
illustrates such an example. By Lemma 3, we can draw fk+1 inside F main-
taining Properties (P1) and (P2). Thus the resulting drawing Γk+1 satisfy
(P1)–(P2).

Case 2 (Exactly one of b and c is an end vertex of lv): If b (respectively,
c) is an end vertex of lv, then we choose lh such that it contains b (respec-
tively, c). Therefore, none of the end vertices of the path formed by lv and
lh belongs to Γk. Figure 4(d) illustrates such an example. Similar to Case 1,
we now draw Γk+1 satisfying (P1)–(P2).

Case 3 (Both b and c are end vertices of lv): Observe that in this case lv =
(b, c). Let a, b, c, d be a path of fk+1. Since lv = (b, c) is a maximal set of
edges with vertical orientation, we have λab = λbc = H. Thus lv = (b, c) is a
v-critical edge of fk+1. We now create a flag F with borders lv and lh such
that the post of the flag is incident to lh. Note that since lv is critical, by

(a) (b) (c) (d) (e)
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Fig. 4. (a) An inner face of G. (b) Illustration for Γf . (c)–(e) Illustration for the
construction of Γk+1.
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Lemma 3, we do not require a flag with its post incident to lv. We now can
draw fk+1 inside F maintaining (P2) and (P3). Figure 4(e) illustrates such
an example. It may initially appear from the figure that drawing of fk+1

inside F may overlap the boundary of fj , i.e., consider the Figure 4(e) with
λcq = V . However, by definition of a flag, F does not contain the part of its
boundary that overlaps fj , and hence drawing fk+1 would not create any
edge overlapping.

4 Conclusion

In Section 2 we have developed a polynomial-time algorithm to decide good or-
thogonal drawability of HV -restricted plane graphs. An interesting open ques-
tion in this context, as Maňuch et al. [10] asked, is to determine the complexity
of deciding good orthogonal drawability for HV -restricted planar graphs.

Problem 1. What is the time complexity of deciding whether an arbitrary HV -
restricted planar graph admits a planar orthogonal drawing preserving the given
edge orientations?

In Section 3 we have characterized HV -restricted 2-connected maximum-
degree-three outerplanar graphs that admit good orthogonal drawings. If we
relax the 2-connected constraint, then our characterization no longer holds. For
example, the HV -restricted outerplanar graph G of Figure 5(b) satisfies Condi-
tions (C1)-(C3) of Theorem 2, but does not admit any good orthogonal drawing.

x

H
G

(a) (b)

Fig. 5. Illustration for the graphs (a) H and (b) G.

Observe that G is constructed from two copies of the graph H of Figure 5(a),
where the vertices with label x are identified. Since in any good orthogonal
drawing of H the vertex x lies in some inner face, any orthogonal drawing of G
preserving edge orientations must contain edge crossing. Hence a natural open
question is to extend our result for arbitrary outerplanar graphs.

Problem 2. Characterize the class of HV -restricted outerplanar graphs that
admit planar orthogonal drawings preserving the given edge orientations.
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