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Abstract. Let C denote a set of n mobile clients, each of which follows
a continuous trajectory on a weighted tree T'. We establish tight bounds
on the maximum relative velocity of the 1-centre and 2-centre of C.
When each client in C' moves with linear motion along a path on T
we derive a tight bound of ©(n) on the complexity of the motion of
the 1-centre and corresponding bounds of O(n?a(n)) and £2(n?) for a 2-
centre, where a(n) denotes the inverse Ackermann function. We describe
efficient algorithms for calculating the trajectories of the 1-centre and 2-
centre of C: the 1-centre can be found in optimal time O(nlogn) when
the distance function between mobile clients is known or O(n?) when
the function must be calculated, and a 2-centre can be found in time
O(n?logn). These algorithms lend themselves to implementation within
the framework of kinetic data structures, resulting in structures that are
compact, efficient, responsive, and local.

1 Introduction

Motivation. Finding a set of k points that are central to a collection of data
points drawn from a metric space is a fundamental problem of geometry and
data analysis. Within the context of facility location, this problem is commonly
known as the k-centre problem; given a set P of points (clients) in a metric space
S, a k-centre of P is a set of k points (facilities) such that the maximum distance
from any client to its nearest facility is minimized. Two common choices for S
are a Minkowski distance (typically 1, £2, or £) in Euclidean space and graph
distance on a weighted graph.

Recently, the k-centre problem has been explored under mobility. In one di-
mension, the mobile 1-centre problem reduces to maintaining the extrema of a
set of mobile clients [TI2J4I16]. Natural generalizations of this problem to higher
dimensions in R¢ lead to the mobile Euclidean 1-centre [2061T0], the mobile recti-
linear 1-centre [26], and the kinetic convex hull [4/5/T6]. Although some mobile
k-centre problems can be modelled by motion in Euclidean space, several ap-
plications are better represented by motion on a graph. That is, the underlying
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graph remains fixed while clients and facilities move along its edges and ver-
tices. Examples include vehicles moving along a road network or mobile robots
following defined routes in an industrial setting [7].

Although the static k-centre problem on graphs is well understood, the corre-
sponding mobile problem remained unexplored. Any path in a weighted graph is
isometric to a line segment; we generalize the motion of a single client on the line
to motion on a path in a graph. That is, given a weighted graph G, each mobile
client follows a continuous trajectory along the edges and vertices of G. Continu-
ity and bounded velocity are natural constraints on any physical moving object.
It is straightforward to show that for any graph G that contains a cycle, there
exist sets of mobile clients on G whose 1-centre is discontinuous. As such, we pri-
marily focus our attention on metric spaces for which the k-centre is continuous.
In particular, graph distance on a tree maintains many properties of Euclidean
distance in R?, such as a unique shortest path between two points and a unique,
continuous 1-centre, while introducing interesting algorithmic challenges to the
problem of maintaining a mobile k-centre.

Main Results. The 1l-centre on a tree is unique [18]. We show its motion is
continuous and has relative velocity at most one. Since a 2-centre of a tree is not
unique, we identify a particular 2-centre which we call the equidistant 2-centre
and show that its motion is continuous and has relative velocity at most two.
The 3-centre is discontinuous even on a line segment; furthermore, no bounded-
velocity approximation is possible for the mobile 3-centre [9]. We consider values
of k for which the mobile k-centre is continuous: k < 2.

When each client in C' moves with linear motion along a path on 7', the mo-
tions of the corresponding 1-centre and equidistant 2-centre are piecewise linear.
We derive a tight bound of @(n) on the complexity of the motion of the 1-centre,
an upper bound of O(n?a(n)) on the complexity of the motion of the equidistant
2-centre, and a worst-case lower bound of £2(n?) on the complexity of the motion
of any 2-centre, where a(n) denotes the inverse Ackermann function. We describe
efficient algorithms for calculating the trajectories of the 1-centre and 2-centre
of C'. When the all-pairs distance function between mobile clients is known at
all times, the l-centre can be found in optimal time O(nlogn). The distance
function can be calculated in time O(n?). The equidistant 2-centre can be found
in time O(n?logn). Moreover, our algorithms have natural implementations as
kinetic data structures (KDS), resulting in structures that are compact, efficient,
responsive, and local. Although previous applications of KDSs have been to mo-
bile problems in FEuclidean space, as we demonstrate, the KDS framework lends
itself naturally to mobile problems on graphs.

2 Definitions

Since a point refers to a fixed position in a metric space, we refer to a client in
the context of motion. Let C' = {cy, ..., c,} denote a set of mobile clients, where
I =[0,¢s] denotes a time interval, Ur denotes the continuum of points defined
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by a weighted tree T = (V, E), and each ¢; is a continuous function ¢; : I — Ur.
For every t € I, let C(t) = {c(t) | ¢ € C} denote the set of points in Ur that
corresponds to the positions of clients in C' at time ¢. The position of a mobile
facility f is a function of the positions of a set of clients, f : #(Ur) — Ur,
where Z2(A) denotes the power set of set A.

A common assumption in problems involving motion in Euclidean space is
that the position of a mobile client is a linear function over time (e.g., [TI2/4]).
We make a similar assumption and consider clients with linear motion on trees
to establish combinatorial bounds. A mobile client or facility a has linear motion
if for all ¢t € I, d(a(0),a(t)) = t- vy, where v, is a non-negative constant and
d(b, c) denotes the graph distance between points b and ¢ in Up. We refer to v,
as the wvelocity of a. The union of the trajectories of a set of n mobile clients
that move with linear motion is a subgraph of Uy that has at most 2n vertices
of degree one. Therefore, we assume that 7" has at most 2n leaves and at most
4n — 1 vertices, and that ¢(0) and c(ts) are vertices of T', for each ¢ € C.

We assume an upper bound of one on the velocity of clients since we are inter-
ested in relative velocity. Unlike mobile clients, a mobile facility is not required
to travel along a path in 7T nor is its velocity required to remain constant. A
mobile facility f has mazimum velocity vy if

Vii, bty € 1, d(f(C(t)), f(C(t2))) < vrlts —taf, (1)

for all sets of mobile clients C' defined on any tree 1" and any time interval I.
Continuity is a necessary condition for any fixed upper bound on velocity.

We say client ¢ € C is extreme at time t if ¢(t) does not lie in the interior
of any path through T between two clients in C(t). The conver hull of C(t)
corresponds to the union of all paths between two clients in C(¢).

Definition 1. Given a weighted tree T and a set of points C' in Ur, a k-centre
of C is a set of k points in Ur, denoted Z1(C), ..., Zx(C), that minimizes
max oin, d(e, Z;(0)). (2)
When k = 1, we omit the subscript and write Z(C). The definition of a mobile
k-centre of a set of mobile clients C' follows directly from this static definition.

We refer to (@) as the k-radius of C or simply as its radius when k = 1. The
diameter of C is twice the radius of C' [19] (for graphs, the diameter is at most
twice the radius). A diametric path of C' is a path between two clients ¢; and
¢o in C such that the distance between them is the diameter of C. We refer to
{c1,¢a2} as a diametric pair and to ¢; and cq as diametric clients. The 1-centre
of C is the unique midpoint of all diametric paths of C' [18].

The 1-centre problem on graphs is also known as the absolute centre [I819],
single centre [19], and minimax location problem [S/I8]. A common variation
of the k-centre problem on graphs is known as the vertex k-centre or discrete
k-centre problem, for which the choice of locations for the facility is restricted
to vertices (clients) of the graph G. Maintaining continuity in the motion of a
mobile facility is impossible in the vertex centre model, as a facility could be
required to jump discontinuously from vertex to vertex (client to client).
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3 Related Work

Handler [18] gives linear-time algorithms for identifying the 1-centre and 2-centre
of a tree. Frederickson gives a linear-time algorithm for finding a k-centre of a
tree when k is fixed [13]. Kariv and Hakimi [23] provide an O(mn+n?logn)-time
algorithm for the 1-centre problem on graphs, where n = |V| and m = |E|. See
[12/17/2012312425] for reviews of k-centre problems on trees and on graphs.

Kinetic data structures (KDS), introduced by Basch et al. [4], allow the main-
tenance of an attribute (called the configuration function) of a set of mobile
objects moving continuously in some metric space. To do so, a KDS maintains a
dynamic set of certificates that guarantees the correctness of the configuration
function at any time during the motion. Each certificate ¢ is associated with
a small set of mobile objects for which some property is verified. The failure
time of certificate ¢ (called an event) is calculated as a function of the motion
of these objects. The failure time is added to a priority queue. Restoring the
configuration function following a certificate failure requires updating the set of
certificates (and the corresponding events in the queue).

Guibas [16] describes four properties used to evaluate the quality of a KDS.
A KDS is compact if the maximum number of certificates active at any given
time is linear in the degrees of freedom of the set of moving objects. A KDS
is responsive if the maximum number of certificates associated with any one
mobile object is polylogarithmic in the problem size. A KDS is local if at most a
small number of certificates require updating as a result of a certificate failure.
A KDS is efficient if the total number of certificate failures is proportional to the
number of external events (changes to the configuration function). See [3/4U5]/16]
for a more complete description of the KDS framework.

In relation to our work on the mobile k-centre, KDSs have been constructed
to maintain various attributes of a set of mobile clients; these include extremal
elements in R [TI2J4]T6], extent (e.g., diameter and width) in R? [12], approxima-
tions of the mobile 1-centre in R? [2J6l9I10], approximations of mobile 2-centres
in R? [11], the kinetic convex hull [4J5/T6], an approximation of mobile k-centres
in RY [15], and approximations of discrete rectilinear k-centres [14/22].

4 The Mobile 1-Centre on Trees

4.1 Properties of the Mobile 1-Centre

The mobile 1-centre is continuous in R¢ [9]. Although the mobile 1-centre has
at most unit relative velocity in R, its relative velocity is unbounded in R? [6].
It can be shown that the mobile 1-centre is discontinuous on graphs. Restricted
to trees, however, we show that the mobile 1-centre remains continuous and has
at most unit relative velocity.

Theorem 1. The mobile 1-centre has relative velocity at most one on trees.
This bound s tight.
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Proof. Choose any t1,t2 € I and let 6 = [t; — ta]. If Z(C(t1)) = Z(C(t2)), then
(@D holds trivially. Therefore, assume =(C(t1)) # =Z(C(t2)). Let P denote the
path in T between =(C(¢1)) and =Z(C(t2)). Let 1 and ro denote the respective
radii of C'(¢1) and C(t2). Let Ly denote the subtree of T that includes all branches
of Z(C(t1)) except P. Note, L; includes Z(C(t1)). Similarly, let Ly denote the
subtree of T' that includes all branches of Z(C(t2)) except P.

E(C(t)

Fig. 1. illustration in support of Theorem []

Let a be a client in C such that a(t1) € Ly and d(a(t1), Z(C(t1))) = r1.
Similarly, let b be a client in C such that b(t2) € Lo and d(b(t2), Z(C(t2))) = ra.
Such clients must exist since Z(C(t)) is the midpoint of a diametric path of C(t)
for all t. See Fig. [l Therefore,

d(a(t1),b(ts)) < d(a(t1),Z(C(t1))) + d(Z(C(t1)),b(t1)) + d(b(t1),b(t2))

S 2T1 + 6, (33’)
and d(a(t1),b(t2)) < d(a(t1), alt2)) + d(a(tz), Z(C(t2))) + d(Z(C(t2)), b(t2))
< 219 + 6. (3b)
Consequently,
d(a(ty), b(t2)) = d(a(tr), E(C(t1))) + d(E(C(t1)), E(C(t2))) + d(Z(C(t2)), b(t2)),
= d(2(C(t1)), Z(C(t2))) = d(a(t1), b(t2)) — d(a(t1), Z(C(t1))) — d(Z(C(t2)), b(t2))
d(a(t1),b(t2)) —r1 — 72

by [Ba) and ([Bh). The bound is realized when the two diametric clients move in
a parallel direction. O

It follows that the mobile 1-centre is continuous on trees.

4.2 Complexity of the Motion of the 1-Centre

When n clients move along the real line, each with some constant velocity, the
identity of the client that realizes either extremum changes @(n) times in the
worst case [4]. In particular, any given client realizes each extremum at most once
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in the sequence of changes. When n clients move in R? along linear trajectories
with constant velocity, the diametric pair of clients changes £2(n?) times in the
worst case [I]. As we show in Theorem [2 for a set C of n clients with linear
motion on a tree T, the identity of the diametric pair of C' changes ©(n) times
in the worst case. We begin with a definition.

Definition 2. Given a client ¢ moving with velocity v., the outward velocity of
¢ at time t, denoted ¥(c(t)), is given by

—o0 if c(t) is not extreme in C(t),
(e(t)) = ¢ —vc if ¢(t) moves towards the interior of the convex hull of C(t),
V. otherwise.

Lemmas [ through B] assume linear motion of a set of clients C' on a tree T.
In addition, we assume that the diameter of C' is non-zero at all times; a zero
diameter implies that all clients in C' coincide in a point and any two clients
define a diametric pair. Furthermore, the interior of the convex hull is empty
and, consequently, outward velocity is ill defined. We consider a zero diameter
in the proof of Theorem

Lemma 1. The outward velocity of client ¢ € C is non-decreasing while ¢ re-
mains in a diametric pair of C.

Proof. Two cases are possible while ¢ remains in a diametric pair of C.

Case 1. Assume ¢ moves away from the interior of the convex hull of C initially.
Client ¢ has linear motion along a path P C T'. The subpath of P that remains
to be travelled by c lies outside the convex hull of C'. Therefore the outward
velocity of ¢ remains constant.

Case 2. Assume ¢ moves towards the interior of the convex hull of C initially.
The outward velocity of ¢ remains constant until ¢ branches and turns away
from the interior of the convex hull. The remainder of the motion corresponds
to Case 1. O

As we show in Lemma 2] any change in the outward velocity at either endpoint
of a diametric path must be increasing.

Lemma 2. Choose any t1 € I and let {a1,b1} be a diametric pair of C(t1). If
{ag, b2} is a diametric pair of C(t2) and ay is not in any diametric pair of C(t2)
for some e > 0 and allty € (t1,t1+¢€), then ¥(a1(t1)) < min{v(az(t2)), U(ba(t2))}-

Proof. Since a; is in a diametric pair of C(¢1),
Ve € C, d(a1 (tl), by (tl)) > d(a1 (tl),c(tl)). (4)

Since {ag, bz} is a diametric pair of C(t2) but a; is not in any diametric pair of

C(tQ)v

Ve € O, d(ai(tz), c(t2)) < d(az(tz), b2(t2)). (5)
Since client motion is continuous and by @) and (&),
d(a1(t1),b1(t1)) = d(az(t1), ba(t1)). (6)

The result follows from (@) and (@)). O
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Lemma 3. A client ¢ € C becomes an endpoint of a diametric path of C at
most four times.

Proof. By Definition [2], the outward velocity of a client ¢ in a diametric pair
(c is extreme) is one of two values: +v.. By Lemma 2] a change in a diametric
pair corresponds to an increase in outward velocity. Therefore, a client ¢ realizes
either endpoint of a diametric path at most twice, for a total of at most four
times. O

Theorem 2. When each client in C' moves with linear motion along a path on
T, the motion of the 1-centre of C' is piecewise linear and is composed of O(n)
linear segments in the worst case, where n = |C/.

Proof. Case 1. Assume the diameter of C' is non-zero throughout the motion.
The upper bound O(n) follows from Lemma [I and Bl and the fact that the 1-
centre of C' is the midpoint of a diametric pair.

Case 2. Assume the diameter of C' is zero at some time during the motion. A
zero diameter implies that all clients in C' coincide at a point; that is, all clients
cross simultaneously. This degeneracy occurs at most once since any two clients
cross at most once. Since clients in C' have linear motion, the motion of the
1-centre of C has linear motion while all clients coincide. Before and after the
degeneracy, the motion of clients in C' corresponds to Case 1. Therefore, the sum
of the number of linear segments of the motion of the 1-centre remains O(n).

The worst-case lower bound of £2(n) follows from the corresponding result in
one dimension [4]. O

4.3 Kinetic Maintenance of the Mobile 1-Centre

Given a set C of n mobile clients, each moving with linear motion in R, the 1-
centre of C'is the midpoint of the extrema of C. The position of each extremum is
given by the upper (respectively, lower) envelope of the set of n linear functions
that correspond to the positions of clients in C relative to a fixed point in
R. Hershberger [2I] gives an O(nlogn) time algorithm which finds the upper
envelope by dividing the set of linear functions in two, recursively finding the
upper envelope of each set, and recombining the two envelopes to give the global
upper envelope.

Using a related idea, we describe an algorithm for identifying a sequence
of diametric pairs of a set of mobile clients, each moving with linear motion
on a tree. We then describe how to implement the algorithm as a KDS. The
algorithm makes use of the distance function d, where d(a(t),b(t)) returns the
graph distance on tree T" between mobile clients a and b at time t. We begin
with the following lemma upon which our algorithm relies.

Lemma 4. Let C; and Cy be sets of points on Ug for some tree T. Let {a;,b;}
denote a diametric pair of C;, for i = 1,2. Set {e, f} is a diametric pair of
C1 U Cy, where
{e, f} = argmax e, 1. (7)
{e’,f'}C{a1,b1,a2,b2}

The proof of Lemma [ was omitted due to space limitations.
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Algorithm Description. The set of mobile clients C' is partitioned arbitrar-
ily into sets Cy and Cy of size |n/2| and [n/2]. For each ¢ = 1,2, the algo-
rithm is called recursively to find a sequence of diametric pairs of C;, denoted
{ai1,0i1}, -, {@im;, bim,}, and a corresponding partition of the time interval
I, denoted I, 1, ..., I; m,, such that for each j, a; ;(t) and b; ;(t) are a diametric
pair of C;(t) for all ¢t € I; ;. The recursion terminates when n < 2, in which
case each client in C' is in a diametric pair. We now describe how to compute a
corresponding sequence for C.

Consider a third partition of the time interval I, denoted Iy, ..., I, such that
for each i, I; = I ;NI k, for some j, k. For all t € I;, diametric pairs of C () and
Cs(t) consist of four clients in C, say a1, b1, a2, and ba. Let e and f be defined as
in ([@). By Lemmall e and f are a diametric pair of C(t). The sequence of pairs
of clients in {ay, b1, az2,b2} that realize e and f corresponds to the sequence of
pairs whose relative distance is maximized. That is, there are six combinations
of pairs in {a1, b1, as, b2}, each of which corresponds to an inter-client distance
function. The upper envelope of these six functions determines the sequence of
identities of e and f during I;. Thus, solutions to the recursive subproblems are
combined to find the sequence of diametric pairs of C.

Time Complexity. By Theorem ] the complexity of the motion of the 1-
centres of Cy and Cs is O(n). That is, the time interval I can be partitioned into
O(n) subintervals such that the motion of each 1-centre is linear within every
subinterval (i.e., m € O(n)). Within each subinterval, we find the maximum of
six piecewise-linear functions, each composed of at most four linear segments.
Therefore, the maximum function is also piecewise linear, consists of at most
24 linear segments, and can be found in constant time. Thus, the solutions to
the two subproblems are combined in O(n) time. The recursion tree has depth
[logy n |, resulting in a total runtime of O(nlogn). The worst-case lower bound
of 2(nlogn) follows from the corresponding one-dimensional problem [21].

Distance Function. Depending on the formulation of the problem, the input
may not include the distance function. In this case, the input is given simply as
the set of clients, each of which specifies an origin and destination vertex pair in
T. In particular, the path of a client’s trajectory is not given.

We assume only a basic weighted edge adjacency list or matrix for the tree T
Build a table Al¢, j] that stores the following information for each vertex u; and
each client ¢;: d(u;,c;(0)), the velocity of ¢;(0) relative to u;, and the instant in
I (if any) at which the velocity of ¢; relative to u; becomes negated (that is, ¢;
takes a branch such that its motion changes from towards u; to away from w;).
This information encodes the two-segment piecewise-linear function d(u;, ¢;(t)).
Table Ali, j] has size O(n?) and can be calculated in time O(n?) by considering
each client ¢; and tracing its trajectory through T'.

For any clients ¢; and ¢z in C, the client-to-client distance function d(¢q (¢), c2(t))
can be calculated in constant time from table A. While ¢; and ¢y move towards
each other, d(c1(t), ca(t)) = |d(c1(0), c1(t)) —d(c1(0), c2(t))|. After one client, say
¢1, turns away from the other, d(ci(t), ca(t)) = |d(c1(tr), c1(t)) —d(ea(ty), ca(t))].
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KDS Implementation. We describe a KDS that maintains a diametric pair
over time along with a set of certificates that validates the identity of the pair
at any time during the motion.

Theorem 3. Given a tree T and a set of mobile clients C', each moving with
linear motion on a path of T, there exists a KDS to maintain the mobile 1-centre
of C that is local, responsive, efficient, and compact.

Proof. The set of certificates corresponds to the recursive hierarchy described
in our algorithm. At any time ¢, for each set C' in the hierarchy, the certificate
for C(t) consists of five inequalities that confirm the maximum of six functions.
That is, the certificate verifies the identity of a diametric pair of C'(¢) in terms of
the diametric pairs of the subsets Cy (t) and C2(t) by Lemmall The correspond-
ing properties are certified recursively for Cy (t) and Cy(t). Each set maintains a
single certificate defined in terms of four clients and the total number of certifi-
cates is O(n); therefore, the KDS is compact. Each client is contained in at most
O(logn) sets and, consequently, is associated with at most O(logn) certificates.
As a result, a motion plan update for a client results in changes to the failure
times of O(logn) certificates; therefore, the KDS is local.

A certificate failure occurs whenever the diametric pair of a set C' changes.
Locally, the certificate for C' is restored in constant time; however, a change in
the diametric pair of C' may percolate upwards in the tree, resulting in O(logn)
additional certificate updates; therefore, the KDS is responsive. By Theorem [2]
each set C' contributes at most O(|C|) certificate failures, resulting in a total
of O(nlogn) certificate failures over the entire motion. Although this value is
asymptotically greater than ©(n) (the worst-case number of external events for
a set of n clients), any offline algorithm for finding the trajectory of the 1-centre
requires {2(nlogn) time in the worst case, even in one dimension [21I]. Therefore,
the KDS is efficient. O

5 The Mobile 2-Centre on Trees

5.1 Properties of the Mobile 2-Centre

Although a 2-centre of a set of clients C' on a tree is not unique (this is the
case even in one dimension [9]), any 2-centre of C, =1(C) and Z3(C), defines a
natural bipartition of C, denoted {C4, Cs}, such that

Ve € C1, d(e,21(C)) < d(c, Z2(C)) and Ve € Cy, d(c, Z1(C)) > d(c, E2(C)).

We refer to {C1, Ca} as a diametric partition of C. A diametric partition induced
by a given 2-centre is not unique. We refer to the local 1-centre, local radius, and
local diametric pair/path, respectively, in reference to the 1-centre, radius, and
diametric pair/path of C; or Cy. The local 1-centres of Cq and Cy are a 2-centre
of C [19]. Proofs of results in Sect. [ were omitted due to space limitations.
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5.2 Equidistant 2-Centre

Even in one dimension the motion of a 2-centre defined by two local 1-centres is
not continuous. This is easily demonstrated by an example: position a client at
each endpoint of a line segment and let a third client move from one endpoint
to the other. Not all 2-centres are discontinuous; we describe a strategy for
defining the positions of a 2-centre on a tree whose motion is continuous and
whose relative velocity is at most two. We refer to this particular 2-centre as the
equidistant 2-centre:

Definition 3. Let {q,b} be a diametric pair of C. An equidistant 2-centre of
C, denoted {=Z1(C), Z2(C)}, is a pair of points that lie on the path between a
and b at a distance p from a and b, respectively, where p denotes the 2-radius of

C.

client

1—centre

local 2—centre

equidistant 2—centre
- diametric path
—— local diametric path
A, B, diametric partition

—
)
1 &> p» O

Fig. 2. Equidistant 2-centre examples

See Fig. 2 for an example. It is not difficult to show that the equidistance 2-
centre of C' is unique and that it is a 2-centre of C. It follows that the equidistant
2-centre is independent of the choice of the diametric pair {a,b}.

Theorem 4. Each facility in the mobile equidistant 2-centre has relative velocity
al most two.

It follows that each facility in the mobile equidistant 2-centre is continuous. Since
no mobile 2-centre can guarantee relative velocity less than two in one dimension
[9], the maximum velocity of the equidistant 2-centre is optimal.

5.3 Complexity of the Motion of the 2-Centre

We establish the following bounds on the complexity of the motion of 2-centres:

Theorem 5. When each client in C moves with linear motion along a path on
T, the motion of each facility in the equidistant 2-centre of C is piecewise linear
and is composed of O(n?a(n)) linear segments, where n = |C|.

Theorem 6. There exists a set of mobile clients C, each moving with linear
motion in R, such that the motion of some facility in any 2-centre of C whose
motion is piecewise linear is composed of £2(n?) linear segments, where n = |C|.
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5.4 Kinetic Maintenance of the Mobile 2-Centre

Capitalizing on our 1-centre results, we describe an algorithm for identifying
local 1-centres and the equidistant 2-centre of a set of mobile clients.

Algorithm Description. We first run our 1-centre algorithm to find a sequence
of diametric pairs of C, denoted {a1,b1},...,{am,bn}, and a corresponding
partition of the time interval I, denoted I, ..., I, such that m € O(n). For
each time interval I;, determine when each client c is closer to a; and when it is
closer to b;. This determines the sets Cy () and Cs(t) for all ¢ € I;. Consider Cy
(an analogous algorithm applies to C3). A diametric pair of C1 (¢) is given by a;(t)
and a furthest client from a;(t) in Cy(t). Each local diametric pair determines
the motion of the corresponding local 1-centre and the local radius, from which
the motion of the equidistant 2-centre is straightforward to calculate.

Time Complexity. For a client ¢ € C, the functions d(c(t), a;(t)) and d(c(t),
b;(t)) are piecewise linear, each composed of at most four linear segments. There-
fore, ¢ changes partitions O(1) times during interval I; and calculating the inter-
val for which c resides in either partition is achieved in constant time. Finding
a furthest client from a;(t) for all ¢ € I; corresponds to finding the upper en-
velope of n — 2 partially-defined, piecewise-linear functions, which can be done
in O(nlogn) time using Hershberger’s [21] algorithm. Since there are O(n) time
intervals, the total runtime is O(n? logn).

Theorem 7. Given a tree T and a set of mobile clients C', each moving with
linear motion on a path of T, there exists a KDS to maintain the mobile equidis-
tant 2-centre of C that is compact and has responsiveness O(n), locality O(n),
and efficiency O(n?logn).

6 Directions for Future Research

As mentioned in Sect. [II the mobile 1-centre is discontinuous on any cyclic
graph. This motivates the search for bounded-velocity approximations of the
k-centre on graphs. For the 1-centre, we have preliminary results showing that
no continuous (2 — €)-approximation is possible for any € > 0. A unit-velocity
2-approximation is given by selecting an arbitrary client ¢ € C' and setting the
position of the facility to coincide with ¢(t). It is unknown whether any bounded-
velocity approximation exists for mobile 2-centres on graphs. Finally, it may be
possible to extend this work to maintain a discrete 1-centre and 2-centre of C.

Acknowledgements. The authors would like to thank David Kirkpatrick for
suggesting that mobile k-centres might be interesting to consider on trees.
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