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Abstract. Let P be an orthogonal polygon. Consider a sliding camera
that travels back and forth along an orthogonal line segment s ⊆ P as its
trajectory. The camera can see a point p ∈ P if there exists a point q ∈ s
such that pq is a line segment normal to s that is completely contained
in P . In the minimum-cardinality sliding cameras problem, the objective
is to find a set S of sliding cameras of minimum cardinality to guard P
(i.e., every point in P can be seen by some sliding camera in S) while in
the minimum-length sliding cameras problem the goal is to find such a
set S so as to minimize the total length of trajectories along which the
cameras in S travel.
In this paper, we first settle the complexity of the minimum-length sliding
cameras problem by showing that it is polynomial tractable even for
orthogonal polygons with holes, answering a question posed by Katz
and Morgenstern [9]. Next we show that the minimum-cardinality sliding
cameras problem is NP-hard when P is allowed to have holes, which
partially answers another question posed by Katz and Morgenstern [9].

1 Introduction

The art gallery problem is well known in computational geometry, where the
objective is to cover a geometric shape (e.g., a polygon) with the union of the
visibility regions of a set of point guards while minimizing the number of guards.
The problem’s multiple variants have been examined extensively (e.g., see [1,
15, 17]) and can be classified based on the type of guards (e.g., points or line
segments), the type of visibility model, and the geometric shape (e.g., simple
polygons, orthogonal polygons [6], or polyominoes [2]).

In this paper, we consider a variant of the orthogonal art gallery problem
introduced by Katz and Morgenstern [9], in which sliding cameras are used to
guard the gallery. Let P be an orthogonal polygon with n vertices. A sliding
camera travels back and forth along an orthogonal line segment s inside P . The
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Fig. 1: An illustration of the MCSC and MLSC problems. Each grid cell has size
1 × 1. (a) A simple orthogonal polygon P . (b) The trajectories of two sliding
cameras s1 and s2 are shown in pink and green, respectively; each shaded region
indicates the visibility region of the corresponding camera. This set of two cam-
eras is an optimal solution to the MCSC problem on P . (c) A set of five sliding
cameras whose total length is 8, which is an optimal solution for the MLSC
problem on P .

camera (i.e., the guarding line segment s) can see a point p ∈ P (equivalently, p
is orthogonally visible to s) if and only if there exists a point q on s such that pq
is normal to s and is completely contained in P . We study two variants of this
problem: in the minimum-cardinality sliding cameras (MCSC) problem, we wish
to minimize the number of sliding cameras so as to guard P entirely, while in the
minimum-length sliding cameras (MLSC) problem the objective is to minimize
the total length of trajectories along which the cameras travel; we assume that
in both variants of the problem, polygon P and sliding cameras are constrained
to be orthogonal. In both problems, every point in P must be visible to some
camera. See Figure 1.

Throughout the paper, we denote an orthogonal polygon with n vertices by
P . Moreover, we denote the set of vertices and the set of edges of P by V (P )
and E(P ), respectively. We consider P to be a closed set; therefore, a camera’s
trajectory may include an edge of P . We also assume that a camera can see
any point on its trajectory. We say that a set T of orthogonal line segments
contained in P is a cover of P , if the corresponding cameras can collectively see
any point in P ; equivalently, we say that the line segments in T guard P entirely.

Related Work. The art gallery problem was first introduced by Klee in 1973.
Two years later, Chvátal [3] gave an upper bound proving that bn/3c point
guards are always sufficient and sometimes necessary to guard a simple polygon
with n vertices. The orthogonal art gallery problem was first studied by Kahn
et al. [7] who proved that bn/4c guards are always sufficient and sometimes nec-
essary to guard the interior of a simple orthogonal polygon. Lee and Lin [12]
showed that the problem of guarding a simple polygon using the minimum num-
ber of guards is NP-hard. Moreover, the problem was also shown to be NP-hard
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for orthogonal polygons [16]. Even the problem of guarding the vertices of an
orthogonal polygon using the minimum number of guards is NP-hard [10].

Limiting visibility allows some versions of the problem to be solved in polyno-
mial time. Motwani et al. [14] studied the art gallery problem under s-visibility,
where a guard point p ∈ P can see all points in P that can be connected to p
by an orthogonal staircase path contained in P . They use a perfect graph ap-
proach to solve the problem in polynomial time. Worman and Keil [18] defined
r-visibility, in which a guard point p ∈ P can see all points q ∈ P such that
the bounding rectangle of p and q (i.e., the axis-parallel rectangle with diagonal
pq) is contained in P . Given that P has n vertices, they use a similar approach

to Motwani et al. [14] to solve this problem in Õ(n17) time, where Õ() hides
poly-logarithmic factors. Moreover, Lingas et al. [13] presented a linear-time
3-approximation algorithm for this problem.

Recently, Katz and Morgenstern [9] introduced sliding cameras as another
model of visibility to guard a simple orthogonal polygon P ; they study the MCSC
problem. They first consider a restricted version of the problem, where cameras
are constrained to travel only vertically inside the polygon. Using a similar ap-
proach to Motwani et al. [14] they construct a graph G corresponding to P and
then show that (i) solving this problem on P is equivalent to solving the mini-
mum clique cover problem on G, and that (ii) G is chordal. Since the minimum
clique cover problem is polynomial-time solvable on chordal graphs, they solve
the vertical-camera MCSC problem in polynomial time. They also generalize
the problem such that both vertical and horizontal cameras are allowed (i.e.,
the MCSC problem); they present a 2-approximation algorithm for this problem
under the assumption that the given input is an x-monotone orthogonal poly-
gon. They leave open the complexity of the problem and mention studying the
minimum-length sliding cameras problem as future work.

A histogram H is a simple orthogonal polygon that has an edge, called the
base, whose length is equal to the sum of the lengths of the edges of H that
are parallel to the base. Moreover, a double-sided histogram is the union of two
histograms that share the same base edge and that are located on opposite sides
of the base. It is easy to observe that the MCSC problem is equivalent to the
problem of covering P with minimum number of double-sided histograms. Fekete
and Mitchell [4] proved that partitioning an orthogonal polygon (possibly with
holes) into a minimum number of histograms is NP-hard. However, their proof
does not directly imply that the MCSC problem is also NP-hard for orthogonal
polygons with holes.

Our Results. In this paper, we first answer a question posed by Katz and
Morgenstern [9] by proving that the MLSC problem is solvable in polynomial
time even for orthogonal polygons with holes (see Section 2). We next show that
the MCSC problem is NP-hard for orthogonal polygons with holes (see Section 3)
that partially answers another question posed by Katz and Morgenstern [9]. We
conclude the paper in Section 4.
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2 The MLSC Problem: An Exact Algorithm

In this section, we give an algorithm that solves the MLSC problem exactly in
polynomial time even when P has holes. Let T be a cover of P . In this section,
we say that T is an optimal cover for P if the total length of trajectories along
which the cameras in T travel is minimum over that of all covers of P . Our
algorithm relies on reducing the MLSC problem to the minimum-weight vertex
cover problem in bipartite graphs. We remind the reader of the definition of the
minimum-weight vertex cover problem:

Definition 1. Given a graph G = (V,E) with positive vertex weights, the minimum-
weight vertex cover problem is to find a subset V ′ ⊆ V that is a vertex cover of
G (i.e., every edge in E has at least one endpoint in V ′) such that the sum of
the weights of vertices in V ′ is minimized.

The minimum-weight vertex cover problem is NP-hard in general [8]. However,
König’s theorem [11] that describes the equivalence between maximum matching
and vertex cover in bipartite graphs implies that the minimum-weight vertex
cover problem in bipartite graphs is solvable in polynomial time. Given P , we
first construct a vertex-weighted graph GP and then we show (i) that the MLSC
problem on P is equivalent to the minimum-weight vertex cover problem on GP ,
and (ii) that graph GP is bipartite.

Similar to Katz and Morgenstern [9], we define a partition of an orthogonal
polygon P into rectangles as follows. Extend the two edges of P incident to
every reflex vertex in V (P ) inward until they hit the boundary of P . Let S(P )
be the set of the extended edges and the edges of P whose endpoints are both
non-reflex vertices of P . We refer to elements of S(P ) simply as edges. The edges
in S(P ) partition P into a set of rectangles; let R(P ) denote the set of resulting
rectangles. We observe that in order to guard P entirely, it suffices to guard all
rectangles in R(P ). The following observations are straightforward:

Observation 1 Let T be a cover of P and let s be an orthogonal line segment
in T . Then, for any partition of s into line segments s1, s2, . . . , sk the set T ′ =
(T \{s})∪{s1, . . . , sk} is also a cover of P and the respective sums of the lengths
of segments in T and T ′ are equal.

Observation 2 Let T be a cover of P . Moreover, let T ′ be the set of line seg-
ments obtained from T by translating every vertical line segment in T horizon-
tally to the nearest boundary of P to its right and every horizontal line segment
in T vertically to the nearest boundary of P below it. Then, T ′ is also a cover of
P and the respective sums of the lengths of line segments in T and T ′ are equal.
We call T ′ a regular cover of P .

We first need the following result.

Lemma 1. Let R ∈ R(P ) be a rectangle and let T be a cover of P . Then, there
exists a set T ′ ⊆ T such that all line segments in T ′ have the same orientation
(i.e., they are all vertical or they are all horizontal) and they collectively guard
R entirely.
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Fig. 2: An illustration of the re-
duction; each grid cell has size
1 × 1. (a) An orthogonal poly-
gon P along with the elements of
B(P ) labelled as a, b, c, . . . , i. (b)
The graph GP associated with
P ; the integer value besides each
vertex indicates the weight of the
vertex. The vertices of a ver-
tex cover on GP and their corre-
sponding guarding line segments
for P are shown in red.

Proof. Suppose no such set T ′ exists. Let Rv (resp., Rh) be the subregion of
R that is guarded by the union of the vertical (resp., horizontal) line segments
in T and let Rc

v = R \ Rv (resp., Rc
h = R \ Rh). Since R cannot be guarded

exclusively by vertical line segments (resp., horizontal line segments), we have
Rc

v 6= ∅ (resp., Rc
h 6= ∅). Choose any point p ∈ Rc

v and let Lh be the maximal
horizontal line segment inside R that crosses p. Since no vertical line segment
in T can guard p, we conclude that no point on Lh is guarded by a vertical line
segment in T . Similarly, choose any point q ∈ Rc

h and let Lv be the maximal
vertical line segment inside R that contains q. By an analogous argument, we
conclude that no point on Lv is guarded by a horizontal line segment. Since Lh

and Lv are maximal and have perpendicular orientations, Lh and Lv intersect
inside R. Therefore, no orthogonal line segment in T can guard the intersection
point of Lh and Lv, which is a contradiction. �

Given P , let H(P ) denote the subset of the boundary of P consisting of line
segments that are immediately to the right of or below P ; in other words, for
each edge e ∈ H(P ), the region of the plane immediately to the right of or below
e does not belong to the interior of P . Let B(P ) denote the partition of H(P )
into line segments induced by the edges in S(P ). The following lemma follows
by Lemma 1 and Observations 1 and 2:

Lemma 2. Every orthogonal polygon P has an optimal cover T ⊆ B(P ).

Observation 3 Let P be an orthogonal polygon and consider its corresponding
set R(P ) of rectangles induced by edges in S(P ). Every rectangle R ∈ R(P ) is
seen by exactly one vertical line segment in B(P ) and exactly one horizontal
line segment in B(P ). Furthermore, if T ⊆ B(P ) is a cover of P , then every
rectangle in R(P ) must be seen by at least one horizontal or one vertical line
segment in T .

We denote the horizontal and vertical line segments in B(P ) that can see a
rectangle R ∈ R(P ) by RV and RH , respectively. Using Observation 3, we now
describe a reduction of the MLSC problem to the minimum-weight vertex cover



6 S. Durocher and S. Mehrabi

problem. We construct an undirected weighted graph GP = (V,E) associated
with P as follows: each line segment s ∈ B(P ) corresponds to a vertex vs ∈ V
such that the weight of vs is the length of s. We denote the vertex in V that
corresponds to the line segment s ∈ B(P ) by vs. Two vertices vs, vs′ ∈ V are
adjacent in GP if and only if the line segments s and s′ can both see a common
rectangle R ∈ R(P ). See Figure 2. By Observation 3 the following result is
straightforward:

Observation 4 There is a bijection between rectangles in R(P ) and edges in
GP .

Next we show equivalency between the two problems and then prove that
graph GP is bipartite.

Theorem 1. The MLSC problem on P reduces to the minimum-weight vertex
cover problem on GP .

Proof. Let S0 be a vertex cover of GP and let C0 be a cover of P defined in
terms of S0; the mapping from S0 to C0 will be defined later. Moreover, for each
vertex v of GP let w(v) denote the weight of v and for each line segment s ∈ C0

let len(s) denote the length of s. We need to prove that S0 is a minimum-weight
vertex cover of GP if and only if C0 is an optimal cover of P . We show the
following stronger statements: (i) for any vertex cover S of GP , there exists a
cover C of P such that ∑

s∈C

len(s) =
∑
v∈S

w(v),

and (ii) for any cover C of P , there exists a vertex cover S of GP such that∑
v∈S

w(v) =
∑
s∈C

len(s).

Part 1. Choose any vertex cover S of GP . We find a cover C for P as follows:
for each edge (vs, vs′) ∈ E, if vs ∈ S we locate a guarding line segment on the
boundary of P that is aligned with the line segment s ∈ B(P ). Otherwise, we
locate a guarding line segment on the boundary of P that is aligned with the
line segment s′ ∈ B(P ). Since at least one of vs and vs′ is in S, we conclude
by Observation 4 that every rectangle in R(P ) is guarded by at least one line
segment located on the boundary of P and so C is a cover of P . Moreover, for
each vertex in S we locate exactly one guarding line segment on the boundary
of P whose length is the same as the weight of the vertex. Therefore,∑

s∈C

len(s) =
∑
v∈S

w(v).

Part 2. Choose any cover C of P . We construct a vertex cover S for GP as
follows. By Observation 2, let T ′ be the regular cover obtained from C. Moreover,
let M be the partition of T ′ into line segments induced by the edges in S(P ).
By Lemma 1, for any rectangle R ∈ R(P ), there exists a set C ′

R ⊆ C such
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that all line segments in C ′
R have the same orientation and collectively guard R.

Therefore, M is also a cover of P . Now, let S be the subset of the vertices of GP

such that vs ∈ S if and only if s ∈ M . Since M is a cover of GP we conclude,
by Observation 4, that S is a vertex cover of GP . Moreover, we observe that∑

v∈S

w(v) =
∑
s∈M

len(s) =
∑
s∈C

len(s). �

Lemma 3. Graph GP is bipartite.

Proof. The proof follows from the facts that (i) we have two types of vertices in
GP ; those that correspond to the vertical line segments in B(P ) and those that
correspond to the horizontal line segments in B(P ), and that (ii) no two vertical
line segments in B(P ) nor any two horizontal line segments in B(P ) can see a
fixed rectangle in R(P ). �

It is easy to see that the construction in the proof of Theorem 1 can be
completed in polynomial time. Therefore, by Theorem 1, Lemma 3 and the fact
that minimum-weight vertex cover is solvable in polynomial time on bipartite
graphs [11], we have the main result of this section:

Theorem 2. Given an orthogonal polygon P with n vertices, there exists an
algorithm that finds an optimal cover of P in time polynomial in n.

3 The MCSC Problem

In this section, we show that the following problem is NP-hard:

Fig. 3: An L-hole gadget;
each grid cell has size 1

12 ×
1
12 .

MCSC With Holes
Input: An orthogonal polygon P , possibly with
holes and an integer k.
Output: Yes, if there exists k orthogonal line seg-
ments inside P that guard P entirely; No, other-
wise.

We show NP-hardness by a reduction from the
minimum hitting of horizontal unit segments problem, which we call the Min
Segment Hitting problem. The Min Segment Hitting problem is defined
as follows [5]:

Min Segment Hitting
Input: n pairs (ai, bi), i = 1, . . . , n, of integers and an integer k
Output: Yes, if there exist k orthogonal lines l1, . . . , lk in the plane, i.e., for
each i, li is horizontal or vertical, such that each line segment [(ai, bi), (ai+1, bi)]
is hit by at least one of the lines; No, otherwise.
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si

p(si)

(a) The L-holes associated with a
line segment si ∈ I, where ai is
odd.

si sj

p(si)

p(sj)

(b) An illustration of the L-holes associated
with two line segments in I that share a com-
mon endpoint.

Fig. 5: An illustration of the gadgets used in the reduction.

Hassin and Megiddo [5] prove that the Min Segment Hitting problem is
NP-complete. Let I be an instance of the Min Segment Hitting problem,
where I is a set of n horizontal unit-length segments with integer coordinates.
We construct an orthogonal polygon P (with holes) such that there exists a set
of k orthogonal lines that hit the segments in I if and only if there exists a set C
of k+1 orthogonal line segments inside P that collectively guard P . Throughout
this section, we refer to the segments in I as unit segments and to the segments
in C as line segments.

si

p(si)

Fig. 4: The L-holes associated
with a line segment si ∈ I,
where ai is even.

Gadgets. We first observe that any two unit
segments in I can share at most one point,
which must be a common endpoint of the two
unit segments. For each unit segment si ∈ I,
1 ≤ i ≤ n, we denote the left endpoint of si by
(ai, bi) and, therefore, the right endpoint of si
is (ai + 1, bi). Moreover, let N(si) denote the
set of unit segments in I that have at least
one endpoint with x-coordinate equal to ai
or ai + 1. Our reduction refers to an L-hole,
which we define as a minimum-area orthogonal polygon with six vertices at grid
coordinates such that exactly one is a reflex vertex. Figure 3 shows an L-hole. We
constrain each grid cell to have size 1

12 × 1
12 . An L-hole may be rotated by π/2,

π or 3π/2. For each unit segment si ∈ I, we associate exactly four L-holes with
si depending on the parity of ai: if ai is even, then Figure 4 shows the L-holes
associated with si. If ai is odd, then Figure 5a shows the L-holes associated with
si. Note that, in this case, the L-holes are located such that the vertical distance
between any point on an L-hole and si is at least 3/12. Note the red vertex on
the bottom left L-hole of si in Figure 4 and the blue vertex on the bottom right
L-hole of si in Figure 5a; we call this vertex the visibility vertex of si, which we
denote p(si).

Observe that the L-holes associated with si do not interfere with the L-
holes associated with the line segments in N(si) because for any unit segment
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Fig. 6: A complete example of the re-
duction, where I = {s1, s2, . . . , s9},
with the assumption that a1 is even.
Each line segment that has a bend
represents an L-hole associated with
a unit segment. The visibility ver-
tices of the unit segments in I are
shown red or blue appropriately.
Note the green vertex on the lower
left corner of the smaller rectangle;
this vertex is only visible to the line
segments that pass through the in-
terior of the smaller rectangle, which
in turn cannot intersect any unit seg-
ment in I.

sj ∈ N(si) the vertical distance d between si and sj is either zero or at least
one. If d ≥ 1, then it is trivial that the L-holes of si do not interfere with those
of sj . Now, suppose that si and sj share a common endpoint; that is d = 0.
Since si and sj have unit lengths ai and aj have different parities and, therefore,
the L-holes associated with si and sj do not interfere with each other. Figure 5b
shows an example of such two unit segments si and sj and their corresponding
L-holes. We now describe the reduction.

Reduction. Given an instance I of the Min Segment Hitting problem, we
first associate each unit segment in si ∈ I with four L-holes depending on
whether ai is even or odd. After adding the corresponding L-holes, we enclose I
in a rectangle such that all unit segments and the L-holes associated with them
lie in its interior. Finally, we create a small rectangle on the bottom left corner
of the bigger rectangle (see Figure 6) such that any orthogonal line that passes
through the smaller rectangle cannot intersect any of the unit segments in I.
See Figure 6 for a complete example of the reduction. Let P be the resulting
orthogonal polygon. Observe from Figure 4 (see also Figure 5a) that the left
endpoint (resp., the right endpoint) of every unit segment s ∈ I is vertically
aligned with the rightmost edges (resp., leftmost edges) of the two left L-holes
(resp., right L-holes) associated with s. This provides the following observation.

Observation 5 Let s be a unit segment in I and let l be a vertical line seg-
ment contained in P that can see p(s). Moreover, let l′ be the maximal vertical
line segment that is aligned with l. If l′ does not intersect s, then p(s′) is not
orthogonally visible to l′ for all s′ ∈ I \ {s}.

We now show the following lemma.
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Lemma 4. There exist k orthogonal lines such that each unit segment in I is
hit by one of the lines if and only if there exists k + 1 orthogonal line segments
contained in P that collectively guard P .

Proof. (⇒) Suppose there exists a set S of k lines such that each unit segment
in I is hit by at least one line in S. Let L ∈ S and let LP = L ∩ P . If L is
horizontal, then it is easy to see that L, and therefore LP , does not cross any L-
hole inside P . Similarly, if L is vertical and passes through an endpoint of some
unit segment(s) in I, then neither L nor LP passes through the interior of any
L-hole in P .1 Now, suppose that L is vertical and passes through the interior of
some unit segment s ∈ I. Translate LP horizontally such that it passes through
the midpoint of s. Since unit segments have endpoints on adjacent integer grid
point, LP still crosses the same set of unit segments of I as it did before this move.
Moreover, this ensures that LP does not cross any L-hole inside P . Consider the
set S′ = {LP | L ∈ S}.

We observe that the line segments in S′ cannot guard the interior of the
smaller rectangle. Moreover, if all line segments in S′ are vertical or all are
horizontal, then they cannot collectively guard the outer rectangle entirely.2 In
order to guard P entirely, we add one more orthogonal line segment C as follows:
if all line segments in S′ are vertical (resp., horizontal), then C is the maximal
horizontal (resp., the maximal vertical) line segment inside P that aligns the
upper edge (resp., the right edge) of the smaller rectangle of P ; see the line
segment e (resp., e′) in Figure 6. If the line segments in S′ are a combination
of vertical and horizontal line segments, then C can be either e or e′. It is easy
to observe that now the line segments in S′ along with C collectively guard P
entirely. Therefore, we have established that the entire polygon P is guarded by
k + 1 orthogonal line segments inside P in total.

(⇐) Now, suppose that there exists a set M of k+1 orthogonal line segments
contained in P that collectively guard P . Let c ∈ M and let Lc denote the line
induced by c. We now describe how to find k lines that form a solution to instance
I by moving the line segments in M accordingly such that each unit segment
in I is hit by at least one of the corresponding lines. Let c0 ∈ M be the line
segment that guards the bottom left vertex of the smaller rectangle of P . We
know that Lc0 cannot guard p(s) for any unit segment s ∈ I. For each unit
segment s ∈ I in order, consider a line segment l ∈ M \ {c0} that guards p(s);
let l′ be the maximal line segment inside P that is aligned with l. We observe
that l′ must intersect the rectangle whose endpoints are the reflex vertices of the
L-holes associated with unit segment s (see the pink rectangle in Figure 4 for an
example). If l′ is horizontal and Ll′ does not align s, then move l′ accordingly
up or down until it aligns with s. Thus, Ll′ is a line that hits s. Now, suppose
that l′ is vertical. If l′ intersects s, then Ll′ also intersects s. It might be possible
that l′ is vertical and guards p(s), but Ll′ does not intersect s; in this case, by
Observation 5, p(s) is the only visibility vertex that is visible to l′. So, move l′

1 Note that it is possible for L to pass through the boundary of some L-hole.
2 Specifically, in either cases, there are regions between two L-holes associated with

different unit segments that cannot be guarded by any line segment.
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horizontally to the left or to the right until it hits s. Therefore, Ll′ is a line that
hits s after this move.

We observe that we obtained exactly one line from each line segment in
M \ {c0}. Therefore, we have found k lines such that each unit segment in I is
hit by at least one of the lines. This completes the proof of the lemma. �

By Lemma 4 we obtain the main result of this section:

Theorem 3. The MCSC With Holes is NP-hard.

4 Conclusion

In this paper, we studied the problem of guarding an orthogonal polygon P using
sliding cameras that was introduced by Katz and Morgenstern [9]. We considered
two variants of this problem: the MCSC problem (in which the objective is to
minimize the number of sliding cameras used to guard P ) and the MLSC problem
(in which the objective is to minimize the total length of trajectories along which
the cameras travel).

We gave a polynomial-time algorithm that solves the MLSC problem exactly
even for orthogonal polygons with holes, answering a question posed by Katz
and Morgenstern [9]. We also showed that the MCSC problem is NP-hard when
P contains holes, which partially answers another question posed by Katz and
Morgenstern [9]. Although we settled the complexity of the MLSC problem, the
complexity of the MCSC problem for any simple orthogonal polygon remains
open. Giving an approximation algorithm for the MCSC problem on any simple
orthogonal polygon is also another direction for future work.
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