Graph-Theoretic and Geometric Algorithms Associated
with Moment-Based Polygon Reconstruction
by
Stephane Durocher
B.Sc. (Computer Science with Mathematics Major)

University of Toronto, 1997

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
Master of Science
in
THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

we accept this thesis as conforming
to the required standard

The University of British Columbia
August 1999

(© Stephane Durocher, 1999

Abstract

The problem of reconstructing an unknown polygonal shape P, viewed as a region
in the complex plane, from a finite number of its complex moments is motivated by
a number of mathematical, computational, and application-oriented considerations.
Complex moment information can be derived from such diverse physical processes
as tomographic (line integral) measurement, exterior gravitational, or magnetic field
measurement, or thermal radiation measurement, associated with an otherwise un-
specified object [GMV99, MVKW95, SB86]. Milanfar et al. [MVKWO95], building
on earlier work of Davis [Dav64, Dav77], show how a finite number of complex mo-
ments of P can be effectively used to reconstruct the vertices of P. If sufficient
additional information (for example, convexity or rectilinearity) about P is known,
P itself can be reconstructed. Very recently, Golub et al. [GMV99] address some
of the formidable numerical difficulties associated with this reconstruction. In ad-
dition, they demonstrate that partial information concerning a polygon’s edges can
also be derived from a finite number of its complex moments, raising the possibility
of a more complete and general reconstruction scheme. In general, note that even
simply-connected polygonal regions are not uniquely specified by even infinitely
many of their complex moments [SB86], thereby precluding a completely general
reconstruction scheme.

Given vertex positions for the set V' of vertices of P in the Cartesian plane
and partial information (expressed in terms of geometric constraints) about the

edges bounding P, we examine the problem of constructing polygonal regions con-

ii

sistent with this information. Although in practice, the vertex positions and edge
constraints may contain error in their specifications (due either to error originating
in the data or introduced in the numerical computations) it is of interest to study
the reconstruction problem with error-free moment information. As we shall see,
this translates to a constrained directed 2-factor problem in a directed graph G
defined on the vertex set V.

As observed in [GMV99], the potential edges incident on a vertex are subject
to very specific local restrictions. These restrictions have the following simple geo-
metric interpretation. Each vertex has two independent axes assigned to it: a blue
and a red axis. Each axis specifies two in-directions and two out-directions such that
in-directions and out-directions are orthogonal. An edge joining vertex u to vertex
v belongs to the edge set of G if and only if its direction agrees with one of the axes
specified at each of v and v. We will colour the head and tail of each such edge with
the colour of its associated axis. A solution to the polygon reconstruction problem
is a spanning subgraph H of the resulting directed and edge-bicoloured graph in
which every vertex has both in-degree and out-degree one and both red-degree and
blue-degree one. Thus, we are looking for a directed 2-factor of G that satisfies some

local colour constraints.

This thesis addresses graph-theoretic and geometric concerns arising from moment-
based polygon reconstruction. We show NP-hardness of various restrictions to the
2-factor problem. We investigate properties of moment sets whose graphs contain
non-unique solutions. We develop algorithms to solve the problem of polygon recon-
struction given both perfect and imperfect input moment data. Finally, we examine

the success of reconstruction on various classes of graphs.

iii

Contents

Abstract ii
Contents iv
List of Figures vii
Acknowledgements xi
Dedication xii
1 Introduction 1
1.1 Problem and Motivation 1
1.2 Previous Work o 1
1.3 Thesis Organization 4

2 Problem Definition 6
2.1 Definition of Terms oo o 6
2.1.1 General Graph Theory 6

2.1.2 Classical Complexity 8

2.1.3 Graph Theoretic and Complexity Problems 9

2.1.4 Polygon Reconstruction Problem 11

2.2 Models Used and Problem Overview 12

iv

3 Restricted 2-Factors 18

3.1 2-Factors e 19
3.2 Restricting the 2-Factor Problem 21
3.3 Edge-Bicoloured Directed 2-Factor 22
3.3.1 Problem Instance and Question 22
3.3.2 EDGE-BICOLOURED DIRECTED 2-FACTOR is NP-hard 23
3.3.3 Bounded-Degree Edge-Bicoloured Directed 2-Factor 26
3.3.4 Degree Four versus Degree Five 29

3.4 Non-Crossing 2-Factor 30
3.4.1 Problem Instance and Question 30
3.4.2 NON-CROSSING 2-FACTOR is NP-hard 31

3.5 SUMMAaryo e e e 37
4 TUniqueness of Moment Sets 38
4.1 Commitment Propagation 38
4.2 Non-Unique Solutions 40
4.3 Summary e e e e e 47
5 Reconstruction Algorithm 48
5.1 Reconstruction Process Overview 48
5.2 BuildGraph: Building the Initial Graph 50
5.3 EdgeElim: Simplifying the Graph 52
5.4 Commit: Colour Constraint Propagation 55
5.5 TreeSearch: Recursive Search Trees 62
5.6 FragmentSearch: Finding Fragments of Solutions 67

5.7 MomentDiff: Component Reconstruction by Difference of Moments . 70

B.8 Summary e e e 73
6 From Models to Real Data 74
6.1 Varying Control of the Input Data 74

6.2 Examining the Behaviour of Various Graphs
6.3 Dealing with Numerical Error in the Reconstruction

6.4 SumMmMary e e e e e e e

Further Research

7.1 Variable Internal Density,
7.2 Certifying Solutions L oo
7.3 [Iterative Reconstruction,
7.4 Improving Error Tolerance using Differences of Moments
7.5 Additional Complexity Issues
7.6 Summary ... Lo e e e e e

8 Conclusion

Bibliography

Appendix A Glossary of Terms

A.1 General Graph Theory
A.2 Classical Complexity o
A.3 Graph Theoretic and Complexity Problems
A.4 Polygon Reconstruction Problem

A.5 Reconstruction Algorithm Modules

vi

81
82
83
84
85
86
86

87

90

1.1

1.2

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2

3.3
3.4
3.5
3.6
3.7

List of Figures

Even with as few as four non-convex points, given only vertex po-
sitions without additional information, three different polygons may
be reconstructed. Lo 3

Given the same four vertex positions along with possible edge direc-

tions at every vertex, only a single solution remains possible. 3
local blue and red axes for potential edges at a vertex 13
axes for potential edges Lo oL Lo 13
axes for actual edges L Lo oL 14
an initial graph G5 and a solution subgraph Hy 15
odd-length cycle edge colouring 15
an initial graph G5 and a solution subgraph Hs 16
a graph GG and three subgraphs which are 2-factorsof G 19

We replace vertices with one of the components in which 3-cycles and

2-cycles are disallowed, respectively. 20
v=0vand v L. 20
mapping a 2-factor problem to a matching problem 21
reversing out-edge colours at a vertex 23
example of 3-DIMENSIONATL MATCHING instance and solution . . 23
single point component oL Lo 24

vii

3.8
3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27

4.1
4.2
4.3
4.4
4.5
4.6
4.7

We represent a triple, (z;,y;, z;), by this component.
In an edge-bicoloured directed 2-factor, the triple component may be
inoneof twostates. L oL
example of 3-dimensional matching within G’ transformation
bounded-degree component for a vertex z;,y;, or 2z
edge-bicoloured directed 2-factor on bounded-degree component . . .
modified bounded-degree component
three cases when removing an additional edge
following either edge Aoredge B
XOR component
two states of XOR component in a non-crossing 2-factor
CrOSSOVEr COMPONENt v v vt e e e e e e e
four states of crossover component in a non-crossing 2-factor
3-dimensional matching instance and solution in bipartite graph
stretching G oL
eliminate crossovers using crossover component
add mirror image and connect vertices
connecting triples from T to T’
two states of component in non-crossing 2-factor
full reduction from bipartite S and T'to G

reduction components with directions added

A vertex may be in one of two colour states.
propagation of vertex states
ambiguous solutions within the octagon graph
two vertex states within different solutions
ambiguous solutions within the six-point star
the Strakhov-Brodsky graph [SB86]

ambiguous solutions within the Strakhov-Brodsky graph

viii

4.8

4.9

4.10
4.11
4.12

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21

ambiguous solutions within the modified Strakhov-Brodsky graph

[SB8G] . . . o 44
general pattern within common-edge solutions 45
extended Strakhov-Brodsky graph 45
four instances of the extended Strakhov-Brodsky graph 46
multiple connected instances of ambiguous graphs 46
pipelined reconstruction moduleso 49
determining whether vertex v is compatible with vertex u 51
a parallelogram and its associated input position and axis data . . . 51
checking for possible edges between vertices 52
applying edgeElim to reduce edge density to constant degree 53
edge elimination heuristic0 0oL, 53
two different edge eliminations which produce equivalent results . . . 54
axes at a vertex from the graph G, L. 55
local elimination rules L oL 56
new commitment rule L. 57
original polygon and input data after applying commit 58

graphs (G; and GG produced by buildGraph and edgeElim, respectively 59
constraint propagationo Lo 59

Constraint propagation continues on to produce a solution graph Gs. 60

complex rectilinear polygon reconstructed by commit 61
set of 9 boxes reconstructed by commit L L., 62
ambiguous input graph Gy and two subgraphs, G%, and GY. 63
recursive search tree descent Lo oL 64
solution H; and maximally reduced subgraph Gs 65
two subgraphs of Ga: G and G§ L. 65
two solutions Hy and Hs e 66

ix

5.22

5.23
5.24
5.25
5.26

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4

buildGraph and edgeElimresults for two-connected Strakhov-Brodsky

extension e 67
two invalid vertices Lo 68
9-edge fragment found in 12-vertex polygon 69
sum of subcomponent moments: mp =mp, + mp, 71
reconstruction by component decomposition L. 72
position and angle reconstructions for two graphs Gy and Gy 76
a northeast translation of polygon P by +(1,1) 77
top right corner of a regular 48-sided polygon 77
varying the number of sample points: » =8, 12, and 16 78
varying the number of sample points: n = 16, 24, 32, and 64 79
two shapes with multiple densities 82
differentiating between partial solutions 83
identifying accurate and inaccurate vertices 84
error in differences of moments o000 85

Acknowledgements

I am indebted to several individuals for their extensive contributions in time, ideas,
suggestions, and encouragement over the last few years.

Professor Faith Fich started me on the road to graduate research in computer sci-
ence at the University of Toronto. As a professor, she sparked my interest in theory
and, as a supervisor, she introduced me to the world of research. Professor Nicholas
Pippenger welcomed me to the University of British Columbia and initiated our
research on parallel game trees and optimal routing policies. Professor Jim Varah
is responsible for introducing the problem of polygon reconstruction from moments.
His continued interest, enthusiasm, and involvement, as well as his patient explana-
tions of the numerical mechanics of reconstruction were crucial in the development
of this research. He kindly agreed to be a second reader for this thesis. Martin
Robillard and Michael McAllister generously acted as proofreaders, both providing
very helpful reviews.

The big thanks go out to Professor David Kirkpatrick. He provided essential guid-
ance and motivation, shared his innumerable ideas, and gave up endless hours of his
time, day after day and month after month, allowing this thesis and all our work on
polygon reconstruction to come into being. His role as a supervisor, a role model to
graduate students, and an all-around great guy and friend is very much appreciated.
I consider myself very lucky to have had the opportunity to work closely with such
a great individual.

STEPHANE DUROCHER

The University of British Columbia
August 1999

xi

a mes chers parents,

Yves et Christiane Durocher

xii

Chapter 1

Introduction

1.1 Problem and Motivation

The problem of reconstructing an unknown polygonal shape, P, viewed as a region
in the Cartesian plane, from a finite number of its complex moments is motivated
by a several mathematical, computational, and application-oriented considerations.
Moment information derived from such diverse physical processes as tomographic
(line integral) measurements, exterior gravitational, or magnetic field measurements,
or thermal radiation measurements often provides the input data in reconstructing
a two-dimensional object. In each case, these measurements represent available in-
formation associated with an otherwise unspecified object. This complex moment
data potentially provides enough information to allow the complete or partial re-

construction of the original polygon, P [Dav64, Dav77, SB86, MVKW95, GMV99].

1.2 Previous Work

For years, mathematicians and physicists have studied the relationship between
shape and moment [ST43]. The moments of a region are the integrals of the powers

of the independent variables over that region. The kth harmonic moment of a

2-dimensional polygon P is given by [GMV99]:

mk://sz dz dy (1.1)

In early work, Davis showed that given only its complex moments up to the third
order, the positions of all vertices of a triangle within the Cartesian plane can be
successfully reconstructed [Dav64]. Thus, any three-vertex polygon can be recon-
structed from its complex moments.

Davis later proved a generalization of an earlier result by Motzkin and
Schoenberg, a quadrature formula that provides the essential mathematical basis

to polygon reconstruction from moments [Dav77, GMV99]:

Theorem 1.1 (Davis, 1964) Let zy,..., z, designate the vertices of a polygon P
in the Cartesian plane. Then we can find constants ay,...,a, depending upon

Z1,y ..., 2p but independent of f, such that for all f analytic in the closure of P:

//Pf"(z) dz dy = é%‘f(zg') (1.2)

This formula allowed Milanfar et al. [MVKW95] to generalize Davis’ result
and show how a finite number of complex moments of P can be used effectively to
reconstruct the vertices of P.

Using their method, given complex moments for a polygon P within the
Cartesian plane, one may reconstruct the positions of the vertices of P. Given
sufficient additional information about the interconnection of vertices within P,
such as convexity, one may reconstruct P itself. For n vertices, there are n(n—1)/2
possible edges. Thus, without additional information about the edge set of P,
vertex position alone may be insufficient for complete reconstruction (see example
in figure 1.1).

Very recently, Golub et al. [GMV99] address some of the formidable numer-
ical difficulties associated with this reconstruction. In addition, they demonstrate

that partial information concerning a polygon’s edges can also be derived from a

Figure 1.1: Even with as few as four non-convex points, given only vertex positions
without additional information, three different polygons may be reconstructed.

finite number of its complex moments, raising the possibility of a more complete and
general reconstruction scheme. This further development not only allows the repro-
duction of original vertex positions, but also provides edge orientation constraints

between vertices of P (see example in figure 1.2).

A
LN

A B

Figure 1.2: Given the same four vertex positions along with possible edge directions
at every vertex, only a single solution remains possible.

Specifically, given vertex positions for the set V' of vertices of P in the Carte-
sian plane, for every v € V, we may derive two angles, ¢ and ¢, each allowing
in-edges at angles ¢y mod 7 and ¢, mod 7, and out-edges at angles ¢; mod 7 + 7
and ¢ mod 7 + 5 [GMV99]. This smaller set of potential edges greatly restricts
the choice of edges in reconstructing P. In so doing, this additional extracted in-
formation constrains the edge reconstruction problem, allowing reconstruction of
non-convex shapes from moments.

In general, even simply-connected polygonal regions are not uniquely speci-
fied by even infinitely many of their complex moments [SB86], thereby precluding a

completely general reconstruction scheme. Since there exist distinct two-dimensional

polygons whose moment signatures are identical (see Chapter 4) reconstruction from
moments is limited, independent of any reconstruction approach. In cases involving
ambiguity, differentiating between possible reconstructed solutions requires addi-

tional information, aside from the input complex moments.

Having applied this initial phase of the solution, the reconstruction problem remains
far from being solved. The numerical methods provide positions for vertices of P
and partial information about potential bounding edges of P, expressed in terms of
geometric constraints. We examine the problem of constructing polygonal regions
consistent with this information. For many non-convex polygons, this latter phase
of the reconstruction process becomes quite convoluted. The problem involves in-
terconnecting reconstructed vertices with a superset of potential edges and applying
constraint propagation along neighbouring vertices in search of a polygonal subset of
edges. Although, in practice, the vertex positions and edge constraints may contain
error in their specifications, due either to error originating in the moment data or
error introduced in the numerical computations, it is of interest to study the recon-
struction problem with error-free moment information. As we shall see, within a
graph-theoretic setting, this formulation translates directly into a restricted directed
2-factor problem on a directed graph GG defined on the vertex set V. We examine
the problem of reconstructing polygonal regions, or 2-factors, consistent with the

derived partial information about vertex positioning and edge orientation.

1.3 Thesis Organization

The organization of the material in this thesis is as follows. Chapter 1 introduces the
polygon reconstruction problem, gives motivation for its examination, and presents
a brief discussion of related research. Chapter 2 provides general background and
definitions from graph theory, complexity, and polygon reconstruction. Chapter

3 discusses the 2-factor problem along with proofs that restrictions to the 2-factor

problem specific to our polygon reconstruction setting are NP-hard. Chapter 4 deals
with properties of various graphs with respect to solutions to the reconstruction
problem and discusses the uniqueness of solutions within specific graphs. Chapter 5
explains the various modules of the reconstruction algorithm. Chapter 6 examines
the behaviour of the algorithm on various classes of graphs and challenges faced by
the algorithm. Chapter 7 presents a list of potential future research areas which
remain open within the domain of polygon reconstruction from moments. Finally,

Chapter 8 summarizes the formal discussion of the polygon reconstruction problem.

Chapter 2

Problem Definition

Before beginning our examination of the problem, we define terms that arise in
general graph theory, related complexity theory, common problems found in graph-
theoretic and classical complexity, and terms that arise in our discussion of polygon
reconstruction. Finally, we formally define the problem of reconstructing the poly-

gon P from its complex moments.

2.1 Definition of Terms

2.1.1 General Graph Theory

The following terms!

arise in many general graph theory problems.

A graph, G = (V,F), is a collection of vertices, V, and edges, E. A vertex,
v € V, is a single point or node in G. An edge, e € F, represents a relationship
between two vertices in G. We say edge uwv € F if and only if there exist vertices
u,v € V such that u and v are related under some relation R C V x V. Graphically,

we tepresent e by drawing a straight? line from u to v. If the edge relation is asym-

1See the glossary in Appendix A for a complete list of definitions.
2Within our domain, all edges are assumed to be straight lines.

metric, then G is a directed graph or digraph. uv and vu are distinct possible
edges between vertices v and u. Given graphs G = (V, F)and H = (V', F'), H is a
subgraph of G if and only if H is a graph, V/ C V, and K/ C K. If V! =V then
H is a spanning subgraph of G. An edge coming from a vertex u into vertex v is
called an in-edge locally at v. Conversely, an edge going from vertex v out to a

vertex u is described as an out-edge locally at v.

We represent vertex adjacency through a boolean adjacency matrix, M, where
M, = true if and only if there exists an edge from vertex u to vertex v. The
degree of a vertex v is the total number of edges incident upon v. Similarly, the
in-degree of v is the number of in-edges at v and the out-degree of v is the num-
ber of out-edges at v. The degree of a graph, GG, is defined as the maximum degree

amongst all vertices v € V.

If we are given a pre-determined fixed positioning for the vertices of a graph G,
then we say that G is an embedded graph. Any fixed positioning of the vertices
of (G is described as an embedding of G. If there exists a two-dimensional embed-
ding of graph G in the plane in which none of the edges of G cross, then we say
G is planar. Such an embedding is a non-crossing embedding. All of the edges

in a rectilinear embedding lie along a single orthogonal north-south, east-west axis.

A graph G is simply-connected if for any two vertices u,v € V we can find
some sequence of vertices {vy,...,vx} C V such that vy = u, vy = v, and for all
1<i<k—-1,vvy € Foruvyv; € E. A connected component G/ C G is a
maximal simply-connected subgraph of G. There cannot exist vertices v € V — V'
and u € V' such that wv € F or vu € E. A cycle is a sequence of neighbouring
vertices, {vy,...,vx} C V, such that v;v;41 € Fforall 1 <7<k —1and vv € F.

A k-ecycle is a cycle of length k.

A vertex v is an interior vertex within an embedded graph G, if there exists a
cycle C' C G such that v ¢ C and C encloses v within it. Conversely, v is an exte-

rior vertex, if there does not exist such a cycle C.

A graph G = (V, F) is bipartite if there exists a partition of its vertices, V = V;UVj,
such that, Vi # (), Va # (), ViNV, = (D), and every edge v1v2 € E has one endpoint

in each partition, v;y € V] and vy € V5 or v; € V5 and vy € V.

2.1.2 Classical Complexity

As is often the case with the presentation of algorithms in theoretical computer sci-
ence, the classes of problems P and NP find themselves present within our domain.

Garey and Johnson [GJ79, page 27] formally define the class P as follows:

P = { L :thereis a polynomial time deterministic
Turing machine program M for which L = Ly}
Informally, the class P unites all problems that have deterministic polynomial-
time algorithmic solutions. That is, their solutions can be found deterministically
in time proportional to some polynomial function in terms of the input size of the

problem.

Similarly, Garey and Johnson [GJ79, page 31] formally define the class NP as

follows:

NP = { L:thereis a polynomial time nondeterministic

Turing machine program M for which L = Ly}

Informally, the class NP unites all problems that have nondeterministic

polynomial-time algorithmic solutions. By these definitions, P C NP. Thus, we

require a distinction between those problems that have known polynomial-time de-

terministic solutions and those that do not.

To compare the difficulty of two decision problems, we use a reduction function, R,

which allows us to transform one problem to another. Papadimitriou writes:

That is, we shall be prepared to say that problem A is at least as hard
as problem B if B reduces to A. Recall what “reduces” means. We say
that B reduces to A if there is a transformation R which, for every input
z of B, produces an equivalent input R(z) of A. Here by “equivalent”
we mean that the answer to R(z) considered as an input for A, “yes”
or “no,” is a correct answer to z, considered as an input of B. In other
words, to solve B on input z we just have to compute R(z) and solve A
on it. [Pap94, page 159]

If we can show a polynomial-time reduction f from some problem ¢ to a
problem p, such that, Vz, z € ¢ & f(2) € p, then we say p is at least as hard as
qg. We define a special class of problems, the class of NP-hard problems. If ¢ is
NP-hard and ¢ is reducible to p in polynomial time, then p is also NP-hard. This
special class of NP problems have the property that, for any NP-hard problem ¢
other than SAT (Section 2.1.3) there is another NP-hard problem p, such that, p
is reducible to ¢ in polynomial time. Thus, problem ¢ is “at least as complex” as

problem p. Therefore, NP-hardness is a lower bound of complexity in a hierarchy of

problems for which no deterministic polynomial-time algorithmic solution is known.

2.1.3 Graph Theoretic and Complexity Problems

The following problems have been studied extensively in classical graph theory and
complexity. These problems will be relevant in our examination of complexity issues

with respect to the polygon reconstruction from moments problem.

As we will see in Chapter 3, our reconstruction problem is very closely related

to the problem of finding an n-factor within a graph. Lovasz and Plummer write,

“a spanning subgraph regular of degree n is called an n-factor.”[LP86, page xxx]
N-FACTOR? is solvable in polynomial time [LP86, GJ79]. A 2-factor is an n-factor
of degree 2. A directed 2-factor of GG is a spanning subgraph H C G for which
every vertex v € V' has exactly one in-edge and one out-edge. The problem of
finding an unconstrained 2-factor in a general graph G is polynomial-time solvable
[LP86, GJ79]. Closely related to the 2-factor is the Hamiltonian cycle. Lovdsz
and Plummer define, “a cycle which includes every point of a graph G is called a
Hamilton cycle of G.”[LLP86, page xxx] The problem HAMILTONIAN CIRCUIT
is NP-hard [GJ79]. A matching is an n-factor of degree 1. Every vertex is met
by exactly one edge. The problem of finding a matching in a general graph G is
polynomial-time solvable [GJ79].

Within our reductions, we will refer to 3-dimensional matching. Garey and

Johnson explain 3-dimensional matching as follows:

The 3-DIMENSIONAL MATCHING problem is a generalization of the
classical “marriage problem”: Given n unmarried men and n unmarried
women, along with a list of all male-female pairs who would be willing to
marry one another, is it possible to arrange n marriages so that polygamy
is avoided and everyone receives an acceptable spouse? Analogously, in
the 3-DIMENSIONAL MATCHING problem, the sets W, X, and Y cor-
respond to three different sexes, and each triple in M corresponds to a
3-way marriage that would be acceptable to all three participants. Tra-
ditionalists will be pleased to note that, whereas 3DM is NP-complete,
the ordinary marriage problem can be solved in polynomial time. [GJ79,
page 50]

Another family of problems that will be of interest is SAT. Papadimitriou
defines, “SATISFIABILITY (or SAT, for short) then is the following problem: Given
a Boolean expression ¢ in conjunctive normal form, is it satisfiable?”[Pap94, page

77] SATISFIABILITY is the best-known and, historically, the first NP-complete
problem [GJ79]. Garey and Johnson write, “the 3-SATISFIABILITY problem

3Formal descriptions of problems in complexity theory are traditionally given an identifier
composed of a few brief descriptive words written in capital letters.

10

is just a restricted version of SATISFIABILITY in which all instances have exactly
three literals per clause.”[GJ79, page 48] 3-SAT is also NP-complete. 2-SAT re-
stricts instances to two literals per clause. This tighter restriction on the problem

makes 2-SAT solvable in polynomial time [GJ79].

2.1.4 Polygon Reconstruction Problem

The following definitions are specific to our discussion of moment-based polygon

reconstruction.

Given a graph G = (V, F), at every vertex v € V, we assign a single colour to
each edge. We say (G is an edge-bicoloured graph. This colouring is local; the
colour at the head and tail of an edge may differ. Within our domain, a vertex may
only have two different colours of edges; we refer to these locally as red and blue.?
If every v € V contains no more than two red in-edges, two red out-edges, two blue
in-edges, and two blue out-edges, then G is a bounded-degree edge-bicoloured
graph. Furthermore, if edges of similar colour and direction align along an axis (see

figure 2.1) then GG is a moment-derived edge-bicoloured graph.

The angular constraints on potential edges, ¢; and ¢, impose an orthogonality
between edges of similar colour. Thus, under a geometric interpretation of these
constraints, edges of similar colour at a given vertex to belong to a common frame-
work or axis. Each vertex has two such local axes with edges within an axis lying
orthogonal to each other. We refer to a global framework whenever frameworks
of common colour across all vertices in the graph lie within the same orthogonal

axis. The red-degree of a vertex v is the total number of red edges incident upon

4We sometimes refer to global colouring in a graph, in which case, head and tail colours
match for all edges e € E. For presentation of graphs, we sometimes make use of a global
colouring of edges. While locally, there are only two colours, globally, a graph may have
more than two different colours.

11

v. Similarly, the blue-degree of v is the total number of blue edges at v. If a graph

G has global colouring, then we may refer to the red-degree or blue-degree of G.

If a vertex v has at least one in-edge of a given colour and one out-edge of a different
colour, then we say v is valid. If v does not have any in-edges, does not have any
out-edges or only has edges of one colour, then we say v is invalid. When a vertex
v has in-degree one, out-degree one, red-degree one, and blue-degree one, then we
say v is happy. Otherwise, we say v is unhappy. If H = (V', E’) is a spanning
subgraph of G with the property that every v € V' is happy, then H is a solution
subgraph of G. We describe the state of H as global happiness.

Under the edge constraints of the reconstruction, a vertex v that is part of a solution
may be in one of two vertex states: red-in, blue-out (RIBO) or blue-in, red-
out (BIRO). This state directly corresponds to edge commitments. An edge e exists
in one of three edge states: undecided, committed, or dropped. Whenever an
edge is selected as being part of a partial solution, we say that we commit to that

edge. We refer to this decision as an edge commitment.

A fragment is any sequence of vertices vy,...,v; such that vyvg4 € F, for all
1 <k <1v—1 and and every vertex vy,...,v;_1 is happy. A fragment constitutes a
part of a possible solution. Several graphs embody more than one possible solution.

Any such non-unique solution is an ambiguous solution.

2.2 Models Used and Problem Overview

The basis of all models we study will be that of an embedded graph in the Cartesian
plane in which vertices are subject to very specific local restrictions; given vertex
positions for the set V of vertices of P in the Cartesian plane, for every v € V,

we may derive two angles, ¢, and ¢y, each allowing in-edges at angles ¢; mod 7

12

and ¢ mod 7, and out-edges at angles ¢; mod 7 + 7 and ¢ mod 7+ F [GMV99].
These restrictions have the following simple geometric interpretation. Each vertex
has two independent axes assigned to it: a blue and a red axis. Each axis specifies
two in-directions and two out-directions such that in-directions and out-directions

within the axis are orthogonal (see Figure 2.1).

Figure 2.1: local blue and red axes for potential edges at a vertex

Within a solution, the reconstructed vertex positions form a set of vertices,
V, for a graph G = (V, F). An edge e from vertex u to vertex v belongs to the edge
set of GG if and only if its direction agrees with one of the axes specified at each of u
and v. We will colour the head and tail of e with the colour of its associated axis.

For example, say we have a graph GG; with four vertices, v, ..., v4, and each vertex

S T o
Ao A

Figure 2.2: axes for potential edges

13

has red and blue axes given as in figure 2.2. The axes and their dotted extensions
represent allowable edge directions.

Whenever the out-direction from vertex u aligns with the in-direction at
another vertex v, we have an edge uv. Figure 2.3 displays the actual edge set F;

that corresponds to this particular graph.

Figure 2.3: axes for actual edges

A solution to the polygon reconstruction problem is a spanning subgraph
H of the directed and edge-bicoloured graph G in which every vertex has both
in-degree and out-degree one and both red-degree and blue-degree one. Thus we
are looking for a directed 2-factor of G that satisfies some local colour constraints,
namely, global happiness.

At every vertex v € V, a solution requires commitment to a single in-edge
having some colour and a single out-edge of the opposite colour. Obviously, com-
mitment at the head of an edge implies commitment at the tail and vice-versa.

For example, figure 2.4 displays a graph Gy = (V2, F3) for which we wish
to find a globally-happy directed 2-factor. Every vertex v € V5 is valid. Several v,
however, are unhappy. Hy = (V3, E}) is a spanning subgraph of Gy. Every v € V) is

both valid and happy. Furthermore, H, represents a 2-factor of G, for which every

14

O=—d Ot—O—>0 O=—sO OO
OO O—0 OO OO0
O Ot—O—>0 O=—s0 OO
<) <)
O »0O O »0O

Figure 2.4: an initial graph G and a solution subgraph Ho

vertex has both in-degree and out-degree one and both red-degree and blue-degree
one. Thus, Hy is a solution subgraph of (G5 for the polygon reconstruction problem.
In this example, the edge set Fy has two global frameworks: red and blue.
Whenever an odd-length cycle finds itself within a solution, then two colours
are no longer sufficient for a representation of the graph with a global colouring.
Since all vertices in a solution must be happy, at some point in any odd-length
cycle, there must be an edge whose vertices do not agree on a global two-colouring
(see figure 2.5a). Recolouring leaves the problem unchanged; we are searching for
a globally-happy two factor within an edge-bicoloured graph. To facilitate the in-
terpretation and presentation of such graphs, we introduce a new colour to allow

global colouring. (see figure 2.5b).

\ :

Figure 2.5: odd-length cycle edge colouring

15

Figure 2.6 displays a second example, a more involved graph, Gs = (V3, Hs), and a
solution subgraph, Hs. Unlike the previous graphs, in this case, edge set colouring
can be made global only through the use of a third colour. Thus, G5 has three
global frameworks. Note that locally, however, every vertex v € V3 has exactly two

colours of edges. Again, Hs is a globally-happy directed 2-factor of G's.

Figure 2.6: an initial graph G5 and a solution subgraph Hj

We divide the problem of moment-based polygon reconstruction into three distinct

phases:

1. Given complex moment data as input, the first step of the reconstruction
provides approximations to the Cartesian coordinates of the vertices and the

angles for two axes of potential in-edges and out-edges at each vertex.

2. Vertex positioning and potential edge information is mapped to an embedded

edge-coloured directed graph G.

3. We look for a spanning subgraph H C G that is a globally-happy 2-factor.

16

In our research, we examine the two latter steps with a focus on the last challenge:

the problem of finding a globally-happy 2-factor.

17

Chapter 3

Restricted 2-Factors

The third phase in the problem of reconstructing a polygon from its complex mo-
ments involves searching for a spanning subgraph H C G which is a globally-happy
2-factor. Thus, we are searching for a 2-factor with specific properties: a restricted
2-factor. In this chapter, we examine properties of various relevant restrictions to the
general 2-factor problem. In Section 3.1, we examine the problem of finding a gen-
eral 2-factor. In Section 3.2, we define three restrictions to the 2-factor problem. In
Sections 3.3 and 3.4, we show NP-hardness for various restricted 2-factor problems,
including, EDGE-BICOLOURED DIRECTED 2-FACTOR, BOUNDED-DEGREE
DIRECTED 2-FACTOR, and NON-CROSSING 2-FACTOR. Finally, Section 3.5

summarizes our discussion of restricted 2-factors.

The unconstrained directed 2-factor problem is polynomial-time solvable [GJ79,
L.LP86]. The problem of finding a globally-happy 2-factor in polygon reconstruction
from moments involves the imposition of specific restrictions on the unconstrained
2-factor problem. We identify these additional properties by four specific restrictions

to the input graph and output 2-factor:

1. We may constrain edge choice by requiring global happiness in the resulting

2-factor.

18

2. We may require that edges of the 2-factor be non-crossing.

3. We may require that each local blue axis and red axis of the vertices of the

input graph be orthogonal.

4. We may limit in-degree and out-degree to two edges per colour at every vertex.

In this chapter, we examine these four constraints in isolation to determine
their effect on the difficulty of the problem. We discuss the relationship between
our colour-constrained 2-factor problem and the unconstrained 2-factor problem. We
show NP-hardness for specific 2-factor restrictions which embody essential aspects

of the globally-happy 2-factor problem.

3.1 2-Factors

The undirected 2-factor problem involves taking an undirected graph, G = (V, E),
and finding a spanning subgraph, H = (V' E’), such that every vertex v € V' has

degree 2 (see figure 3.1). The directed 2-factor problem is similar to the undirected

Figure 3.1: a graph G and three subgraphs which are 2-factors of G
problem but with the additional requirement that every vertex v € V' in the 2-factor

must have in-degree 1 and out-degree 1.

The colour constraints on edges may be restated as a cycle-restricted 2-factor prob-

lem by replacing each vertex by a simple component. Figure 3.2 displays two com-

19

red in red out redin red out

bluein blue out bluein blue out

Figure 3.2: We replace vertices with one of the components in which 3-cycles and
2-cycles are disallowed, respectively.

ponents that embed colour constraints into the graph if 3-cycles are disallowed with
use of the first component and if 2-cycles are disallowed with use of the second
component. By replacing all vertices with either of these components, the problem
may be restated as a k-cycle-restricted 2-factor problem, where k is either 2 or 3.
Without these restrictions, a closed k-cycle within the component would allow two

edges of similar colour to be included in a 2-factor.

Given any directed graph, G = (V, F), an unconstrained 2-factor may be solved
by mapping to a matching problem [LLP86]. To do so, we make two copies of every
vertex v € V. One instance retains all in-edges and the other retains all out-

edges (see figure 3.3). All in-edge vertices, v’, are placed into a partition V’ and

X

Figure 3.3: v = v/ and v

all out-edge vertices, v”, are placed into a partition V”. We call this new graph
G'= (V'UV" E’). Whenever an edge uv appears in G, we include an edge from

u' to v’ in F' (see figure 3.4). Therefore, any directed graph, G, may be mapped to

20

Figure 3.4: mapping a 2-factor problem to a matching problem

an undirected bipartite graph ' such that uv € F < u”v' € F'.
Thus, there exists a perfect matching in G’ if and only if there exists a di-
rected 2-factor in GG. The bipartite matching problem is solvable in polynomial-time

[I.LP86]. The 2-factor problem, therefore, is also solvable in polynomial-time.

Hell et al. show that disallowing k-cycles makes the undirected 2-factor prob-
lem polynomial-time solvable if & < 4 and NP-hard if & > 4 [HKKKS88]. This
polynomial-time solution to finding cycle-restricted undirected 2-factors provides
motivating evidence for a possible polynomial-time solution to the globally-happy
2-factor problem.

It will follow later that disallowing k-cycles makes the directed 2-factor prob-
lem NP-hard for £ = 2 and k£ = 3 (see Corollary 3.2). We go on to show that re-
stricting the 2-factor problem with colour constraints or disallowing crossing edges
renders the problem NP-hard. That is, we show that imposing properties 1, 2, or
4 render the problem NP-hard.

3.2 Restricting the 2-Factor Problem

The unconstrained directed 2-factor problem is polynomial-time solvable [GJ79,
L.P86]. Our polygon reconstruction problem differs from the basic 2-factor problem
simply by the addition of one or more of the four additional constraints. The

addition of these seemingly minor parameters significantly alters the complexity of

21

the problem.

We know 2-FACTOR lies near the boundary between P and NP-complete
since 2-FACTOR € P and HAM-CYCLE € NP-complete [GJ79]. The only dif-
ference between these two problems is that HAM-CYCLE requires the existence of
a single spanning cycle, namely, a Hamiltonian cycle, whereas 2-FACTOR allows
multiple disjoint cycles whose union spans the graph.

In addition to special colour constraints, one may reasonably require that
polygonal regions be non-intersecting, that is, that their interior density be constant
and non-negative. This corresponds to searching for a 2-factor in which no edges
CTross.

Thus, we define three restrictions of 2-FACTOR that model specific aspects
of our globally-happy 2-factor problem; these restricted 2-factor problems impose
properties 1 (Theorem 3.1) properties 1 and 4 (Corollary 3.3) and property 2 (Theo-

rem 3.4) respectively. We examine the time complexities of each restricted problem.

3.3 Edge-Bicoloured Directed 2-Factor

3.3.1 Problem Instance and Question

When imposing the first property, that the resulting 2-factor respect global-happiness,

our problem reduces to the following:

EDGE-BICOLOURED DIRECTED 2-FACTOR

INSTANCE: Directed graph G = (V, F), where edges of F are coloured red or blue
at each end.

QUESTION: Does GG admit a directed 2-factor H with red-degree 1 and blue-degree

1 at each vertex?

22

3.3.2 EDGE-BICOLOURED DIRECTED 2-FACTOR is NP-hard

Using a component-based proof, we give a reduction from 3-DIMENSIONAT MATCH-
ING [GJ79] to EDGE-BICOLOURED DIRECTED 2-FACTOR.

To facilitate colouring within this proof, we interchange the colours of out-edges

at every vertex. In doing so, vertex happiness may be achieved by finding a directed

5

Figure 3.5: reversing out-edge colours at a vertex

2-factor such that, at every vertex, both edges have similar colour (see figure 3.5).
Note that this does not alter the problem but simply alters the interpretation of the
colour rules.

An instance of 3-DIMENSIONAL MATCHING consists of three sets of equal
size, X, Y, and Z, along with triples of the form T = {(z;,y;,21)} C X XY X Z,
such that every z;,y;, and z; appears in at least one triple. A solution to 3-

DIMENSIONAL MATCHING consists of a subset 77 C T such that every z;,y;,

Figure 3.6: example of 3-DIMENSIONAL MATCHING instance and solution

23

and zj is visited exactly once.

We represent a single point, 2;,y;, or z; by a pair of vertices connected by a single

blue edge (see figure 3.7).

Figure 3.7: single point component

We create a component that connects three points, z;, y;, and z; into a triple
(see figure 3.8). Each triple has three pairs of blue edges that link the points to the

component.

Figure 3.8: We represent a triple, (z;,y;, z), by this component.

In an edge-bicoloured directed 2-factor, every vertex must be met by exactly
one in-edge and one out-edge of similar colour. Thus, either all three or zero outside
blue paths may visit the construction (see figure 3.9). This forces all three or none
of the points to be included in a edge-bicoloured directed 2-factor on the triple
component.

A point z; may be a member of several triples. z; is linked up to every triple

24

Figure 3.9: In an edge-bicoloured directed 2-factor, the triple component may be in
one of two states.

component to which it belongs by a pair of blue edges. Thus, several pairs of blue
edges may meet z;. We call this entire graph of linked triples and points, G’ (see
figure 3.10). In any edge-bicoloured directed 2-factor, only a single pair of blue edges
may visit any z;. Thus, every z; may only be included in exactly one triple.

Since individual points may only be visited by one pair of edges and since
points must be included in given triples, a 3-dimensional matching in T corre-
sponds to an edge-bicoloured directed 2-factor in G’. Given any X,Y, 7, and T,
a 3-dimensional matching can be found if and only if there exists an edge-bicoloured
directed 2-factor in G'. We have shown a polynomial-time reduction function, fi,

such that:
z € 3DM & fi(z) € EDGE — BICOLOURED DIRECTED 2—FACTOR

Therefore, we have proven:

Theorem 3.1 (Kirkpatrick-Durocher, 1999)
EDGE — BICOLOURED DIRECTED 2—FACTOR € NP —hard

Recall that we originally sought to show polynomial-time complexity for EDGE-
BICOLOURED DIRECTED 2-FACTOR. In Section 3.1, we described a polynomial-
time reduction, f;, from EDGE-BICOLOURED DIRECTED 2-FACTOR to k-
CYCLE-FREE DIRECTED 2-FACTOR for & = 2 and k& = 3 such that:

25

Figure 3.10: example of 3-dimensional matching within G’ transformation
z € EDGE — BICOLOURED DIRECTED 2—-FACTOR

& fi2(z) € k-CYCLE-FREE DIRECTED 2—-FACTOR, k € {2,3}

If .-CYCLE-FREE DIRECTED 2-FACTOR, were solvable in polynomial time for
k =2 or k = 3, then EDGE-BICOLOURED DIRECTED 2-FACTOR could also
be solved in polynomial time. By contradiction, therefore, k-CYCLE-FREE DI-
RECTED 2-FACTOR cannot be solvable in polynomial time. Thus, we have shown:
Corollary 3.2 (Kirkpatrick-Durocher, 1999)

FCYCLE—-FREE DIRECTED 2—FACTOR € NP —hard, k € {2,3}

3.3.3 Bounded-Degree Edge-Bicoloured Directed 2-Factor

In our problem, the last property limits a vertex to at most two in-edges and two

out-edges of any colour. Through a simple modification of the vertex component, we

26

show that BOUNDED-DEGREE EDGE-BICOLOURED DIRECTED 2-FACTOR

remains NP-hard.

We formally define BOUNDED-DEGREE EDGE-BICOLOURED DIRECTED 2-
FACTOR as follows:

BOUNDED-DEGREE EDGE-BICOLOURED DIRECTED 2-FACTOR
INSTANCE: Directed graph G = (V, F), where edges of F are coloured red or blue
at each end and any v € V has blue in-degree, blue out-degree, red in-degree, and
red out-degree < 2.

QUESTION: Does G admit a directed 2-factor H with red-degree 1 and blue-degree

1 at each vertex?

Garey and Johnson write, 3-DIMENSIONAL MATCHING “also remains NP-complete
if no element occurs in more than three triples, but is solvable in polynomial time
if no element occurs in more than two triples.” [GJ79, page 221]

We exploit this fact and replace the two-vertex component with six vertices

(see figure 3.11). Exactly three pairs of exterior blue edges meet the component.

Figure 3.11: bounded-degree component for a vertex z;,y;, or z

Since every vertex may appear in at most three triples, this new vertex component
requires connecting edges to, at most, three triple components.
Again, in an edge-bicoloured directed 2-factor, only a single pair of exterior

blue edges may be followed (see figure 3.12). The difference, however, is that every

27

vertex now has blue in-degree, blue out-degree, red in-degree, and red out-degree

bounded by two.

Figure 3.12: edge-bicoloured directed 2-factor on bounded-degree component

Following a proof identical to that from Theorem 3.1 except with use of this
new bounded-degree component for points z;,y;, or z;, we show that even with a
single colour degree bound of two, the problem remains NP-hard. Thus, we have

demonstrated:
Corollary 3.3 (Kirkpatrick-Durocher, 1999)

BOUNDED -DEGREE EDGE — BICOLOURED DIRECTED 2—FACTOR € NP-hard

Finally, in an attempt to bound degree as tightly as possible, we use a component

that bounds red in-degree and out-degree to one (see figure 3.13). In doing so, we

£

Figure 3.13: modified bounded-degree component

show that even if we limit blue in-degree and out-degree to two and red in-degree
and out-degree to one, EDGE-BICOLOURED DIRECTED 2-FACTOR remains
NP-hard.

28

3.3.4 Degree Four versus Degree Five

At this point, one may wonder about the boundary between P and NP-hard. Does
the problem become easier if vertices have lower degree? What happens if we bound
the degree any more tightly? In our final reduction, any vertex, v, has red in and
out-degree < 1, and, at most, three blue edges, only two of which have similar

orientation. Thus, v has at most five edges.

a a a

Cc
c b % b c b
d d

Figure 3.14: three cases when removing an additional edge

If we remove any additional edge, one of three cases may arise. We may
remove a red edge in which case only a single red edge remains (figure 3.14a), we
may remove a blue edge such that two blue edges of similar orientation remain
(figure 3.14b) or we may remove a blue edge such that two blue edges of opposite
orientation remain (figure 3.14c).

In each of these cases, the problem of finding an edge-bicoloured directed 2-
factor can be described logically as a simple conjunction of disjunctions. The colour

constraints on the above examples may be rewritten, respectively, as follows:
bA (add)

bA (cdd)
(add)NbBc)AN(aBb)A(chd)

Note that exclusive-OR is itself logically equivalent to a conjunction of disjunctions:
oy)=@VyA(EVvy)

29

The vertices of any graph of degree < 4, therefore, could be described by a
conjunction of such disjunctions corresponding to local colour constraints. Every
disjunctive clause contains at most two literals meaning that the problem reduces! to
2-SAT. 2-SAT is solvable in polynomial time [GJ79]. Reducing the number of edges
to 4, therefore, brings the complexity down within range of polynomial-time solvabil-
ity. When edges are orthogonal, Rendl and Woegingner show that reconstruction of
sets of orthogonal line segments in the plane from the set of their vertices can also

be done in polynomial time [RW93].

Thus, we have shown that with at least five edges at every vertex, EDGE-BICOLOU
-RED DIRECTED 2-FACTOR is NP-hard. However, with at most four edges at
any vertex, EDGE-BICOLOURED DIRECTED 2-FACTOR € P. Even under ex-
tensive pruning of edges, therefore, EDGE-BICOLOURED DIRECTED 2-FACTOR
remains NP-hard.

3.4 Non-Crossing 2-Factor

3.4.1 Problem Instance and Question

If we ignore colour constraints and simply require that property 2 be respected, that
polygonal regions be non-intersecting, our 2-factor problem reduces to a restricted
2-factor problem in which we disallow crossing edges. For simplicity, we first ex-
amine the problem of finding a non-crossing 2-factor on an undirected graph. We

formalize the problem as follows:

NON-CROSSING 2-FACTOR
INSTANCE: Undirected embedded graph G = (V, F).

' A reduction from problem p to problem ¢ shows that ¢ is “at least as hard” as p. Thus,
when showing NP-hardness of ¢, we reduce a known NP-hard problem to g. When showing
q € P, the argument is reversed and we reduce ¢ to a known P problem.

30

QUESTION: Does GG admit a 2-factor H, none of whose edges intersect except at

their endpoints?

3.4.2 NON-CROSSING 2-FACTOR is NP-hard

Using a component-based proof, we give a reduction from 3-DIMENSIONAL MATCH-
ING to NON-CROSSING 2-FACTOR. 2 We will present a reduction which is ini-
tially undirected but for which every component may be directed without any effect

on functionality.

The first component essential to the reduction is one that may be inserted at the
intersection of two crossing edges, A and B, to force a logical exclusive-OR, within

a non-crossing 2-factor (see figure 3.15). That is, either edge A or edge B may be

Figure 3.16: XOR component

2Jansen and Woeginger show that given an undirected graph G whose edges are axis-
parallel, the problem of deciding whether G has a crossingfree two-factor is NP-complete
[JW93]. Here we show that both the directed and undirected cases are NP-hard.

31

followed, but not both, nor neither, nor some fragment of either. The component
construction is displayed in figure 3.16.

Note that any non-crossing 2-factor within this component must find itself
in one of two states. Either either the path A — A or the path B — B is followed.

Any other combination forces edges to cross (see figure 3.17).

Figure 3.18: crossover component

We require a second component to eliminate unwanted edge-crossings. In-
serting this component does not affect membership of edges within a 2-factor but
eliminates actual crossing. In a non-crossing 2-factor, this construction forces one
of A— A, B— B, neither or both edges to be followed (see figures 3.18 and 3.19). No
other combination of edges is possible. For example, it is impossible to visit only

the bottom B edge and the top A edge without forcing edges to cross.

32

Figure 3.19: four states of crossover component in a non-crossing 2-factor

We may now begin the reduction from 3-DIMENSIONAL MATCHING. Let S =
XUYUZ. Thesets S and T form a bipartite graph GG (see figure 3.20a).

Figure 3.20: 3-dimensional matching instance and solution in bipartite graph

Finding a 3-dimensional matching amounts to finding a subset of edges of G which
meet every vertex in the S partition exactly once and every vertex in the T partition

exactly zero or three times (see figure 3.20b).

Figure 3.21: stretching G
We first stretch G onto diagonals (see figure 3.21).

33

We replace all crossovers using our crossover component (see figure 3.22). This

implies that any 2-factor within the graph will be non-crossing.

Figure 3.22: eliminate crossovers using crossover component

We add a mirror image of the entire graph and connect top vertices to their

corresponding neighbours on the bottom. Call this graph G’ (see figure 3.23).

o]

Figure 3.23: add mirror image and connect vertices

We require a special component to connect triples from 7' to T (see figure 3.24).

In a non-crossing 2-factor, this component forces either all six or zero outgoing
edges to be included (see figure 3.25). As required, therefore, either all three or

none of the members of a triple are included in a non-crossing 2-factor.

34

V

I

Figure 3.24: connecting triples from 7" to 7"’

| C

Figure 3.25: two states of component in non-crossing 2-factor

V

=]

Since the edges from S to S’ are forced and the edges in T and T’ have the property
that either all three or none may be followed, finding a 3-dimensional matching in
G corresponds to finding a non-crossing 2-factor in G’. Given any S and 7T, a 3-
dimensional matching can be found if and only if there exists a non-crossing 2-factor

in '. We have shown a polynomial-time reduction function, f3, such that:
z € 3DM < f3(z) € NON—-CROSSING 2—-FACTOR
Therefore, we have proven,

NON —-CROSSING 2—FACTOR € NP —hard

35

o]

Figure 3.26: full reduction from bipartite S and 1" to G

In our input domain, graphs are directed. Kach component within this con-

struction may be directed without any alteration to its function (see figure 3.27).

Figure 3.27: reduction components with directions added

Following a proof identical to that for NON-CROSSING 2-FACTOR, ex-
cept with use of these new directed components, we show that DIRECTED NON-
CROSSING 2-FACTOR remains NP-hard. We therefore derive the following theo-
rem:

Theorem 3.4 (Kirkpatrick-Durocher, 1999)

DIRECTED NON—-CROSSING 2—FACTOR € NP —hard

36

3.5 Summary

Using component-based reductions from 3-DIMENSIONAL MATCHING, we have
shown that simple restrictions, such as edge-bicoloured constraints or non-crossing
constraints, render the 2-factor problem problem NP-hard. These restrictions
closely model various properties of our polygon reconstruction from moments prob-
lem. As demonstrated, this particular problem seems to lie very close to the bound-
ary between P and NP-hard. The actual problem, encompassing colour constrains,
non-crossing constraints, degree-bounds, and geometric orthogonal constraints re-

mains to be shown to be polynomial-time solvable or NP-hard.

37

Chapter 4

Uniqueness of Moment Sets

The vertices in a moment-derived edge-bicoloured graph have special properties
which allow for colour constraints to be propagated between neighbouring vertices.
We discuss the basis of colour constraint propagation in Section 4.1. Certain graphs
embed multiple distinct solutions. Constraints cannot be propagated within such

graphs. We discuss the properties of non-unique solutions in Section 4.2.

4.1 Commitment Propagation

The global happiness requirement in edge selection forces any vertex v within a
solution to be in one of two vertex states: red-in, blue-out (RIBO) or blue-in, red-

out (BIRO) (see figure 4.1). Thus, v is constrained to having a single pair of

Figure 4.1: A vertex may be in one of two colour states.

38

edges: red in and blue out, or, blue in and red out. We refer to these restrictions as
colour constraints. Since these constraints are upon the edges of a vertex, vertices
at both endpoints may be affected by the restrictions; constraint propagation
occurs whenever the constraints at a vertex v affect the constraints at a neighbouring
vertex u. Finding a 2-factor solution involves committing to edges within the graph.
Whenever a vertex v commits to an edge e, several implications arise from that
commitment. All other edges of similar colour or similar direction at v must be
dropped from the possible solutions space. For example, if e is a committed red in-
edge at v, then all other red edges and all other in-edges incident on v are dropped;
the only remaining type of edges allowed are blue out-edges. v now has vertex state
RIBO.

A commitment applies both to the head and tail of an edge. Thus, whenever
we commit to an edge uwv, the vertex states of both u and v become fixed. For
example, say vertex u is in vertex state RIBO and a blue edge connects u to vertex
v. If we commit to uv, then the vertex state of v becomes BIRO (see figure 4.2).

Similarly, dropping an edge applies to both the head and tail of an edge. Thus,

Figure 4.2: propagation of vertex states

whenever we drop an edge uv, the vertex states of both u and v may be affected.
If graph Hy C H; is a spanning subgraph of Hy and all edges ¥ C Hy — Hy

may be removed from H; by constraint propagation, then we say Hs is a reduced

graph of Hy. If no further edges may be removed from Hj by constraint propaga-

tion, then Hy is maximally reduced.

39

As we will see in Section 5.4, such commitment propagation forms the basis of
our algorithm for finding solutions within a graph. There exist graphs, however, for
which simple commitment propagation cannot be used to simplify a graph towards
a solution subgraph. Some of these graphs embody more than a single solution
subgraph. Commitment propagation alone will not provide a solution on such a

graph.

4.2 Non-Unique Solutions

Interestingly, some graphs embed more than one globally-happy 2-factor. Under or-
dinary conditions, there would be no reason to expect such a graph to arise naturally;
non-unique solutions graphs occur infrequently and require specific contrived con-
structions. Their properties, however, are quite fascinating to examine and provide
insight into the mechanisms and obstacles of constraint propagation. In this section,
we explore the uniqueness or non-uniqueness of solutions within edge-bicoloured

graphs.

A solution to an edge-coloured graph G' = (V, F) is a globally-happy 2-factor span-
ning subgraph, H C (. For two distinct solutions to exist, there must exist two
such subgraphs, Hy and Hs, such that Hy # Hj. Since Hy; and Hy have a common
vertex set, V', we must have that Fy # Fs.

We distinguish between three types of graphs with non-unique solutions
within a hierarchical classification. Graphs with distinct state solutions con-
tain exactly two solutions, Hy and H,, such that for any vertex v € V, v is in vertex
state RIBO in H; and BIRO in Hj or vice-versa. Graphs with distinct edge solu-
tions may contain two or more solutions, Hy, ..., Hg, such that for any edge e € F,
e appears in at most one solution Hy,..., Hx. That is, the intersection of the edge
sets of any two solution subgraphs is empty. Graphs with common edge solutions

have one or more edges e which remain present in two or more solutions.

40

If a graph embodies three or more solutions, then in at least two of the so-
lutions, there must be some v € V whose vertex-state is unchanged. The solutions
of such a graph cannot be distinct state solutions. We further classify solutions by
examining connectedness (simple or multiple) and edge crossing (crossing or non-

crossing).

With respect to common edge solutions, Milanfar et al. state the following propo-

sition [MVKW95]:

Proposition 4.1 (Milanfar et al., 1995) Consider n distinct points, z1, z9, ..., 2,
in the Cartesian plane. Let P and P' be simply connected, nondegenerate, n-gons

generated by connecting these vertices in two distinct ways. If P and P’ have at

least one side in common, then for some 1 < j < n, a;(P) # a;(P'), where a;(P)

and a;(P') are, respectively, defined by:

[[a dy=z”;aj(P>h(zj->

j:
n
//’h”(z) dz dy =3 a;(P')h(z;)
j=1
with h denoting any analytic function in the closure of P U P'.

Proposition 4.1 claims that if P and P’ are two distinct polygons which have
at least one edge in common, then P and P’ cannot be solutions to the same set of
input constraints, otherwise P and P’ must include degenerate vertices. Contrary to
this proposition, in this section, we will demonstrate the existence of such common

edge solutions, where all vertices are nondegenerate.

We first look at the octagon graph (see figure 4.3). The octagon is the simplest
graph (least number of vertices) we have found which contains two simply-connected
ambiguous solutions. Figure 4.3a displays the entire supergraph G,. Figures 4.3b

and 4.3c display the two possible globally-happy 2-factors of G;. These 2-factors are

41

Figure 4.3: ambiguous solutions within the octagon graph

simply-connected but the second obviously involves edge-crossing. Note that at ev-
ery vertex v, v is either in vertex state RIBO or BIRO in the different solutions (see

figure 4.4). Furthermore, binding any single vertex to a fixed vertex state immedi-

Figure 4.4: two vertex states within different solutions

ately determines the configuration of the remaining edges in the solution. Thus, GGy
is a graph with distinct-state solutions for which all solutions are simply-connected

but not all are non-crossing.

o) o) O’;‘ k’ok o| ’o
VAR 0 vl
S S :ov o

Figure 4.5: ambiguous solutions within the six-point star

42

Another simple graph which contains non-unique solutions is the hexagonal
six-point star (see figure 4.5). This graph embodies three solutions. In this case,
the star solution, figure 4.5b, is simply-connected, but the other two solutions,
figures 4.5¢ and 4.5d, involve separate components. Again, edge-crossing occurs
within some solutions.

Strakhov and Brodsky present a very cleverly constructed graph [SB86] which
contains two solutions respecting simple-connectedness and non-crossing edge prop-

erties (see figure 4.6). The Strakhov-Brodsky graph is created by merging two

O O

@) @)

Figure 4.6: the Strakhov-Brodsky graph [SB86]

instances of the six-point star, removing a vertex from each, and displacing two
others. To our knowledge, their construction is the simplest graph to embody mul-
tiple simply-connected, non-crossing solutions. The interesting behaviour in many
ambiguous graphs derives from having outer vertices which allow convexity within
two vertex states (see figure 4.4). The two solutions to the Strakhov-Brodsky graph
are displayed in figure 4.7. They are symmetrical reflections of each other along a
central vertical axis.

Within all examples presented up to this point, no two solutions share a

43

D@

Figure 4.7: ambiguous solutions within the Strakhov-Brodsky graph

A@y,

Figure 4.8: ambiguous solutions within the modified Strakhov-Brodsky graph [SB86]

common edge unless the common edge belongs to a static disconnected component
(as is the case with the outer hexagon in the six-point star in figures 4.5¢ and 4.5d).
Strakhov and Brodsky also present a graph which contains two solutions sharing
two common edges [SB86]. This graph may be constructed by simple modification
to the regular Strakhov-Brodsky graph (see figure 4.8).

Note the two triangles in figure 4.8b. Their inside edge is also present in the
first solution in figure 4.8a. Given any graph which contains ambiguous solutions
H, and H,, one may easily add constant edges by selecting any edge e, e € Hy,
e ¢ Hy, and inserting three additional vertices to form a triangle along the edge (see
figure 4.9a). We call this new graph G’ and its solutions H{ and H).

Since e € Hy, in solution Hj, we do not include edge ¢ (see figure 4.9b).

Conversely, since e ¢ Ho, in solution H}, we include edge ¢ but not edges a or e (see

44

Figure 4.9: general pattern within common-edge solutions

figure 4.9c). The resulting graph, G’, is such that, in both solutions, edges b and d
remain constant.

The modified Strakhov-Brodsky graph has two non-crossing solutions, but
one of the solutions is composed of disconnected components. Thus we examine the
problem of finding a graph with common-edge ambiguous solutions such that all
solutions are non-crossing and simply-connected. By extension of our observations
about inserting constant edges, we can augment the regular Strakhov-Brodsky graph
such that all solutions share common edges along the exterior of the graph and all

solutions remain simply-connected and non-crossing.

O 2y

Figure 4.10: extended Strakhov-Brodsky graph

Let SB; and SB; be the two solutions to the regular Strakhov-Brodsky graph.
We choose two edges e and e5 along the perimeter of the graph such that e; € SBy,
e1 & SBy, €5 ¢ SBy, and e € SBy. We add a series of static edges to connect ey and
ey (see figure 4.10).

These edges are such that only one of the two ends will connect to the graph

within a solution. Thus, both solutions solutions, SB] and SBj, remain simply-

45

RO [TV
a2 RV

Figure 4.11: four instances of the extended Strakhov-Brodsky graph

connected and non-crossing. The difference between the regular and the extended
Strakhov-Brodsky graphs is that SB] and SBY share common edges. Significantly,
we can join two such extended Strakhov-Brodsky graphs together by linking their

common edges to create a graph which has four simply-connected, non-crossing

solutions (see figure 4.11).

———— - _———— - ———— -

| \
| I
| I

I

~ - -
~ -

G, E G, ceoe E G,

I
[N [N N
,_l 1 1”1 | -|_|

Figure 4.12: multiple connected instances of ambiguous graphs

One quickly observes that we may join k£ such extended Strakhov-Brodsky
graphs together to form a graph which embeds 2% simply-connected, non-crossing

solutions (see figure 4.12). Thus, the number of solutions may be exponential with

respect to the size of the graph.

Therefore, we have shown:

Theorem 4.2 (Durocher-Kirkpatrick, 1999) For any n € Z%, there exist 2"
distinct simple polygons in the Cartesian plane, each composed of 30n + 4 vertices,

such that all 2™ polygons have identical moment sets.

46

Thus, for any n € ZT, there exists an edge-bicoloured regular graph G =
(V,) such that |V| < kn and G contains 2" distinct simply-connected non-crossing

globally-happy 2-factors, where k£ = 34.

Our various extensions to the Strakhov-Brodsky graph demonstrate the existence of
multiple common edge solutions to a single set of input vertices. All vertices within

these solutions are nondegenerate, which contradicts proposition 4.1.

4.3 Summary

We have examined vertex properties which allow for the propagation of colour con-
straints. We use this propagation as a means of reducing a graph G towards a
solution subgraph G’. Some graphs embed several non-unique solutions; the num-
ber of such solutions may be exponential with respect to the size of the graph.
Within a multiple solution graph, constraint propagation alone cannot be used to
reduce a graph to a solution. In Chapter 5, we discuss various methods which allow

for the reduction of both unique-solution and non-unique-solution graphs.

47

Chapter 5

Reconstruction Algorithm

We have examined the various properties of input graphs and their embedded so-
lutions. We now discuss algorithms that solve the problem of reconstructing the

original polygon from which a set of moments were measured.

5.1 Reconstruction Process Overview

Recall the three-phase subdivision of moment-based polygon reconstruction:

1. Given complex moment data as input, approximate the Cartesian coordinates
of the vertices and the angles for two axes of potential in-edges and out-edges

at each vertex.

2. Map vertex positioning and potential edge information to an embedded edge-

coloured directed graph G.

3. Find a spanning subgraph H C G that is a globally-happy 2-factor.

Here we describe algorithms that were developed! to implement phases two

and three of the reconstruction process. The algorithm modules form a pipeline and

!Each of the various algorithm modules presented here were implemented in MATLAB.
All results and examples discussed were produced by running the MATLAB code. Some
figures were redrawn from MATLAB plots for clearer presentation. The recons module
is based on code written by J. Varah to implement the initial phase of reconstruction de-

48

may be broken down as follows:

1. recons takes K moment measurements and produces a set of n vertex positions
and two sets of n angles each, for local red and blue edge axes at each respective

vertex. Usually, k£ = 2n.

2. buildGraph takes n vertex positions? along with blue and red axis angles for
each and builds a dense edge-bicoloured graph G; which includes edges for

any matching combination of in-edge and out-edge angles (Section 5.2).

3. edgeElim takes Gy as input and produces a moment-derived edge-bicoloured
spanning subgraph G such that every vertex has at most two edges of similar

colour and orientation and these are at an angle 7 to each other (Section 5.3).

4. commit works recursively on (G5 using colour constraint propagation to produce
a solution subgraph G5 for which no further constraint propagation is possible

(Section 5.4).

moment data

@r econs] 2 bui | dG aph] |:> edgeEl i m |:(>% conmi t
Gl GZ
Do

2-factor solution

Figure 5.1: pipelined reconstruction modules

These four phases form the basic assembly line to transform moment data

into reconstructed polygons (figure 5.1). As we will discuss, this solution process

scribed in his manuscript [GMV99]. All other modules were written by S. Durocher and D.
Kirkpatrick.

2For examples that include significant numerical error and cause inaccurate position and
angle input data to buildGraph, we fix the output of recons to provide perfect information
(see Section 6.1).

49

may require extra manipulation and flow-control, and thus, we will describe three

additional modules:

5. treeSearch works recursively down a search tree towards solutions whenever
constraint propagation alone within module commit fails to reduce G to a

final solution (Section 5.5).

6. fragmentSearch is used whenever the input domain includes imperfect data.
Partial fragmented solutions are researched as opposed to complete 2-factors

(Section 5.6).

7. momentDiff allows for extremely noisy data to be reconstructed piecewise
through re-iteration of the recons module on differences of moments (Sec-

tion 5.7).

5.2 BuildGraph: Building the Initial Graph

After having passed through the initial phase of reconstruction, we are presented
with a set of vertices, V. FEach vertex v € V has an embedded position in the
two-dimensional Cartesian plane and two associated angles for its local red and blue
axes.

We wish to form a graph G which includes an edge for any two vertices u
and v such that » and v are compatible. We use the following definition for vertex

compatibility:

Definition 5.1 Given two vertex positions, u and v, an in-edge angle ' at u, an
out-edge angle v' at v, and a deviation tolerance angle o, let ¢ be the angle of the
straight line between u and v, let 3 = |¢p— (3’|, and let vy = |¢p—+'|. v is compatible

with u under the relation C'(v,u) if and only if < a and v < a.

Basically, two vertices # and v are compatible® whenever they have corre-

3The compatibility relation is asymmetric: C(u,v) % C(v, u), for u,v € V.

50

sponding in-edge and out-edge angles which lie within a window of tolerance. Fig-
ure 5.2a displays two such vertices with the tolerance angle a and the line segment
uv superimposed. In figure 5.2b, the edges at u and v are added and we see the
two differences of angles, § and v. Since both and + lie within the window «, we

create an edge vu (figure 5.2¢).

Uo... uo.... uo
S A
oV ov oV

Figure 5.2: determining whether vertex v is compatible with vertex u

In this way we build the preliminary graph (G4; for every pair of vertices
u and v, we check to see if u and v are compatible according to Definition 5.1.

Whenever u is compatible with v, we include the edge wv in G.

o
o

Figure 5.3: a parallelogram and its associated input position and axis data

For example, figure 5.3a displays a parallelogram. The vertex position and

axis angle data which would provide input to buildGraph are displayed in fig-

51

ure 5.3b.
The buildGraph module proceeds to check all pairs of vertices for possible
edges (figure 5.4a) to produce the graph G (figure 5.4b) before passing it along the

pipeline to the edgeElim module.

S -
N g —

Figure 5.4: checking for possible edges between vertices

Thus, we complete the first phase of the pipeline, having constructed an

edge-bicoloured graph Gy of all compatible vertex pairs, (u,v) € V x V.

5.3 EdgeElim: Simplifying the Graph

The initial graph G produced by buildGraph may be very dense. Any possible
pairs of vertices which align are granted an edge between them. Whenever three or
more vertices align in a common direction, if the in-edge and out-edge angles fall
within the i tolerance, then a semi-complete interconnection may be produced. We
would like to reduce the degree of G; to form a moment-derived edge-bicoloured
spanning subgraph.

For example, figure 5.5a displays six co-linear vertices whose in-edge and out-edge

52

Figure 5.5: applying edgeElim to reduce edge density to constant degree

angles align. In this case, buildGraph will construct the high-degree graph G, dis-
played in figure 5.5b. We use edgeElim to reduce the graph to the desired subgraph
(G5 displayed in figure 5.5¢.

For every vertex v € (1, edgeElim reduces the degree of v such that there may
be at most one edge of any given orientation and colour per hemisphere, where a
hemisphere is defined to be half a rotation about the vertex or an angle of 7 radians.
Thus, v will have at most one red in-edge, one red out-edge, one blue in-edge, and
one blue out-edge per hemisphere. As required, v will conform to having no more
than four edges per colour axis.

Our heuristic keeps only the shortest edge and eliminates all others along a

common direction with similar orientation and colour (see figure 5.6).

<E>O_.OOO

Figure 5.6: edge elimination heuristic

Obviously, depending upon the tolerance angle o in buildGraph, there will
be instances when the heuristic eliminates the true edge and retains an invalid edge.

This usually results in an equivalent solution. For example, figure 5.7a displays the

53

a b

Figure 5.7: two different edge eliminations which produce equivalent results

initial reconstruction GGy of an eight-vertex polygon which has four co-linear vertices
on its right side. buildGraph has included additional edges along these co-linear
vertices. The original polygon may have been one of two possible shapes: a simply-
connected closed polygon (figure 5.7b) or a multiple-component rectangle with a
square hole within it (figure 5.7c). In the latter case, the square hole is positioned
very close to the right exterior edge of the rectangle. The two figures differ only
by the additional thin strip which links the top and bottom to form a closed hole.
The area of this thin strip is quite small with respect to the rest of the polygon,
some small € which depends upon the tolerance a and the scale of the figure. Re-
constructing the former or the latter shape, therefore, gives a solution which is very
close to the desired polygon. Furthermore, given the input information, we have
no way of choosing a best solution between figures 5.7b and 5.7c. Thus, we ap-
ply our heuristic and eliminate all but the shortest edge along a common direction
with similar orientation and colour to produce the second graph, Gg. In our exam-

ple, this results in figure 5.7b being passed along to the next phase of reconstruction.

Thus, we complete the second phase of the pipeline, having simplified the graph
(51 such that each vertex has constant red-degree, blue-degree, in-degree, and out-
degree within a hemisphere; edgeElim produces a moment-derived edge-bicoloured

graph spanning subgraph, G.

54

5.4 Commit: Colour Constraint Propagation

After having passed through recons, buildGraph, and edgeElim, we are given an
input graph G5 whose vertices have bounded degree and whose edges fall locally

into two geometrically-restricted axes as displayed in figure 5.8.

Figure 5.8: axes at a vertex from the graph Gy

We now begin the final phase of the reconstruction. Here, we are given a
moment-derived edge-bicoloured input graph G5 within which we wish to find a
globally-happy 2-factor. The first method employed to achieve this end is through
the use of the commit module.

The commitment algorithm performs a recursive walk through the graph,
visiting each vertex no more than a constant number of times.* The walk propagates
colour constraints between neighbouring vertices to eliminate edges and to reduce
the graph in a greedy manner. After successive edge eliminations, constraints may

no longer be propagated and three types of output graphs, G's, may be produced:
1. GGz may be a solution graph, that is, a globally-happy 2-factor.

2. G3 may be an invalid graph containing one or more invalid vertices (see
definition in Section 2.1.4). This case only arises when the original input

graph, G2, does not contain a solution subgraph.

*As we will see, vertices may only be revisited after some action, be it edge-commitment
or edge-elimination, has occurred at a neighbouring vertex. Since vertices have a maximum
degree of eight, no more than eight such visits may take place and, thus, the constant is
exactly eight. Therefore, commit has linear worst-case runtime: O(|V|).

55

3. '3 may be in a state where colour constraints can no longer be propagated.

The algorithm requires two or more recursive search branches (see Section 5.5).

As mentioned, the essence of the commitment algorithm involves colour
constraint propagation. The constraints arise from our requirement for global-
happiness. For a vertex to be happy, it must have in-degree one, out-degree one,
red-degree one, and blue-degree one. Initially, all edges are in the undecided state.
After finding a 2-factor solution, all edges will either be committed edges or they
will have been dropped. Thus, we work towards a solution by altering the state of
an undecided edge to being committed or dropped. We do so by applying two types

of rules: local elimination rules and new commitment rules.

Local elimination rules follow a basic format: at a vertex v, we check for va-
cancies and eliminate edges accordingly. If v does not have any blue in-edges, then
v can never be in vertex state BIRO. Thus, v has no need for red out-edges and

we eliminate all red out-edges at v (see figure 5.9a). Similarly, if v does not have

W owe| K o 4

Figure 5.9: local elimination rules

any blue out-edges, then v can never be in vertex state RIBO, v has no need for
red in-edges, and we eliminate all red in-edges at v (see figure 5.9b). We apply
respective rules for absent red in-edges and red out-edges.

The local elimination rules involve checking for dropped edges. Conversely,
we may check for committed edges and, hence, we develop new commitment
rules. Recall that a committed edge is one which belongs to the final solution sub-

graph. Whenever a vertex has only one edge of a given colour or a given orientation,

56

then that edge must be contained within a solution and, therefore, we commit to the
edge. Edge-commitment affects the remaining edges of vertices at both endpoints

of the newly-committed edge.

Figure 5.10: new commitment rule

For example, vertex u in figure 5.10 has a single blue edge, e;. Since there
are no other blue edges, we make e; a committed edge. Commitment at the head
of an edge implies commitment at the tail. Thus, vertex v inherits a committed
blue out-edge. This new commitment fixes the vertex state of v to RIBO. Vertex v
can never be in state BIRO and no longer needs blue in-edges or red out-edges. All
blue in-edges and red out-edges are dropped. We apply respective rules for all four

combinations of committed edges.

Rules are applied locally at a vertex. Whenever the application of a rule involves
a change in edge state, the neighbouring vertex along the affected edge must be
alerted; its local edge set has been altered either by having lost an edge or by
having one of its edges committed and, consequently, should be revisited.

Since the application of a single rule at a vertex can trigger changes at many
neighbouring vertices, commitment propagation occurs quite rapidly in a highly
reactive recursive fashion. We visit vertices one at a time. Upon visiting a vertex,
we check to see if any of the local elimination or commitment rules apply and perform

actions accordingly. In order to keep track of affected vertices which still need to be

57

visited, we maintain a set of active vertices.

Thus, our algorithm falls into place. Initially, we know nothing about vertices
and we must visit every vertex at least once. Therefore, our initial active set is simply
the set of all vertices. We may visit any vertex in the set® and apply the colour rules
to it. After having visited the vertex, we remove it from the active set and add any
affected neighbours to the set. Once the set is empty, colour constraints have been

propagated as much as the graph allows, and we return the current graph, Gs.

Figure 5.11: original polygon and input data after applying commit

Let us trace a simple example through the four phases of reconstruction while
paying special attention to commitment propagation. The original shape from which
moment data has been obtained is an eight-vertex, simply-connected closed figure
(figure 5.11a). Given 16 moment measurements for this shape, recons returns a set

of 8 vertex positions along with a blue and red axis orientation for each (figure 5.11b).

5To improve performance, we sort the active set by non-decreasing degree such that
vertices of low degree are visited first. Vertices of lower degree d, d > 3, have greater
potential to trigger propagation “reactions.”

58

a b a b
OO OO
d c d c
e f e f
h g h g

Figure 5.12: graphs GG and G, produced by buildGraph and edgeElim, respectively

Given these 8 positions and 8 pairs of axes, buildGraph produces the initial
graph, G (figure 5.12a). This graph includes edges for every possible pair of com-
patible vertices. edgeElim takes (G; as input, simplifies the edge set by reducing the

degree at every vertex, and produces the bounded-degree edge-bicoloured graph, G

(figure 5.12b).

<8}
o
QO
o

. ny
o T

Figure 5.13: constraint propagation

59

The graph G5 is passed to commit where commitment propagation begins.
Initially, the active set, A, is the set of all vertices: A = {a,b,c,d, ¢, f,g,h}. We
begin by visiting vertex d. Since d only has one red edge, a red out-edge de, then the
vertex state at d becomes fixed to BIRO. We can therefore apply local elimination
rules to remove all blue out-edges (see figure 5.13a). Since there are only two edges
remaining at d, ¢d and de, we commit to each of them (represented by bold edges).
Vertex d is then removed from A and affected neighbours, g in this case, are added
to A A'=(A-{d})U{c,e,q} ={a,b,c,e, f,g,h}.

We then visit vertex ¢g. Since g only has two edges, a red in-edge fg and a
blue out-edge gh, we commit to each of these (see figure 5.13b). Once again, we

update A AT = (A - {g}) U {fa h} = {aa bvca eafa h}

a b a b
OO O—)
d C ./ d c
e - f,s’z @ e f
O—) ! -—) O—)
h g h g

Figure 5.14: Constraint propagation continues on to produce a solution graph Gs.

We now visit vertex f. Vertex f has a committed red out-edge, fg. Vertex
f also has another red out-edge, fec, which is undecided. Obviously, edge fc can
be dropped (see figure 5.14a). Vertex f now only has two edges remaining, and we

commit to each of these. We update A: A’ = (A —{f})U{e} ={a,b,c, e h}.

60

The remaining edges form a globally-happy 2-factor (see figure 5.14b). The
algorithm still requires visits to each of {a, b, ¢, e, h} to commit to their edges. Note
that a happy vertex whose edges are both committed cannot be added to the active
set again since the state of its edges may no longer be altered. The algorithm ter-

minates and the graph G5 is returned as a solution.

For most graphs which embed a single unique solution, commit successfully finds
and returns the solution subgraph. Figures 5.15 and 5.16 display more complex
examples which were solved by commit. In each figure, the first plot is the graph G5

returned by edgeElim and the second plot is the graph G5 returned by commit. In

O—»Ot—O—>0O O—»O O—3O
O—»Ot—0O0—»Ot—0O0—»0 Oo—»O O—»0O O—»0O
o—»0 0= O o= =0 O0—»0
O—O—»O+—0O0—»O+—O0—»0+—0O = O0+—0O O+—0O O&—0O 0O&—O
O—Ot+—O0—Ot—O0—O0—0—>»0O = O0—»0 O—»0O O0—»0 O—»O
Ot+—O0—Ot+—0O0—O0+—O0—»0at—0O = O0+—0O O+—0O O&—0O O&—O
O¢—O——>0e—0O c+=—0 = 0Oe—0

Figure 5.15: complex rectilinear polygon reconstructed by commit

figure 5.16a, only six vertices have initial edge configurations which may propagate
constraints. All other 30 vertices require constraints to be passed to them.

The module commit searches for a globally-happy 2-factor through the prop-
agation of colour constraints. This technique often succeeds in finding a solution.
Sometimes, however, constraint propagation alone comes to a halt before having

found a solution. For these cases, we require a recursive search tree.

61

vy
vy
vy

Figure 5.16: set of 9 boxes reconstructed by commit

5.5 TreeSearch: Recursive Search Trees

When the subgraph G3 produced by commit is not a globally-happy 2-factor, con-
straints can no longer be propagated at any of the vertices of G3. Hence, we require
another mechanism to decide upon which edges belong to a solution.

Given a graph GGz on which constraint propagation has been exhausted, the
treeSearch module manages control of a simple backtracking approach which allows
propagation to resume. We choose an undecided edge e € (G5 and create two new
graphs, G% and G, where edge e is dropped in G% and committed in G%. We then
proceed to solve the two separate problems of searching for solutions within G and
G using commit.

Again, we have the same three possible outcomes at the end of both of these
branches. Either, we have a solution, the resulting graph is invalid, or constraint
propagation has again been exhausted. If the last case arises, we simply repeat
the process, branch again, and continue. All valid solutions are accumulated and
returned as a set of possible solutions to the original input graph.

In selecting the candidate edge e, we search for a vertex of lowest degree

62

greater than two and choose one of its edges. We do so because any vertex of degree
two requires both of its edges in a solution. Forcing a new edge state at a vertex
of degree three or greater, however, should trigger some constraint propagation,
with lower degree vertices being more reactive in general. This basic heuristic for
choosing edges works efficiently on most examples examined. Even if only minimal
commitment propagation results from a decision, each vertex will only have been
visited a constant number of times, and successive branching will eventually lead to

a solution.

Let us examine the search tree for a graph which contains three ambiguous so-

lutions. Branching within the search tree is displayed in figure 5.18.

Figure 5.17: ambiguous input graph G and two subgraphs, G4 and GY.

After having passed through recons, buildGraph, and edgeElim, we enter
the module treeSearch. The input graph, GGy, is displayed in figure 5.17a. (7 is the
hexagonal six-point star which we saw in Section 4.2. treeSearch begins by calling
commit with Gy as input (step 1). Every vertex v € G| has at least one in-edge and
one out-edge of each colour. Thus, an initial pass of commit fails to simplify G'; and
outputs an unaltered graph, Gy = G;.

At this point, treeSearch creates two modifications of Gy (step 2). All

vertices along the exterior of G5 have lowest degree, in this case, 4. Thus, we select

63

an undecided edge at one of these vertices, say edge e. GG, is set to be G5 except with
edge e dropped (figure 5.17b) and G is set to be G5 except with edge e committed
(figure 5.17c¢).

input graph G:

b

maximally reduced graph G:

G: treeSearch
4

2-factor solutionH: maximally reduced graph Gs

2-factor solutionH. 2-factor solutionHs

Figure 5.18: recursive search tree descent

We now branch for the first time. Two parallel recursive calls are made to
commit, one on input graph G% (step 3) and the other on G (step 4).

Within the left branch (step 3) constraint propagation reduces the graph to
a solution subgraph, Hy, displayed in figure 5.19a. Within the right branch (step 4)
however, we reach another standstill: the maximally reduced subgraph, G3 C G5,
displayed in figure 5.19b.

treeSearch creates two modifications of G'5: G and G (step 5). Again, we

look for a vertex of lowest degree greater than two. Every exterior vertex has degree

64

- f
@) O QG @)

Figure 5.19: solution H; and maximally reduced subgraph G35

Figure 5.20: two subgraphs of G's: G% and GY%

two and every interior vertex has degree four. Therefore, we select an undecided
edge from one of the interior vertices, say edge f. G% is set to be (G3 except with
edge f dropped (figure 5.20a) and G is set to be G5 except with edge f committed
(figure 5.20b). We now branch for the second time. Again, two parallel recursive
calls are made to commit, one on input graph G% (step 6) and the other on GY%
(step 7).

After propagating constraints, these two calls emerge with solutions Hy and
Hs, respectively (see figure 5.21). All three solutions produced are valid, globally-

happy 2-factors of the original graph. Given our input information, any of these

65

Figure 5.21: two solutions H, and Hjy

three is as good a solution as the other. When discerning between ambiguous pos-
sibilities in edgeElim, alternative cases had solutions which differed in area only by
some small ¢. Non-unique solutions produced by treeSearch, however, may dif-
fer greatly in area, connectedness and edge-crossing. In our example, solution Hy
is a simply-connected, non-crossing polygon, solution Hj is a multiple-component,

crossing polygon, and solution Hjs is a multiple-component, non-crossing polygon.

Whenever constraint propagation alone fails to provide a solution, treeSearch suc-
cessfully reconstructs all solutions, regardless of the complexity of the input graph.
For example, figure 5.22 displays the graphs Gy and G5 which are produced by
buildGraph and edgeElim, respectively, when given the input vertices for a two-
connected, extended Strakhov-Brodsky graph. In this case, treeSearch produced

the actual output plots displayed in figure 4.11 (see Section 4.2).

Thus, through recursive calls to commit down a search tree, our treeSearch module

allows the reconstruction of all solutions contained within a subgraph.

66

after buildgraph

after edgeelim

Figure 5.22: buildGraph and edgeElim results for two-connected Strakhov-Brodsky
extension

5.6 FragmentSearch: Finding Fragments of Solutions

The reconstruction modules commit and treeSearch run under the assumption that
all required information lies embedded within the input graph. That is, all edges of
a solution 2-factor must be edges of the graph G3. Imperfect data, however, may
provide a less than perfect input graph for G2. A single missing edge can easily
trigger an erroneous chain of constraint propagation which results in an invalid
graph.

For domains which involve imperfect input data, we need to relax our colour
constraint rules and modify our search strategy. We have investigated two such
techniques which were implemented in fragmentSearch and momentDiff. We be-

gin by discussing module fragmentSearch.

Instead of looking for a globally-happy 2-factor, we search for fragments of happy

67

vertices. Thus, we seek portions of a solution which, when pieced together with
missing edges, form potential reconstruction solutions. Unlike solutions found by
commit and treeSearch, solutions constructed by fragmentSearch are of a more
subjective nature; treeSearch will return every globally-happy 2-factor contained
within a graph, whereas fragmentSearch must heuristically decide between possi-
ble collections of fragments contained within a graph, and return those which might
form pieces of a solution. Furthermore, in fragmentSearch, eliminating an edge
e may cause a vertex v to become invalid. Thus, unlike commit and treeSearch,
in which ordering of events does not affect constraint propagation in the solution
process, solutions produced by fragmentSearch are subject to the ordering of elim-
ination and commitment actions.

An input graph to fragmentSearch may include invalid vertices, that is,
vertices which may be without a given colour or orientation of edge (see figure 5.23).

In this new algorithm, constraint propagation must account for such vertices. Thus,

Figure 5.23: two invalid vertices

propagation is altered as follows: whenever we visit a vertex v from the active set A,
we apply commitment and elimination rules as before, but only if v is valid. Upon
visiting an invalid vertex u, we simply remove u from A and continue. We retain
our search tree approach and branch recursively on two calls to commit until the
output graph embeds a collection of happy vertex fragments.

When comparing two solutions, we use a simple heuristic and compare the

lengths® of the longest fragment contained within each. If these have equal length,

SHere, “length” refers to the number of vertices in a fragment and not to geometric
length.

68

we compare the next longest, and so on. Obviously, the solution with the longer
fragment may not always be the better one; generally, however, a solution composed
of one long fragment of k& vertices provides a closer partial reconstruction than a
different solution composed of several shorter fragments.

In most examples, the fragment approach efficiently locates correct portions
of solutions. For example, figure 5.24a displays the reconstructed vertices of an E-
shaped polygon produced by recons. Note the irregularities in vertex position and
potential angle data, especially near the middle of the figure. Figures 5.24b and 5.24¢
display the graphs GGy and ('3 produced by buildGraph and edgeElim respectively.
Neither G; nor (G5 contain a globally-happy 2-factor. Thus, as expected, when
passed through commit and treeSearch, no solution is found. The fragmentSearch
module, however, finds the fragment displayed in figure 5.24d. Upon observation,
we note that G5 does not embed any longer fragment. Thus, given our limited input

constraints, fragmentSearch provides a valid partial solution.

initial vertex reconstruction from moments

HSH Ooioo after buildgraph after edgeelim segment found
+
OOIOO H8H
+ 8
8 k3

00
8 (0¢]

O,
. R I O++
(oo SN
T
+% +
+HoE 00,00
[+
T 8

Figure 5.24: 9-edge fragment found in 12-vertex polygon

69

Whenever the input domain includes imperfections in the data such that
a globally-happy 2-factor is not contained within the input graph, we may use
fragmentSearch to reconstruct partial solution composed of fragments of happy
vertices. Such a partial solution often provides a close approximation to the original
polygon and allows the reconstruction to overcome some degree of error arising from

numerical computation or input data.

5.7 MomentDiff: Component Reconstruction by Differ-

ence of Moments

The partial solution provided by fragmentSearch identifies portions of a graph in
which data is more likely to be accurate. A long reconstructed fragment usually
follows a string of vertices whose position and angle data closely match those of the
original polygon. Long fragments of accurate vertices can be used along with the
original moment input data in subsequent iterations of the reconstruction pipeline

to obtain better position and angle approximations for inaccurate vertices.

Given a polygon, P, and its moment vector, mp, for any subdivision of P into non-
intersecting subcomponents, Py, ..., Pg, the sum of the moment vectors of the sub-
components of P is exactly equal to the moment vector of P: mp = mp, +...+mp,.
For example, figures 5.25a and 5.25b display a simple polygon P and a two-piece
decomposition of P into P, and P,. If we separately measure n moments for P, n
moments for P, and » moments for P, we find that mp = mp, + mp,.

Module momentDiff implements the following algorithm. Using a difference
of moments, we can reconstruct a polygon, one component at a time. The reunion
of all reconstructed components forms the complete original reconstructed polygon.
Given a set of moments, mp, which correspond to an n vertex polygon P, n > 4,

we use recons, buildGraph, and edgeElim to create an n-vertex input graph, G;.

70

Figure 5.25: sum of subcomponent moments: mp = mp, + mp,

A call to fragmentSearch on input (G; returns a partial solution composed of edge
fragments. Let us assume the longest fragment, S, has k vertices, sq,...,s;, 3 <
k < n. We form a new polygon P, by taking the endpoints s; and s, and creating
a new edge s;sg. Polygon P is a closed cycle of edges which corresponds to the
closure of the edges of fragment S. If the vertices of S are accurate with respect to
corresponding vertices within the original polygon P, then P; is a subcomponent
of P. We find the moments of P, mp,, and a new difference of moments, ma =
mp — mp,.

We call recons again with this new difference of moments, ma, as input.
The output vertices are run through buildGraph and edgeElim to produce a re-
constructed graph G5 of n — k + 2 vertices which correspond to the component
Py = P — P;. We search within Gy using fragmentSearch for another longest par-
tial solution. If G5 contains a globally-happy 2-factor, then we have successfully
reconstructed P, and we may assemble P by joining P, and F,. If not, then we take
the longest fragment within G2, and repeat this process recursively.

Let us examine a simple example. As we saw in Section 5.6, the recon-
struction of a 12-vertex, E-shaped polygon P includes some inaccurate vertex posi-
tions and angles which initially prevent a complete solution from being discovered.

fragmentSearch successfully finds the 9-edge fragment S; displayed in figure 5.26a.

71

o o

o o

o
1 0 0
o o o/o
-1

o

L] L] .
A B C D

Figure 5.26: reconstruction by component decomposition

Module momentDiff takes the closure of S; (figure 5.26b) finds its moments, mg,,
and the difference of moments, ma = mp — mg,.

Upon a second pass through the pipeline, the reconstruction of ma forms
the four-vertex polygon P, displayed in figure 5.26¢. If we adopt the premise that
clockwise fragments of closed edges bound areas of positive density and counter-
clockwise fragments of closed edges bound areas of negative density, then we find

that the union of P, and P, forms an exact reconstruction of P (figure 5.26d).

We must note, however, that at this point in time, our experiments using differ-
ences of moments as a method for polygon reconstruction have produced successful
results only under very controlled conditions. Errors in moment differences produce
“ghost” vertices which correspond to the differing regions between the perimeters
of the two polygons (see Section 7.4). These additional vertices easily fool the algo-

rithm when searching for the second polygon, P;.

For imperfect input domains, we successfully reconstruct partial solutions by search-
ing for fragments of happy vertices. Reiteration of the reconstruction process on

differences of moments provides interesting possibilities for piecewise polygon re-

72

construction, and for complete solutions on these input domains.

5.8 Summary

The process of reconstructing a polygon from its complex moments involves a
multiple-phase pipeline of algorithms. Given a set of moments, we build vertex po-
sitions and potential edge angles using module recons. We then construct a dense
edge-bicoloured graph G of all possible pairs of compatible vertices using module
buildGraph. We simplify (G into a moment-derived edge-bicoloured graph G5 using
an edge elimination heuristic in module edgeElim. Given that the input domain
assumes accurate and complete information, modules commit and treeSearch allow
the reconstruction of all globally-happy 2-factor solutions, G's. Whenever the input
domain includes inaccurate or incomplete information, modules fragmentSearch
and momentDiff provide partial solutions and attempts at piecewise reconstruc-
tions of complete solutions. Together, these algorithms present various approaches

to the polygon reconstruction from moments problem.

73

Chapter 6

From Models to Real Data

Upon being presented real moment data, the reconstruction of vertex positions and
local angle axes often acquires some inaccuracies from numerical computation error
and imperfect input moment data. Certain types of vertices seem to be affected
more than others upon encountering inaccuracies. In this chapter, we examine the
various levels of control we may impose on input data (Section 6.1) we briefly discuss
the success of reconstruction on specific families of graphs (Section 6.2) and, finally,
we discuss the effect of varying the number of moments provided as input to the

reconstruction (Section 6.3).

6.1 Varying Control of the Input Data

Within the reconstruction process, four decreasing levels of control may be imposed
on input data to module buildGraph. These determine the degree to which we fix
the vertex position and potential angle information being passed on from module
recons. Varying the level of control allows us to test the functionality of the re-
construction algorithms under various environments ranging from ideal to realistic

conditions. We differentiate between the degrees of control as follows:

74

1. exact vertex and angle information: We may fix both position and angle

data such that information passed onto buildGraph is exact.

2. exact vertex locations and exact moments: We may fix only vertex
positions and reconstruct potential angle axes in recons using this positioning.
Thus, half of the input data passed onto buildGraph is exact and half is

reconstructed.

3. exact moment data: We may use perfect moment data as input to recons

and reconstruct both position and angle data to be passed onto buildGraph.

4. actual moment data: We may acquire actual moment data, containing
measurement imperfections, to be used as input to recons. Position and angle

data reconstructed from these moments is then passed onto buildGraph.

Within our research, we examined the performance of our algorithms on the

input domains of exact vertex and angle information and exact moment data.

6.2 Examining the Behaviour of Various Graphs

By nature of the quadrature formula, vertices within a polygon that are co-linear or
interior often trigger numerical computation errorsin the reconstruction; positioning
and potential edge angle reconstruction for these vertices often includes significant
inaccuracy.

Inaccuracies arise quite differently in slightly different graphs. For example,
figure 6.1 displays the vertex positions and potential edge angles reconstructed by
module recons for two graphs, G; and Gy, where (G is a six-point star and G is
an eight-point star. In each plot, the original polygon whose complex moments pro-
vided input to module recons is displayed in solid lines overtop the reconstructed

data. Both (G; and (G5 contain sets of four co-linear vertices as well as many interior

75

initial vertex reconstruction from moments
initial vertex reconstruction from moments 6f
o

+ ot

o]

-4 -2 0 2 4 6

Figure 6.1: position and angle reconstructions for two graphs G; and G

vertices. Reconstructed vertex positions and potential angles are reconstructed ac-
curately in graph G'1. In graph G5, however, only exterior vertices are reconstructed
accurately: {a,c,e,g,i,k, m,o}. Interior vertices either include minor inaccuracies,
{b, f,j,n}, or extreme, irrecoverable error, {d, h,[,p}. In the case of the last four
vertices, their reconstructed positions appear at points 1, 2, 3, and 4.

Thus, when working specifically with the graph-theoretic aspects of the re-
constructions algorithm on graphs such as Gy, we fix the output from module recons
and input perfect information to module buildGraph. When examining error-
recovery abilities and partial solution search heuristics within the reconstruction
algorithms, we input actual position and angle information from module recons,

allowing inaccuracy to enter the input domain.
Certain families of shapes demonstrate interesting behaviour. The success of re-

construction directly depends upon the relative location from which moments are

measured within the plane.

76

Figure 6.2: a northeast translation of polygon P by +(1, 1)

For example, given a 12-sided regular polygon of radius 1, P, figure 6.2 displays
two reconstructions of the vertices of P. In figure 6.2a, P is centered at (1,1). In
figure 6.2b, P is centered at (2,2). In both figures, the original polygon is plotted
in solid lines. When centered at (1, 1), vertices of P are accurately reconstructed.
When centered at (2,2), however, the reconstruction becomes indecipherable.

If we center a regular polygon P at the origin, the reconstruction remains per-
fect. Upon attempting to reconstruct a subcomponent of this same P, however, we
again notice the introduction of inaccuracies. Figure 6.3a displays the reconstructed
positions of the upper right 12 vertices of a regular 48-sided polygon centered at the
origin. Figure 6.3b displays the results after processing by buildGraph and fig-

initial vertex reconstruction from moments after buildgraph ‘segment found

o
° +° o
o 4

.
oot
1 Trg o+

original

06 reconstructed

Figure 6.3: top right corner of a regular 48-sided polygon

77

ure 6.3c displays the results after processing by edgeElim and fragmentSearch.
Note that one outlying vertex lies out of the displayed domain. Interestingly, a
polygon including all 48 vertices can be reconstructed accurately, whereas as subset
of size 12 cannot. Thus, subsets of sets of accurately reconstructible vertices are not

necessarily accurately reconstructible themselves.

6.3 Dealing with Numerical Error in the Reconstruc-
tion

Polygons that present challenges to the reconstruction require us to consider al-
ternative approaches to reconstruct their vertex positioning and potential angles.
Experimentation demonstrates that reconstruction inaccuracies may be reduced by
increasing the number of moment measurements input to module recons.

For example, figure 6.4 displays our familiar 12 vertex, K-shaped polygon
P, whose vertices are independently reconstructed three times using an increasing
number of moments. In figure 6.4a, module recons is given 8 complex moments
and produces 8 vertex positions and axis angles. Undersampling provides an idea as
to the general positioning of the polygon within the plane. In figure 6.4b, module
recons is given 12 complex moments and produces 12 vertex positions and axis

angles. In this case, reconstructed vertices lie close to actual positions but some

s %? o HSH wim L
X
5o s o §
¢ oo B @ o
+o§o+ do
. . B o & P
[00
2. 25 0% @ @
. %
2 . o Ao %
15 s
ks 8 H ®
1 1 ot oo oc
el < k3 4|
osfpto
0 05'*00 ;0# ico R 40

Figure 6.4: varying the number of sample points: » = 8, 12, and 16

78

angles still contain significant inaccuracies. Finally, in figure 6.4c, module recons is
given 16 complex moments and produces 16 vertex positions and axis angles. Thus,
by oversampling, all vertices and angles of P, are accurately reconstructed.
Increasing the number of samples usually improves reconstruction, but the
results are not always as successful as for P;. For example, figure 6.5 displays
an extended E-shaped polygon, P. Here, we display the vertex reconstruction
for increasing numbers of moments: n = 16, 24, 32, and 64. Note that extra

reconstructed vertices lie close to a circle centered at origin.

10 ® 8r e
8 o
¢ sf oo g
4 @
B o
. ®8 il -
. & @ =
: | S
2 6%@ & B
of @ &
0 > 8
ok *
-2
o
i W -
% oo
,5@ 6F
52 &
*Bﬁ
-2) 2 8 -6 7; -2] 2 4 6
n=32 n=64
10 12r-
®
i . 8:% 10+
® & 8F
®
@ @B P
® o 4 o & ®¥
0 & ® ® &® B B @
o ® ® o8 ®
o ® ® ® ® o w% @
5 @ ® 2r ®] Y
QQ ® & @ 8
® oF &% P & ® *
3 *
10 B 1@ R
@
® -4r ® & o
15 ﬁ @
6 & &» ®
L) & ®
‘ ‘ ‘ ‘ ‘ ‘ XY 34
[

Figure 6.5: varying the number of sample points: n = 16, 24, 32, and 64

79

6.4 Summary

Given complex moments, reconstruction of vertices sometimes includes inaccuracies.
For some vertices, these imperfections remain recoverable and may be dealt with
from within the domain of graph theory. In these instances, inaccurate vertices are
left unaltered and error tolerance within the reconstruction algorithms allows suc-
cessful reconstruction. Other vertices, however, acquire significant position or angle
error. For these cases, we require alternative methods of reconstructing position and

angle, since we are provided too little information from the initial reconstruction.

80

Chapter 7

Further Research

Various partially explored and even completely unexplored questions branch out
from the problems analyzed within this thesis. Among these possible research paths

are the following interesting areas:

e Within our research, density is assumed to be uniform. We may consider the

reconstruction of polygons within domains of variable density (Section 7.1).

e When given two solutions to a reconstruction problem, we may wish to certify
the validity of each answer, measure the closeness of the moment vectors of

the two solutions, and choose a best solution between the two (Section 7.2).

e Upon encountering inaccurate information, iteration of the initial reconstruc-
tion formula could be used to create additional constraints using partial results.
This added input information might provide more accurate position and angle

data (Section 7.3).

e Block reconstruction by differences of moments as currently implemented only
allows very limited functionality. Greater error-tolerance within module momentDiff

could provide improved reconstruction of inaccurate input data (Section 7.4).
o Current theorems about NP-hard restricted 2-factors could be used to show

81

NP-hardness for the problem of searching for a globally-happy 2-factor within

a moment-derived edge-bicoloured graph (Section 7.5).

In this chapter, we briefly visit each of these potential research areas and

describe the motivating ideas from which they derive.

7.1 Variable Internal Density

All models examined include polygons of constant density. Area within the polygon
is assumed to be bipartite, such that, for any point z in the Cartesian plane, only two
states are possible: either 2 € P or z ¢ P. Real-world polygons, or 2-dimensional
polygonal slices of 3-dimensional objects, most definitely include varying degrees of
density. Exploring reconstruction issues among such polygons might provide insight
into additional realistic and application-oriented examples. Figure 7.1 displays three
shapes, A, B, and C, which have components of different density. These represent
three models that may be assumed. Densities may be assumed to be discrete units,
or low positive integer values, as in example A. Alternatively, densities may be
assumed to be real positive values, as in example B. Finally, reversed loops within

a polygon may be interpreted as negative densities, as in example C.

41110 1.79|1.34] 0.00

Figure 7.1: two shapes with multiple densities

Thus, issues of varying or non-uniform density remain to be considered within

polygon reconstruction from moments.

82

7.2 Certifying Solutions

Given two solutions, A and B, how do we measure which is a better solution? Within
module fragmentSearch, we discussed a heuristic that chose the solution with the
longer fragment of happy vertices. Certainly, many other comparisons are possible.
How do we differentiate between levels of validity? For example, figure 7.2 displays
four solutions discovered by module fragmentSearch on o = .157 and moments for

an E-shaped polygon. Which is the better solution?

ment found ment found
segment foul segment found segment fou segment found

5r ™ 5r ™
45} sl 45 a5k
4 _— ol 4 _— ol
3sf as| 3sf a5l
3k al 3k al
25} D 25l 25} 25l
2t A 2t A
15f 15} 15f 15|
1 % 1 1 1
0.5+ 05F 0.5+ 05F
ob¢ ob opk 0

I I I . . . I I I
05 1 15 2 0 0.5 1 15 2 0 05 1 15 2 0 0.5 1 15

Figure 7.2: differentiating between partial solutions

One may hypothetically derive some measure of closeness by comparing mo-
ments of the reconstructed polygon to the original input moments. Perhaps sta-
tistical measurement of the differences between moments can provide a numerical
description of this closeness. Thus, comparative certification of solutions, remains a

mostly unexplored domain within polygon reconstruction from moments.

83

7.3 Iterative Reconstruction

Reiteration of the quadrature formula on a greater number of constraints may pro-
vide a reconstruction that more closely resembles the original polygon. After an
initial run of recons, upon encountering inaccurate information, vertices deemed
accurate or inaccurate could be tagged and divided into corresponding partitions.
Positions of vertices from the partition of accurate vertices could then be used as
additional constraints in a subsequent iteration of the reconstruction formula. The
motivation being that additional information in a reiteration on a greater number
of constraints may provide more accurate reconstruction for those vertices initially
in the inaccurate partition.

For example, figure 7.3 displays a polygon P and its reconstruction P’. As-

suming we have a mechanism for identifying inaccurate vertices, we separate vertices

Figure 7.3: identifying accurate and inaccurate vertices

into two partitions: accurate (white) and inaccurate (black). The positions and edge
angles of vertices in the accurate partition are then used as additional input con-
straints within a subsequent iteration of recons. This second call to recons could
hypothetically provide a better reconstruction for the vertices of the inaccurate par-

tition.

84

7.4 Improving Error Tolerance using Differences of Mo-

ments

Instead of attempting to improve the original vertex and angle positions recon-
structed by recons, we may attempt to improve error tolerance within module
momentDiff. Currently, differences between moments of the original polygon and
subcomponents of the reconstructed polygon result in noisy errors within moments
causing ghost vertices.

For example, figure 7.4a displays a polygon €). Let us assume fragmentSearch
successfully finds the partial solution fragment in figure 7.4b. Module momentDiff
takes the closure of this fragment, ¢J;, and searches for a reconstruction matching
the difference of moments. Note that the position of vertex v is inaccurate. In
attempting to reconstruct the six-vertex polygon ()3, shadows of the difference @3

(figure 7.4c¢) cause error in the reconstruction. Hypothetically, ghost polygonal re-

Figure 7.4: error in differences of moments

gions such as ()3 may be identified and reconstructed. In our example, if vertex v
were known to have inaccurate position, then module momentDiff could search for

two subcomponent polygons, 2 and Q3 (figure 7.4d).

85

7.5 Additional Complexity Issues

In Chapter 3, we proved that restricting the 2-factor problem in ways which resemble
aspects of the polygon reconstruction problem are NP-hard. The actual problem
involves finding a globally-happy 2-factor within a moment-derived edge-bicoloured
graph. Our proof demonstrated that searching for a globally-happy 2-factor within
a bounded-degree edge-bicoloured graph is NP-hard. Thus, we ask ourselves the
question, can we incorporate geometric orthogonality constraints into a reduction
to prove that searching for a globally-happy 2-factor within a moment-derived edge-

bicoloured graph is also NP-hard?

Modifications to current components may provide a reduction from 3-DIMENSIONAL
MATCHING. Alternatively, new components imposing orthogonality of frameworks
may allow a mapping from EDGE-BICOLOURED 2-FACTOR. Perhaps the ex-
ploitation of planarity, connectedness, and orthogonality within solutions might pro-

vide assistance in designing a reduction.

These complexity questions remain unanswered and invite future examination from

the complexity theoreticians.

7.6 Summary

Many avenues within polygon reconstruction from moments, including varying den-
sity, solution validation, iterative reconstruction, error tolerance within differences of
moments, and problem of complexity, remain open and unexplored. These potential
research domains present very tangible and genuine possibilities for improving the
success of polygon reconstruction algorithms and for deepening our understanding

of the nature of this problem.

86

Chapter 8

Conclusion

Previous work by Davis [Dav64, Dav77] and Strakhov and Brodsky [SB86], along
with recent work by Milanfar et al. [MVKWO95] and Golub et al. [GMV99] has
inspired interest in the problems associated with the reconstruction of polygonal
shapes from moments. Through their techniques, one may gather potential position
and vector information about the vertices which lie on the perimeter of a polygon
being reconstructed.

This preliminary acquisition process finds an approximation to the Cartesian
coordinates of the vertices along with two axes of possible in-edges and out-edges
for each vertex. FEach axis has two possible out-edges along a line perpendicular
to two possible in-edges. A reconstructed polygon must pass through every vertex
exactly once visiting one out-edge and one in-edge from each axis.

Our work consists of reconstructing the polygon based on this input infor-
mation. We develop and analyze reconstruction algorithms with respect to their
dependence on numerical error and spatial variation, their time complexity, and

their ability to recognize ambiguous solutions when more than one exists.

87

The main results of this thesis include:

e We have proved that some restricted 2-factor problems relating to the recon-

struction problem are NP-hard. These include:

EDGE-BICOLOURED DIRECTED 2-FACTOR

k-CYCLE-FREE DIRECTED 2-FACTOR (k € {2,3})

BOUNDED-DEGREE EDGE-BICOLOURED DIRECTED 2-FACTOR

NON-CROSSING 2-FACTOR

DIRECTED NON-CROSSING 2-FACTOR

e We have examined the occurrence and properties of non-unique solutions
within graphs. We have proven that there exist graphs that embed an ex-
ponential number of distinct, simply-connected, non-crossing solutions with

respect to the size of the input graph.

e We have formulated edge-elimination rules which can be applied to reduce a
graph towards a solution subgraph. Based on these rules, we have developed
a linear-time reconstruction algorithm using constraint propagation. As an
extension to this algorithm, we have implemented a tree-based search routine

which finds all possible solutions contained within a graph.

e We have examined techniques to find partial solutions within domains of im-
perfect or inaccurate input data. These include searching for segments of
solutions, iterative differences of moments, and use of additional input mo-

ments.

e We have observed the behaviour of the reconstruction algorithms on various

classes of graphs, both those which reconstruct successfully and unsuccessfully.

Until now, research on the polygon reconstruction problem did not address

the latter phase of reconstruction, namely, the problem of taking vertex positions

88

and potential angles, and reconstructing the final solutions. As demonstrated within
this thesis, polygon reconstruction involves a multiple-phase geometric and graph-
theoretic reconstruction process. Issues of non-uniqueness, ambiguity, position and
angle inaccuracy, and erroneous input data must be considered when searching for
solutions. Algorithms and theorems presented here address these issues and present

methods at deriving complete and partial solutions.
These advances, along with other current developments, have revealed many un-

explored branches within polygon reconstruction from moments, in turn providing

avenues for potential future research.

89

[CLR92]

[Dav64]

[Dav77]

[DK99]

[GJ79]

[GMV99]

[HKKKSS]

Bibliography

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. [Introduction to
Algorithms. McGraw-Hill, New York, 1992.

P. J. Davis. Triangle formulas in the complex plane. Mathematics of

Computation, 18:569-577, 1964.

P. J. Davis. Plane regions determined by complex moments. Journal

of Approzimation Theory, 19:148-153, 1977.

S. Durocher and D. Kirkpatrick. Resctricted 2-factor problems arising
from moment-based polygon reconstruction. In Workshop on Computa-
tional Graph Theory and Combinatorics, pages 55—57. Pacific Institute

for the Mathematical Sciences, 1999.

M. R. Garey and D. S. Johnson. Computers and Intractability. W. H.

Freeman and Company, New York, 1979.

G. H. Golub, P. Milanfar, and J. Varah. A stable numerical method for
inverting shape from moments. STAM Journal of Scientific Computa-

tion, to appear, 1999.

P. Hell, D. Kirkpatrick, J. Kratochvil, and I. K#Z. On restricted two-
factors. STAM Journal of Discrete Mathematics, 1(4):472-484, 1988.

90

[JW93]

[LP86]

[MVKW95]

[O’RSS]

[Pap94]

[RW93]

[SBS6]

[ST43]

K. Jansen and G. J. Woeginger. The complexity of detecting cross-
ingfree configurations in the plane. BIT, 33(4):580-595, 1993.

L. Lovdsz and M. D. Plummer. Matching theory. In Annals of Discrete
Mathematics, volume 29. North-Holland Mathematics Studies, 1986.

P. Milanfar, G. C. Verghese, W. C. Karl, and A. S. Willsky. Recon-
structing polygons from moments with connections to array processing.

IFEFE Transactions on Signal Processing, 43:432—-443, 1995.

J. O’Rourke. Uniqueness of orthogonal connect-the-dots. In G. T.
Toussaint, editor, Computational Morphology, pages 97-104. Elsevier
Science Publishers B.V. (North-Holland), 1988.

C. H. Papadimitriou. Computational Complezity. Addison-Wesley, New
York, 1994.

F. Rendl and G. Woeginger. Reconstructing sets of orthogonal line
segments in the plane. Discrete Mathematics, 119:167-174, 1993.

V. Strakhov and M. Brodsky. On the uniqueness of the inverse log-
arithmic potential problem. STAM Journal of Applied Mathematics,
46:324-344, 1986.

J. Shohat and J. Tamarkin. The problem of moments. In Mathematical

Surveys, volume 1. Waverly Press, Baltimore, 1943.

91

Appendix A

Glossary of Terms

A.1 General Graph Theory
graph A graph, G = (V, F), is a collection of vertices, V, and edges, F.
vertex A vertex, v € V, is a single point or node in a graph G.

edge An edge, e € F, represents a relationship between two vertices in G. We say
edge uv € F if and only if there exist vertices u,v € V such that u and v
are related under some relation R C V x V. Graphically, we represent e by

drawing a straight line from u to v.

directed graph If the edge relation is asymmetric, then (G is a directed graph or

digraph. uv and vu are distinct possible edges between vertices v and u.

subgraph Given graphs G = (V, F) and H = (V' E'), H is a subgraph of G if and
only if H is a graph, V' CV,and ' C FE. If V/ = V then H is a spanning

subgraph of G.

in-edge, out-edge An edge coming from a vertex u into vertex v is called an in-
edge locally at v. Conversely, an edge going from vertex v out to a vertex u is

described as an out-edge locally at v.

92

adjacency matrix We may represent vertex adjacency through a boolean adja-
cency matrix, M, where M, , = true if and only if there exists an edge from

vertex u to vertex v.

degree The degree of a vertex v is the total number of edges incident upon wv.
Similarly, the in-degree of v is the number of in-edges at v and the out-
degree of v is the number of out-edges at v. The degree of a graph, G, is

defined as the maximum degree amongst all vertices v € V.

embedded graph If we are given a pre-determined fixed positioning for the ver-
tices of a graph G, then we say that G is an embedded graph. Any fixed

positioning of the vertices of (G is described as an embedding of G.

planar If there exists a two-dimensional embedding of graph GG in the plane in which
none of the edges of G cross, then we say G is planar. Such and embedding is

defined as a non-crossing embedding.

simply-connected A graph G is simply-connected if for any two vertices u,v € V
we can find some sequence of vertices {vy,...,vx} C V such that v; = wu,

vy =v,and forall 1 <7 <k —1, v;v,41 € F or vi;qv; € F.

connected component A connected component G C G is a maximal simply-
connected subgraph of G. There cannot exist vertices v € V — V' and u € V/

such that wv € F or vu € F.

cycle A cycle is a collection of neighbouring vertices, {v,...,vx} C V, such that
vivip € Eforall 1 <i<k—1and vyvy € . A k-cycle is a cycle of length
k.

interior, exterior A vertex v is an interior vertex within an embedded graph G,
if there exists a cycle C' C G such that v ¢ C' and C encloses v within it.

Conversely, v is an exterior vertex, if there does not exist such a cycle C'.

93

bipartite A graph G' = (V, F) is bipartite if there exists a partition of its vertices,
V = ViUV, such that, Vi # @, Vo # @D, VinVy, = (), and every edge
v1vy € F has one endpoint in each partition, v; € V; and vy € V5 or vy € Vy

and vy € V.

rectilinear All of the edges in a rectilinear embedding of a graph lie along a single

orthogonal north-south, east-west axis.

A.2 Classical Complexity

P Garey and Johnson [GJ79, page 27| formally define the class P as follows:

P = { L :thereisa polynomial time deterministic

Turing machine program M for which L = Ly}

Informally, P unites all problems which have deterministic polynomial-time
algorithmic solutions. That is, their solutions can be found deterministically
in time proportional to some polynomial function in terms of the input size of

the problem.
NP Garey and Johnson [GJ79, page 31] formally define the class NP as follows:
NP = { L :thereis a polynomial time nondeterministic
Turing machine program M for which L = Ly}

Informally, the class NP unites all problems which have nondeterministic

polynomial-time algorithmic solutions.

reduction function To compare the difficulty of two decision problems, we make
use of a reduction function, R, which allows us to reduce one problem to

another. Papadimitriou writes:

94

That is, we shall be prepared to say that problem A is at least as
hard as problem B if B reduces to A. Recall what “reduces” means.
We say that B reduces to A if there is a transformation R which, for
every input z of B, produces an equivalent input R(z) of A. Here
by “equivalent” we mean that the answer to R(z) considered as an
input for A, “yes” or “no,” is a correct answer to z, considered as
an input of B. In other words, to solve B on input « we just have to
compute R(z) and solve A on it. [Pap94, page 159]

NP-hard If we can show a polynomial-time reduction from some problem ¢ to a
problem p, then we say p is at least as hard as gq. We define a special class of
problems, the class of NP-hard problems. If ¢ is NP-hard and ¢ is reducible
to p in polynomial time, then we say p is also NP-hard. This special class
of NP problems have the property that, for any NP-hard problem ¢ other
than SAT, there is another NP-hard problem p, such that, p is reducible to
¢ in polynomial time. Thus, problem ¢ is “at least as complex” as problem
p. Therefore, NP-hardness is a lower bound of complexity in a hierarchy of
problems for which no deterministic polynomial-time algorithmic solution is

known.

A.3 Graph Theoretic and Complexity Problems

n-factor Lovdsz and Plummer write, “a spanning subgraph regular of degree n
is called an n-factor.”[LLP86, page xxx] N-FACTOR is solvable in polynomial
time [L.P86, GJ79].

2-factor A 2-factor is an n-factor of degree 2. A directed 2-factor of G is a
spanning subgraph H C (G for which every vertex v € V' has exactly one
in-edge and one out-edge. The problem finding an unconstrained 2-factor in

a general graph G is polynomial-time solvable [L.LP86, GJ79].

matching A matching is an n-factor of degree 1. Every vertex is met by exactly one

95

edge. The problem of finding a matching in a general graph G is polynomial-
time solvable [GJ79].

Hamiltonian cycle Lovisz and Plummer define, “a cycle which includes every
point of a graph G is called a Hamilton cycle of G.”[LLP86] The problem
HAMILTONIAN CIRCUIT is NP-complete [GJ79, page xxx].

3-dimensional matching Garey and Johnson explain 3-DIMENSIONAL MATCH-

ING as follows.
The 3-DIMENSIONATL MATCHING problem is a generalization of
the classical “marriage problem”: Given n unmarried men and n
unmarried women, along with a list of all male-female pairs who

would be willing to marry one another, is it possible to arrange n
marriages so that polygamy is avoided and everyone receives an ac-
ceptable spouse? Analogously, in the 3-DIMENSIONAL MATCH-
ING problem, the sets W, X, and Y correspond to three different
sexes, and each triple in M corresponds to a 3-way marriage that
would be acceptable to all three participants. Traditionalists will be
pleased to note that, whereas 3DM is NP-complete, the ordinary
marriage problem can be solved in polynomial time. [GJ79, page

50]

SAT Papadimitriou defines, “SATISFIABILITY (or SAT, for short) then is the
following problem: Given a Boolean expression ¢ in conjunctive normal form,
is it satisfiable?”[Pap94, page 77] SATISFIABILITY is the best-known and,
historically, the first NP-complete problem [GJ79].

3-SAT Garey and Johnson write, “the 3-SATISFIABILITY problem is just a re-
stricted version of SATISFIABILITY in which all instances have exactly three
literals per clause.”[GJ79, page 48] 3-SAT is also NP-complete.

2-SAT 2-SAT restricts instances to two literals per clause. This tighter restriction

on the problem makes 2-SAT solvable in polynomial time [GJ79].

96

A.4 Polygon Reconstruction Problem

polygon reconstruction from complex moments Given a finite set of complex
moments measured from a two-dimensional polygon P embedded within the

plane, we attempt to reconstruct the original shape of P.

moment The moments of a region are the integrals of the powers of the independent
variables over that region. The kth harmonic moment of a 2-dimensional

polygon P is given by [GMV99]:

mk://zkdmdy
P

colour At a vertex v, we assign a single colour to each edge. This colouring is
local; the colour at the head and tail of an edge may differ. We sometimes
refer to global colouring in a graph, in which case, head and tail colours
match for all edges e € F. Within our domain, a vertex may only have two
different colours of edges; we often refer to these locally as red and blue. For
presentation of graphs, however, a graph, may have several different colours

globally.

edge-bicoloured A graph G = (V, F) is edge-bicoloured if, for every v € V', every

edge at v has local blue or red colour.

bounded-degree edge-bicoloured Given an edge-bicoloured graph G = (V, F),
if every v € V contains no more than two red in-edges, two red out-edges,
two blue in-edges, and two blue out-edges, then (G is a bounded-degree edge-

bicoloured graph.

moment-derived edge-bicoloured Given a bounded-degree edge-bicoloured graph
G = (V, E), if edges of similar colour and direction align along an axis (see

figure 2.1 in Section 2.3) then G is a moment-derived edge-bicoloured graph.

97

framework The angular constraints on potential edges, ¢y and ¢, impose an or-
thogonality between edges of similar colour. Thus, under a geometric interpre-
tation of these constraints, edges of similar colour at a given vertex to belong
to a common framework or axis. Generally, edges within an axis lie orthogo-
nal to each other. We refer to a global framework whenever frameworks of
common colour across all vertices in the graph lie within the same orthogonal

axis.

commitment Whenever an edge is selected as being part of a partial solution,
we say that we commit to that edge. We refer to this decision as an edge

commitment.

vertex state A vertex v which is part of a solution may be in one of two states:
red-in, blue-out (RIBO) or blue-in, red-out (BIRO). This state directly

corresponds to edge commitments.

edge state An edge e exists in one of three states: undecided, committed or

dropped.

valid, invalid If a vertex v has at least one in-edge of a given colour and one
out-edge of a different colour, then we say v is valid. If v does not have any
in-edges, does not have any out-edges or only has edges of one colour, then we

say v is invalid.

red-degree, blue-degree The red-degree of a vertex v is the total number of red
edges incident upon v. Similarly, the blue-degree of v is the total number of
blue edges at v. If a graph G has global colouring, then we may refer to the

red-degree or blue-degree of G.

happy, unhappy When a vertex v has in-degree one, out-degree one, red-degree
one and blue-degree one, then we say v is happy. If v is not happy, then we

say v is unhappy.

98

fragment A fragment is any sequence of vertices vq,...,v; such that vyvp4 € F,

for all 1 <k <17 —1 and and every vertex vq,...,v;_1 is happy.

solution If H = (V', £') is a spanning subgraph of G which has the property that
every v € V' is happy, then H is a solution subgraph of G. We describe the

state of H as global happiness.

ambiguous solution Several graphs embody more than one possible solution. Any

such non-unique solution is an ambiguous solution.

constraint Vertex happiness requires a single pair of edges: red in and blue out,

or, blue in and red out. We refer to these restrictions as colour constraints.

constraint propagation Constraint propagation occurs whenever the constraints

at a vertex v affect the constraints at a neighbouring vertex .

reduction If graph Hy C H; is a spanning subgraph of H; and all edges F C
Hy — Hy may be removed from H; by constraint propagation, then we say Ho
is a reduced graph of H;. If no further edges may be removed from Hy by

constraint propagation, then H; is maximally reduced.

A.5 Reconstruction Algorithm Modules

recons Module recons takes & moment measurements and produces a set of n
vertex positions and two sets of n angles each, for local red and blue edge axes

at each respective vertex. Usually, £ = 2n.

buildGraph Module buildGraph takes m vertex positions along with blue and
red axis angles for each and builds a dense edge-bicoloured graph G; which
includes edges for any matching combination of in-edge and out-edge angles

(Section 5.2).

99

edgeElim Module edgeElim takes (z; as input and produces a regular edge-bicoloured
spanning subgraph G4 such that every vertex has at most two edges of simi-
lar colour and direction which are geometrically opposite to each other (Sec-

tion 5.3).

commit Module commit works recursively on Gy using colour constraint propa-
gation to produce a solution subgraph (3 for which no further constraint

propagation is possible (Section 5.4).

treeSearch Module treeSearch works recursively down a search tree towards so-
lutions whenever constraint propagation alone within module commit fails to

reduce (G5 to a final solution (Section 5.5).

fragmentSearch Module fragmentSearch is used whenever the input domain in-
cludes imperfect data. Partial fragmented solutions are researched as opposed

to complete 2-factors (Section 5.6).

momentDiff Module momentDiff allows for extremely noisy data to be recon-
structed piecewise through re-iteration of the recons module on differences of

moments (Section 5.7).

100

