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Abstract

We examine the problem of finding an optimalpolicy in rout-
ing single-connection calls between a client and a server on
simple models of connection networks. We study the graphs����� �

,
���

and
����� �

with respect to possible configurationsof
vertices, edges and directed edges within our client-server
model. The many different configurations of the system are
reduced to a small set of equivalence classes of possible
states. The transitions between states are examined with re-
spect to variable call request rates and call hang-up rates,	

and 
 , respectively. We develop a technique to measure
the optimality of a policy by counting the expected number
of blocked calls from a given state in

	
and 
 at degrees 0, 1

and 2. We show that the optimality of a routing policy some-
times depends upon traffic; there exist decisions which are
optimal within a specific range of call request and hang-up
rates with the opposite decision being optimaloutside of that
range.

1 Problem Definition
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Network clients need to communicate. Whether the
medium be telephone or internet, the first step in communi-
cation requires connection to a local server which, in turn,
connects to some higher-level network. Thus, a client re-
quests to make a call and, if all goes well, a neighbouring
server routes the call. Often, more than one server is avail-
able; in such a case, a routing decision must be made as to
which server should handle the call. The outcome of this
decision affects the state of the local network. How should
(
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such a decision be made? How does one determine an opti-
mal policy for a given network?
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In previous work, Beneš studied the importance of re-
ducing states using symmetry within the network graph. He
found optimal routing policies for several small telephone
switch layouts including the tetrahedral network graph,

�21
.

Beneš conjectured that “optimal policy is basically a combi-
natorial feature of the network alone.”[Ben66] Contrary to
this, we show that optimality sometimes depends upon traf-
fic; there exist decisions that are optimal within a specific
range of call request and hang-up rates,

	
and 
 , with the

opposite decision being optimal outside of that range.
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A client is a node in the network graph whose only neigh-
bours are servers. All clients are identical and request ser-
vice from a server at a common rate,

	
. Clients terminate

calls at a common rate, 
 . A client may only be engaged in
a single call at any time.
A server is a node in the network graph whose only neigh-
bours are clients. All servers are identical, hence, any server
neighbouring a client may serve a call request from that
client. A server may only be connected to a single client at
any time. Any requests made to a server while it is busy are
blocked.
A server or client is busy when it is currently engaged in a
call.
A server or client is idle or free whenever it is not busy.
A call request is placed by a client to a server when request-
ing service for a call.
A hang-up is the termination of a call; it is initiated by the
client. Both client and server are again free to engage in new
connections.



A call may take place between any neighbouring pair con-
sisting of a server and a client so long as both the client and
server are free of other current calls. A call is the result of a
call request from a client to a free server which accepts the
request.
A blocked call results when a client places a call request to
a busy server. The call is refused; no connection is estab-
lished.
An event is either a call request or a hang-up.
A routing decision must be made whenever a client request-
ing service has two free neighbouring servers. One of the
two servers may serve the request. The outcome of this deci-
sion affects the availability of future service to other clients.
A policy determines how decisions are to be made in assign-
ing servers to call requests.
An optimal policy is achieved by minimizing the expected
number of blocked calls or maximizing the expected number
of successful calls. Since a server can only connect a single
call, equivalently, we seek to maximize the expected num-
ber of busy servers.
The state of the network describes a particular configuration
of busy servers and clients embedded within the graph.
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We limit our study to simple regular graphs. This al-
lows most configurations of the graph to be reduced to a
small number of equivalence classes for the different possi-
ble states. Furthermore, we only consider networks in which
clients have exactly two servers as neighbours; this permits a
more compact graph model in which each vertex represents
a server and each edge represents a client.

As an example, figure 1 shows two representations of the
tetrahedral network. This network consists of the complete
graph

� 1
, which is composed of 4 servers and 6 clients. In

the network graph on the left, clients appear as white vertices
and servers as black. In the next graph, the client vertices are
removed and clients are simply represented by edges. We
use this second representation.

server
client client

server
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During a call, a client receives service from one of the
two servers at the ends of the edge which represents it. We
represent a client and server as being engaged in a call by

directing the client’s edge toward the server being used. See
figure 2.
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2 Examining the Client-Server Model
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Even simple network graphs produce large numbers of
possible configurations. In order to study the states of the
system, one must rely on symmetry within the graph to bring
the number of states to within a manageable range. Thus we
choose regular graphs with a high degree of symmetry.

We gain insight into the complexity of the graph by
counting the numbers of busy server states, busy client states
and busy client-server pair states. The two former help de-
termine the suitability of a graph for analysis whereas the
latter will be used in our study of routing policy decisions.

Since vertices correspond to servers, we count the num-
ber of busy server states by counting the number of vertex
combinations possible. Similarly, since edges correspond to
clients, we count the number of busy client states by enumer-
ating the different embeddings of connected components
into the graph. See figure 24 in the appendix for the busy
client states and busy server states for

� � � �
.
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Graph State Properties
busy busy client-

graph � ����� ����� server client server transition
states states pairs decisions���

3 3 2 4 4 5 1��	�
 	
4 4 2 6 6 9 3���
4 6 3 5 11 12 3��

5 10 4 6 39 29 10��� 
 �
6 9 3 10 26 45 27

octa 6 12 4 10 � 100���
6 12 5 7 � 100

cube 8 12 3 22 � 100� ��
 �
8 16 4 15 � 100

The above table displays ����� , � ��� and � , the number of ver-
tices, edges and the degree of each graph along with the or-
der of busy server, busy client and client-server pair states.
Also listed are the number of transition decisions for each
graph.

As graphs grow the number of possible client-server pairs
grows proportionally to the number of busy client states. As
this occurs, the number of decisions also grows rapidly.

�2�
,����� �

and
� 1

each have few client-server pairs and few de-
cisions making examination quite possible but uninterest-
ing.

����� �
and

���
jump to 10 and 27 decisions, respectively,

while keeping the number of client-server states withinman-
ageability. Moving a step higher to

� G
,
��1 � 1

, the cube or the
octahedron increases the number of client states to greater
than 100 (the authors stopped counting at that point). With
such a large number of busy client states, the number of
client-server states becomes immense, rendering the study
of state transitions near to impossible.� � � �

and
� �

, therefore, both provide an interesting as-
sortment of decisions to examine while remaining within a
manageable number of states. The major differences be-
tween the two lie in the complete bipartite properties of��� � �

.
����� �

is a subgraph of
� G

. Having fewer edges and
more vertices than

� �
makes the state space for

��� � �
quite

interesting.
We attempt to find optimal policies for

� ��� �
,
� �

and� � � �
. The techniques used to solve for

� �
and

� ��� �
are

identical. Thus, we only discuss
� � � �

and
� ��� �

in detail; we
present results for all three networks in the appendices.
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Although it seems to be a simple graph,
� ��� �

produces a
very large number of possible configurations of the system.
We quickly note that many of these are equivalent. For ex-
ample, figure 4 shows two scenarios in which a single client-
server pair are involved in a call. These two scenarios are
different, yet we would like to consider them to be the same.
We note that the second graph is a single left rotation of the
first by ��� ? . We would like to find all symmetries of the
graph such that vertex adjacency is maintained.

� �*���������������>�$��0�!'&��/+�� .��I!#� ��.;4! ��"$�9.#"1. ���%$

Group theory quickly comes into play and we find our-
selves with a group of order 72, which is a subgroup of the
symmetric group, & G . Two operations form a basis for the
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group; these are pictured in figures 5 and 6. The exchange
operation,

,
, interchanges two non-adjacent vertices in the

graph. Any two vertices within the same partition may be
switched without affecting adjacency. The rotation opera-
tion,

1
, interchanges the two entire partitions. Again, since

the graph is complete bipartite, adjacency is unaffected. Fig-
ure 7 displays the hexagonal representation of the opera-
tions. Note that

, �3254
and

1 G3264
where

4
is the identity

transformation.
Each operation is isomorphic to an element of & G .

,
maps to 7#8 ?:9 and

1
maps to 7#8<; ?!=?>A@:9 . Any permutation

which maintains vertex adjacency in
� ��� �

can be derived
from some composition of

,
and

1
. Some of these transfor-

mations are pictured in figure 8. Together, B ,DC�1:E generate
the group of all symmetries within

� ��� �
such that all ver-

tices which are initially adjacent remain adjacent after the
transformation.

Since we know that there are
?GF

permutations of the left
partition,

?GF
permutations of the right partion and one inter-

change of partitions possible, we derive that the group has
order

@IHJ@IH ; 2LK ; .
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In general, the permutation group for
���

is & � . We know� & � � 2�� F
. The permutation group for

���
� �
is a subgroup

of & � with � &	��

��
G� 2 ;G7 � F 9 � .
We map configurations of the system into equivalence
classes of states. Any two network configurations which are
equivalent under some transformationwithin the group form
a single state. For example, all three configurations in fig-
ure 9 belong to the same equivalence class. These all repre-
sent the same state of the system.
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In total, we derive 45 possible states. These are listed in
figure 25 in the appendix. The system moves from one state
to another whenever a server accepts a call request from a
client or whenever a client hangs-up an existing call to a
server. The system remains in the same state whenever a call
request is blocked. Any event other than a blocked call re-
sults in a change of state in the system.

Under a given policy, the states and their allowed tran-
sitions form a finite state machine. Crossing � H��

forms
the corresponding input language, where � are the allowed
events, namely, call request or hang-up, and

�
is the set of

clients, B :�C������#C�� E .
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Events within the system occur at variable rates. We de-
fine

	
to be the rate at which a client makes a call request.

We define 
 to be the rate at which a busy client terminates
its current call. Each of these rates is measured per some
fixed unit time.

The current state of the system determines possible tran-
sitions upward or downward in the state hierarchy. In a
given state there are � calls in progress, ������� @

. Any
one of these may terminate meaning that there are � possi-
ble ways of moving down to a lower state with �! �8 connec-
tions. Similarly, there are "# $�	 $% possible ways of moving
up to a higher state with �'& 8 connections, where % is the
number of blocked calls, ���(%)�*"+ ,� . Often, more than
one of these paths lead to a common state. All downward
transition rates from a state must sum to � 
 and all upward
transition rates must sum to 7-"+ .�/ 0% 9 	 .
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For example, figure 10 displays all forward and backward

transitions out of state
? % = . Since there are three calls in

progress, there are three ways of moving down in the state
hierarchy. Clients % , � and

4
are involved in calls. A hang-up

from client % moves the system to state ; : ; ; this transition
occurs at rate 
 . A hang-up from clients � or

4
moves the

system to state ;2%�; . Figure 11 shows the two permutations
of ;2%%; to which one may arrive from

? % = . Note that the op-
eration 7 = @A9 2 1 � , 1 �

transforms one permutation into the
other. Since there are two ways of going from states

? % = to;2%%; , this transition occurs at rate ; 
 .
There are "3 ?  4�

2 @
free clients which may place
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calls requests. None of the possible calls out from
? % = are

blocked. Thus, any free edge which places a call request has
an idle server at one end which may take the call. Again,
some of the calls from different clients result in the same
state transition. A call request from client � moves the sys-
tem to state

=>: ; and occurs at a rate of
	

. A call request from
client

:
moves the system to state

= % ? and occurs at a rate of	
. Call requests from clients � or � move the system to state= �%; and occur at a rate of ; 	 . Call requests from clients � or�
move the system to state

= 4 ?
and occur at a rate of ; 	 .
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In some cases, a client makes a call request and both of
its neighbouringservers are free. When this occurs, we must
decide which server should take the call. Since such a rout-
ing decision affects the placement of available servers re-
maining, it has a global effect on the optimality of the sys-
tem. We denote a decision by ��� , a boolean which takes on
the value � or 8 . ���� is the negation of the decision, ���� 28' ��� .
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Figure 12 shows one of the 27 decisions in the state tran-

sitions. In this case, edge
:

makes a call request with both
servers

?
and

=
being free. Choosing server

?
moves the sys-

tem to state
= 4 8 , while choosing server

=
moves to state

= 4 ; .

The set of all decisions makes up the routing policy for
the network. Our problem is to find an optimal policy such
that we minimize the expected number of blocked calls for
given expected rates

	
and 
 .

Since the routing of a new call requires the decision-
making, all decisions occur on forward transitions. Some
decisions lead to the same equivalence class regardless of
which path is chosen. We assume that the policy arbitrarily
picks one of the two symmetric outcomes; these are not ac-
tual policy decisions and are not included in the 27 decisions
which we study. There are 5 such random symmetric deci-
sions in the state hierarchy. Figure 13 displays one of these.
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Furthermore, the optimality of some policy decisions is
deemed obvious by the layout of the busy clients. Such an
obvious decision occurs whenever all neighbouring clients
of one of the two servers involved are all currently con-
nected to another server. The outcome of the decision ren-
ders one of the servers useless. That is, it keeps the server
idle without there being any neighbouringclients which may
place call requests. Since clients outnumber servers, the
advantageous decision always chooses a state in which no
server is wasted. 6 of the 27 decisions are obvious decisions.
Figure 14 displays one of these; edge

:
may be served by

servers 8 or ; . Choosing server 8 would cause server ; to
be of no use to the system. Thus the obvious decision is to
choose server ; .

See the appendix for a table listing all forward and back-
ward transition rates including decision variables.
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For any state, we know the rates of traffic to and from ev-
ery neighbouring state in the hierarchy. In order to measure
the performance of a policy, we must find the expected prob-
ability of being in a state in terms of

	
and 
 . Given this ex-

pectation, one may easily calculate the expected number of
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busy servers and thus compare policies for optimality.
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We define ��� to be the probability that the system is in

state
�

, � ��� � � 8 . Figure 15 shows a state
�

which re-
ceives incoming traffic from states

�  8 and
�  ; at rates� � and � � , respectively, and sends outgoing traffic to states� & 8 and

� & ; at rates �	� and � � , respectively. We know
that traffic into � � must be equal to traffic out from � � . We
write down the following traffic flow equilibrium equation:

� � � � � � &�� � � � � � 2 � � 7�� � &	� � 9

 � � � � � � &�� � � � � � &�� � 7  
�	�� �� � 9 2 � (1)

Note that this situation is over-simplified since in our case,
the existence of a transition from one state to the next usu-
ally implies that the reverse transition back into the state of
origin must also exist; this is always true except for decision
transitions which are never followed.

For � states we write � such distinct linear equations
in terms of � � through ��� and the rates of traffic between
them. These � equations are linearly dependent. To elimi-
nate linear dependence and solve for B�� � ������C ��� E , we use
the fact that since B�� � ������C ��� E are probabilitiesover a com-

mon event then, �� � � � �
� 2 8 (2)

3 Method of Analysis
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Routing policies for small graphs contain few decisions.
The routing policies for

� � � �
and

��1
each have three rout-

ing decisions meaning that there are ; ��2��
possible poli-

cies. For each of these eight policies we can calculate and
compare the expected number of busy servers over varying	

and 
 . For
� ��� �

, however, we have ; K routing decisions
and, therefore, ; ����2 8 ? =�C ;G8 K C K ; � possible policies. Fur-
thermore, as we will see, no one single policy remains max-
imal over all

	
and 
 . Such exponential growth means that

finding the optimal policy for larger networks requires the-
oretical analysis as opposed to simple direct computation.

3&�*) � -�$���� � � ��� D&,�#��'#�$����&�'�  "�+#����
�/#���� $���� #����� D�#�$�� �'� � �
��$*A �25 ��� � � � �
To illustrate the use of a computational method, we find

the optimal policy for
� � � �

. Figure 16 displays the allowed
state transitions along with decision variables and transition
rates for

� ��� �
. From equation 1 we get the following:

� � 
 2 � � = 	
� � = 	 &�� � ;+
 &	� 1 ; 
 &�� � ; 
 &�� G ;+
 2� � 7 
 & �	� 	 & 7#8 & � � 9 	 & ��	� 	 & �� � 	 9� � �	� 	 &�� � 
 2 � � 7 ;+
 & ; 	 9� � 7#8 & � �%9 	 &�� � ; 
 &�� 
 
 2 � 1 7 ;+
 & 7#8 & � �*9 	 & �� � 	 9� � �� � 	 &�� 
 
 2 � � 7 ;+
 & 	 9

� � �� � 	 &�� 
�
 2 � G 7 ;+
 & ; 	 9� � ; 	 &	� 1 7#8 & � � 9 	 &�� � = 
 2 � � 7�
 & ;+
 & 	 9
� 1 �� � 	 &�� � 	 &�� G ; 	 2 � 
A7�
 & 
 & 
 9� � 	 2 � � = 


To remove linear dependence, we replace the last equa-
tion using equation 2. We write the equations in matrix
form. See figure 17 for the matrix.

The right sides of the equations are,! 2#"
� C � C � C � C � C � C � C � C 8%$

We wish to solve for,

: 2#" � � C � �-C � �-C � 1 C � � C � G C � � C � 
 C � � $
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where, � :�� 2 ! � (3)
:

gives us the expectations B�� � C������ C � � E . We then multi-
ply these probabilities by the number of busy servers in each
state, � ,

� 2 "
� C 8 C ; C ; C ; C ; C�?�C�?�C = $
��� 2 : � � (4)

Given the decisions � 2 B � � C � � C � � E , we can thus solve for
the expected number of busy servers for variable

	
and 
 for

any policy on
� � � �

.
In this way, we compare all eight policies. Policy � � 28 C � � 2 8 C � � 2 8 has its number of expected busy servers

given by,
� � � � � � 2 =

	
	 & 8

Solving for all eight expressions, ���	� � ��
 � �
� , and compar-
ing the results, we find that,

� 	�� � � ��� B � C 8 E � ��� � � � � � � � (5)

���
�������������
�

�
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That is, for any rate of traffic, we maximize the expected
number of busy servers by choosing policy � � 2 8 C � � 28 C � � 2 8 . Figure 18 displays the functions for all eight poli-
cies over varying

	
. Note that we eliminate 
 by fixing our

time unit such that 

2 8 .

Whenever we have a small number of decisions, such a
computational method allows us to find a globally optimal
policy if one exists. For more complex graphs, such as

� ��� �
,

however, we must use an analytical approach.

3&�*3 �
�&�
�!$���$����@? ����A�0 �+� � �'����-�5 ����A $*� �"�
���CB �$�
8 ��� 5 56$*A $�� ��� � �

We study the policy decisions for
� � � �

by local examina-
tion of the states to which each decision leads. We compare
these two states by counting the number of blocked calls
which may occur in each state. We say that state D has a
probability of blocking EGF , � �HEIF.� 8 . Thus, when de-
ciding between states D and � , we choose the state with a
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lower probability of blocking, namely, �
��� � E � .

Figure 19 displays a routing decision for client % . In this
example, either servers ; or

?
may serve the call. In state= %%; , four clients are blocked:

:
, � ,
�
and � . In state

= % ? , how-
ever, only two clients are blocked: � and

�
. When deciding

between these two states, therefore, one would prefer the op-
tion with lower probability of blocking, namely,

= % ? .
Many such decision have two immediately neighbour-

ing states with differing numbers of possible blocked
calls. For

� ��� �
, these are B � � C � 1 C�������C � ��� C � � �AC������#C � � G C� � 
 C������ C � � � C � ����E . See figure 27 in the appendix for the de-

cision results.
Included in these are the six obvious decisions, some of

which do not actually have differing numbers of possible
blocked calls: B � � C � � �<C � � � C � � �:C � � �<C � ����E .

We solve 21 of the 27 decisions in this way. In the six re-
maining decisions, both resulting states have equal probabil-
ity of blocking. In order to compare these, we examine not
only immediately neighbouring states, but all states which
may be reached through a one event jump. That is, for every
state, we wish to find the probability of blocking given that
one hang-up or one call request occurs before the second call
request. We wish to find the probability of blocking over a
larger subgraph of the state hierarchy, namely, all states that
are distance two or less from the given state.

We know the constant factor E F for any one state, D . If
�

is the number of busy servers in a state, then the probability
that the next event is a call request is given by,

	 7 "+ � 9

 � & 	 7-"  � 9 (6)

The probability that the next event is a hang-up is given by,


 �

 � & 	 7-"  � 9 (7)

k

9 - k

9 - k clients may place call requests.

k busy servers

k clients may hang up.

k

�����������<821$�#$ 4701�*+��<� 0�47��%�4735+ ��+ ��"��<"��*���I!#� (�" "

Note that this includes the probability that the next event is a
call request that is blocked. We can find a weighted average
of the probabilities of blocking for the states directly above
and below any state and combine them using ( 6) and ( 7).

For example, consider the state transitions displayed in
figure 10. State

? % = has three busy servers. Thus, the prob-
ability that the next event is a call request is,

	 7-"  ?A9
? 
 & 	 7 "+ ?A9 2 ; 	


 & ; 	 (8)

The probability that the next event is a hang-up is,

? 
? 
 & 	 7 "+ ?A9 2 


 & ; 	 (9)

The blocking probabilities for ; : ; and ;2%%; are both � . Their
weighted average, therefore, is also � . The blocking proba-
bilities for

=>: ; , = % ? ,
= �%; and

= 4 ?
are � , ;A� > , 8<� > and ;A� > , re-

spectively. Their weighted average is
= � 8 > . Thus, the prob-

ability of blocking by moving down in the state hierarchy is
� and by moving up it is

= � 8 > . We combine these using ( 8)
and ( 9) and get the overall probability of blocking after one
event followed by a call request,

=
8 >

; 	

 & ; 	 & �




 & ; 	

2 � 	
8 > 7 
 & ; 	 9 (10)

At this point, we consider two different cases: high traffic
and low traffic systems. As noted, we may eliminate either
one but not both of

	
or 
 by fixing our time unit appro-

priately such that the desired rate is forced to be equal to
1. Thus, when considering low traffic scenarios, we wish to
eliminate 
 . In this case,

	
will be small meaning that higher

order terms of
	

become less significant. When considering
high traffic scenarios, we wish to eliminate

	
. In this case,


 becomes small and, similarly, higher order terms of 
 be-
come less significant.

For example, decision � � requires deciding between
states

? %!8 and
? %%; . We find that the expected probabilities



of blocking at first-order
	

and 
 are,

? % 8��
�� 
 & 1 ��

�
	

? 
 & @ 	
? %%;��

�� 
 & 1 ��
�
	

? 
 & @ 	 (11)

Note that in either case, for high or low traffic,

�&	 � � � 
 � �
�� 
 & 1 ��

�
	

? 
)& @ 	��
�� 
 & 1 ��

�
	

? 
 & @ 	 (12)

Therefore, we choose
? % 8 over

? %%; . Most decisions in
����� �

are such that the outcome is not affected by the rate of traffic.
We repeat this process for every state and resolve the de-

cisions B � � C � �AC � � � C � � �!C � � ��E . Note that � �IG is not included
in the list and still remains to be resolved; both first-order

	
and 
 blocking probabilities for � �IG are equal.

To resolve � ��G , we apply one additional step of this recur-
sive method to the first-order

	
and 
 blocking probabilities

to derive a second-order blockingprobability. The process is
identical except that instead of multiplying by the weighted
average of the constant blocking probabilities, we multiply
by the weighted average of the first-order

	
and 
 blocking

probabilities. In this way, all decisions are resolved.

4 Analysis Results

� ��� 8������ $*� ��# 4��#A+$�-�$�����-

Figure 27 in the appendix displays the full decision re-
sults for

� ��� �
and figure 30 displays those for

� �
. One must

keep in mind that for
� � � �

, we found the actual globally op-
timal policy through enumeration of all policies. For

�2��� �
,

we found an approximation to a globally optimal policy to
within second-order

	
or 
 .

� �*) ���!���	�
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In all decisions examined, whenever a single chain appears
as the only connected component and the edge placing the
request lies on the end of the chain, the optimal decision
choses the server towards the chain. For example, figure 21
displays two chains of length five. When client

:
makes

a call request, we may choose between entering these two
states. In this example, we would choose server ; over
server 8 . Note that this is not the case if there are additional
disconnected components within the graph.
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Contrary to possible conjecture, a call request placed by
a client adjacent to a busy client does not always result in
service being provided by the server common to the two.
For example, figure 22 displays client

:
requesting service

from either servers 8 or
@
. We may guess that

? %�; is advanta-
geous when compared to

? % = , since in
? %%; , server 8 has two

idle neighbouring clients, whereas server
@

only has one in? % = . The better choice, however, is
? % = . The explanation

is straightforward; no clients are blocked in
? % = , whereas

client % is blocked in
? %%; .
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In deciding between two states, we compared blocking
probabilities in constant, first and second-order

	
and 
 . We

need to consider both high traffic and low traffic cases when



comparing two expectation expressions. As mentionned,
these do not always coincide.

Decision � � � involves a transition from
? % 8 � = % 8 or

from
? % 8 � = % ? . The first-order blocking probabilities of= % 8 and
= % ? are,

= % 8��
�� 
 &

� ��
�
	

= 
 & > 	
= % ? � �� 
 & � 1� 	= 
 & > 	 (13)

The blocking probability for
= % 8 is preferable to that of

= % ?
when, �� 
 &

� ��
�
	

= 
 & > 	 �
�� 
 & � 1� 	= 
)& > 	
 ;?&
 &

> 8
;2�
	
�
8
; 
3&

8 => 	

�� ;?  8

;�� 
 � � 8 =>  > 8
;2��� 	


 ;? 
 � 	 (14)

Note that for � �
�� 
 � 	 ,

= % 8 has lower blocking prob-
ability than

= % ? , whereas, for � � 	
�
�� 
 , the opposite is

true.
Contrary to Beneš’ conjecture, our conclusions about � � �

demonstrate that a policy’s optimality depends upon the rate
of traffic. A decision may be optimal within some range
of call request and hang-up rates but sub-optimal outside of
that range. Interestingly, � � � in

����� �
was the only such de-

cision found out of all decisions examined for the network
graphs

� �
,
��1

,
� �

,
� � � �

and
� ��� �

. Presumably, other such
decisions exist in more complex graphs.

� ��� � ��� D&� � $���� 8����+�����+#�$*A��'� �
��� � ��� D&,�# � #�$����&�'�
� �+- ,���#�-

As a quick test, we take the derived policy for
� ��� �

and
independently test single decisions. We take each decision
one at a time, reverse it, calculate the the expected number
of busy servers for the altered policy, ���� , using equation ( 4)
and compare the result with the original policy, � � . We find
that reversing any one of the 27 decisions, with the exception
of � � � , results in ���� � ��� for all rates of traffic.

5 Future Work and Open Problems

Future considerations include possible attempts at solv-
ing the policies for the cube, the Petersen graph, the octa-
hedron, the dodecahedron and

��1 � 1
which, of course, may

require new analysis techniques or improvements on these
techniques presented here. We may also require automation
of the equivalence class generation, transition rate computa-
tion and decision analysis.

We may examine the significance of client-server ratio.
In our models, we always considered clients that were con-
nected to only two servers, which allowed us to use a graph-
ical model where edges represented clients. Without this re-
striction, we might discover interesting results by allowing
greater than two servers per client.

Finally, we may consider the existence of general deci-
sion rules to encompass families of network models such as�3�

or
� �
� �

. Such a guide would allow general routingdeci-
sions to be made without having to perform analysis specific
to the network.
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6 Appendix

1. Figure 24 shows busy server states and busy client
states for

� � � �
(vertex permutations and connected

edge components which can be embedded into the
graph, respectively).

2. Figure 25 displays all client-server equivalence
classes for

� ��� �
.

3. Tables A1 and A2 give all forward and backward tran-
sition rates between states in

� ��� �
.

4. Figure 27 display complete decisions results for
� ��� �

.

5. Figure 28 shows the client-server equivalence classes
for

� �
.

6. Tables A3 and A4 give all forward and backward tran-
sition rates between states in

�2�
.

7. Figure 30 displays complete decisions results for
� �

.
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