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Abstract

We examine the problem of finding an optimal policy inrout-
ing single-connection calls between a client and a server on
simple models of connection networks. We study the graphs
K 2, K5 and K3 3 withrespect to possible configurationsof
vertices, edges and directed edges within our client-server
model. The many different configurations of the system are
reduced to a small set of equivalence classes of possible
states. The transitionsbetween statesare examined withre-
spect to variable call request rates and call hang-up rates,
A and v, respectively. We develop a technique to measure
the optimality of a policy by counting the expected number
of blocked callsfroma given statein A and y at degrees 0, 1
and 2. We show that the optimality of a routing policy some-
times depends upon traffic; there exist decisions which are
optimal within a specific range of call request and hang-up
rateswith theoppositedecision being optimal outsideof that
range.

1 Problem Definition
1.1 Problem and Motivation

Network clients need to communicate. Whether the
medium be telephone or internet, the first step in communi-
cation requires connection to a local server which, in turn,
connects to some higher-level network. Thus, a client re-
quests to make a cdl and, if al goes well, a neighbouring
server routes the call. Often, more than one server is avail-
able; in such a case, arouting decision must be made as to
which server should handle the call. The outcome of this
decision affects the state of the local network. How should
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such adecision be made? How does one determine an opti-
mal policy for agiven network?

1.2 Previous Work

In previous work, Benes studied the importance of re-
ducing states using symmetry within the network graph. He
found optimal routing policies for severa small telephone
switch layoutsincluding the tetrahedral network graph, K 4.
Benes conjectured that “optimal policy isbasically acombi-
natoria feature of the network alone.”[Ben66] Contrary to
this, we show that optimality sometimes depends upon traf-
fic; there exist decisions that are optimal within a specific
range of cal request and hang-up rates, A and ~, with the
opposite decision being optimal outside of that range.

1.3  Definition of Terms

A client is a node in the network graph whose only neigh-
bours are servers. All clients are identical and request ser-
vice from a server at a common rate, A. Clients terminate
callsat acommon rate, v. A client may only be engaged in
asinglecall a any time.

A server isanodein the network graph whose only neigh-
boursare clients. All serversareidentical, hence, any server
neighbouring a client may serve a cal request from that
client. A server may only be connected to asingle client at
any time. Any requests madeto aserver whileitisbusy are
blocked.

A server or client is busy when it is currently engaged in a
call.

A server or client isidleor free whenever it is not busy.

A call request is placed by aclient to a server when request-
ing servicefor acal.

A hang-up isthe termination of a call; it isinitiated by the
client. Bothclient and server are again freeto engagein new
connections.



A call may take place between any neighbouring pair con-
sisting of aserver and a client so long as both the client and
server are free of other current calls. A call istheresult of a
call request from aclient to afree server which accepts the
request.

A blocked call results when aclient places acall request to
abusy server. The cdl isrefused; no connection is estab-
lished.

An event iseither acall request or ahang-up.

A routing decision must be made whenever aclient request-
ing service has two free neighbouring servers. One of the
two serversmay servetherequest. Theoutcome of thisdeci-
sion affects theavailability of future serviceto other clients.
A policy determines how decisionsareto be madein assign-
ing serversto call requests.

An optimal policy is achieved by minimizing the expected
number of blocked calls or maximizing the expected number
of successful calls. Since aserver can only connect asingle
cal, equivalently, we seek to maximize the expected num-
ber of busy servers.

The stateof the network describes aparticular configuration
of busy servers and clients embedded within the graph.

1.4 Modelling the Client-Server Network

We limit our study to simple regular graphs. This d-
lows most configurations of the graph to be reduced to a
small number of equivalence classes for the different possi-
blestates. Furthermore, we only consider networksinwhich
clientshave exactly two serversas neighbours; thispermitsa
more compact graph model in which each vertex represents
a server and each edge represents aclient.

As an example, figure 1 shows two representations of the
tetrahedral network. This network consists of the complete
graph K4, which iscomposed of 4 servers and 6 clients. In
thenetwork graph ontheleft, clientsappear aswhitevertices
and serversasblack. Inthenext graph, theclient verticesare
removed and clients are simply represented by edges. We
use this second representation.

client O client —
server @ server @

Figure 1. tetrahedral client-server network

During a call, a client receives service from one of the
two servers at the ends of the edge which represents it. We
represent a client and server as being engaged in a cdl by

directingtheclient’sedge toward the server being used. See
figure 2.

Figure 2. client @ 1s connected to server 3.

2 Examining the Client-Server Model
2.1 Choice of Graphs

Even simple network graphs produce large numbers of
possible configurations. In order to study the states of the
system, onemust rely on symmetry withinthegraphto bring
the number of statesto withinamanageablerange. Thuswe
choose regular graphs with a high degree of symmetry.

We gain insight into the complexity of the graph by
countingthenumbers of busy server states, busy client states
and busy client-server pair states. The two former help de-
termine the suitability of a graph for analysis wheress the
latter will be used in our study of routing policy decisions.

Since vertices correspond to servers, we count the num-
ber of busy server states by counting the number of vertex
combinationspossible. Similarly, since edges correspond to
clients, we count the number of busy client statesby enumer-
ating the different embeddings of connected components
into the graph. See figure 24 in the appendix for the busy
client states and busy server statesfor K 3.
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Figure 3. [(3, 1{4, 1{5, I<6; [(2’2, [(373, [(474, oc-
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Graph State Properties

busy  busy client-
graph | |V| |E| d | server client server transition
states states  pairs  decisions
Ks 3 3 2 4 4 5 1
K> 2 4 4 2 6 6 9 3
Ky 4 6 3 5 11 12 3
Ks 5 10 4 6 39 29 10
K | 6 9 3| 10 26 45 27
octa 6 12 4 10 >100
Ke 6 12 5 7 >100
cube 8 12 3 22 >100
Kia 8 16 4 15 >100

The abovetabledisplays|V|, | E| and d, the number of ver-
tices, edges and the degree of each graph along with the or-
der of busy server, busy client and client-server pair states.
Also listed are the number of transition decisions for each
graph.

Asgraphsgrow thenumber of possibleclient-server pairs
grows proportionally to the number of busy client states. As
thisoccurs, thenumber of decisionsalso growsrapidly. K3,
K, 5 and K4 each have few client-server pairs and few de-
cisions making examination quite possible but uninterest-
ing. K33 and K5 jumpto 10 and 27 decisions, respectively,
whilekeeping the number of client-server stateswithinman-
ageability. Movingastep higher to K¢, K4 4, thecubeor the
octahedron increases the number of client states to greater
than 100 (the authors stopped counting at that point). With
such a large number of busy client states, the number of
client-server states becomes immense, rendering the study
of state transitions near to impossible.

K33 and K7, therefore, both provide an interesting as-
sortment of decisions to examine while remaining within a
manageable number of states. The mgor differences be-
tween the two lie in the complete bipartite properties of
K3 3. K33 isasubgraph of Ks. Having fewer edges and
more vertices than K's makes the state space for K3 3 quite
interesting.

We attempt to find optimal policies for K-, K5 and
K3 3. The techniques used to solve for K5 and K33 are
identical. Thus, weonly discuss K5 » and K3 3 indetail; we
present resultsfor dl three networksin the appendices.

2.2 Group Symmetries

Althoughit seems to be asimple graph, K3 3 produces a
very large number of possible configurations of the system.
We quickly note that many of these are equivalent. For ex-
ample, figure4 showstwo scenariosinwhichasingleclient-
server pair are involved in a call. These two scenarios are
different, yet wewould liketo consider them to bethe same.
We note that the second graph isa singleleft rotation of the
first by =/3. We would like to find all symmetries of the
graph such that vertex adjacency is maintained.

o0
00

Figure 4. equivalent states of the system

Group theory quickly comes into play and we find our-
selves with a group of order 72, which is a subgroup of the
symmetric group, Ss. Two operationsform abasis for the

.. =0 4 |:>

50706

Figure 6. rotating partitions: r

group; these are pictured in figures 5 and 6. The exchange
operation, z, interchanges two non-adjacent vertices in the
graph. Any two vertices within the same partition may be
switched without affecting adjacency. The rotation opera-
tion, r, interchanges the two entire partitions. Again, since
thegraphiscompl etebipartite, adjacency isunaffected. Fig-
ure 7 displays the hexagona representation of the opera-
tions. Notethat 22 = ¢ and r® = ¢ where e istheidentity
transformation.

Each operation is isomorphic to an element of Ss. =z
maps to (13) and » maps to (123456). Any permutation
which maintains vertex adjacency in K3 3 can be derived
from some composition of z and r. Some of these transfor-
mations are pictured in figure 8. Together, {z, r} generate
the group of al symmetries within K3 3 such that &l ver-
tices which are initialy adjacent remain adjacent after the
transformation.

Since we know that there are 3! permutations of the | eft
partition, 3! permutations of the right partion and oneinter-
change of partitions possible, we derive that the group has
order 6 x 6 x 2 =72,
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Figure 7. hexagonal representation of z and r
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Figure 8. other permutations in the group

Ingenera, thepermutationgroupfor K, is.S,,. Weknow
[Sn| = n!. The permutation group for K, ,, isa subgroup
of S, with|Sk, .| = 2(n!)%.

We map configurations of the system into equivalence
classes of states. Any two network configurationswhich are
equivalent under sometransformationwithinthegroupform
asingle state. For example, al three configurationsin fig-
ure 9 belong to the same equivaence class. These al repre-
sent the same state of the system.
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Figure 9. r3z followed by r

In total, we derive 45 possible states. These arelisted in
figure 25 in the appendix. The system movesfrom one state
to another whenever a server accepts a call request from a
client or whenever a client hangs-up an existing cal to a
server. The system remainsinthe same statewhenever acal
request is blocked. Any event other than a blocked cal re-
sultsin achange of statein the system.

Under a given policy, the states and their allowed tran-
sitionsform a finite state machine. Crossing £ x C' forms
the corresponding input language, where E are the dlowed
events, namely, call request or hang-up, and C' isthe set of
cients, {a,...,i}.

2.3 State Transitions

Eventswithin the system occur at variable rates. We de-
fine A to be the rate at which a client makes a call request.
We define v to be the rate at which abusy client terminates
its current call. Each of these rates is measured per some
fixed unit time.

The current state of the system determines possibletran-
sitions upward or downward in the state hierarchy. In a
given state there are ¢ callsin progress, 0 < ¢ < 6. Any
one of these may terminate meaning that there are ¢ possi-
bleways of moving down toalower statewith ¢ — 1 connec-
tions. Similarly, thereare 9 — ¢ — b possibleways of moving
up to a higher state with ¢ + 1 connections, where b is the
number of blocked calls, 0 < b < 9 — ¢. Often, more than
one of these paths lead to a common state. All downward
transition rates from a state must sum to ¢+ and all upward
transition rates must sumto (9 — ¢ — b) A.

Figure 10. all transitions out from state 354

For example, figure 10 displaysall forward and backward
transitions out of state 3b4. Since there are three cals in
progress, there are three ways of moving down in the state
hierarchy. Clientsh, d and e areinvolvedincalls. A hang-up
from client 5 moves the system to state 2a2; thistransition
occurs at ratey. A hang-up from clients d or e moves the
system to state 262. Figure 11 shows the two permutations
of 262 to which one may arrive from 3b4. Note that the op-
eration (46) = r3zr3 transforms one permutation into the
other. Since there are two ways of going from states 364 to
2b2, thistransition occurs &t rate 2+.

Thereare 9 — 3 — 0 = 6 free clients which may place
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Figure 11. two permutations of 262

cals requests. None of the possible calls out from 3b4 are
blocked. Thus, any free edgewhich placesacall request has
an idle server a one end which may take the call. Again,
some of the calls from different clients result in the same
state transition. A cal request from client ¢ moves the sys-
temto state4a2 and occursat arateof A. A cal request from
client a movesthe systemto state 453 and occurs at arate of
A. Call requestsfrom clientsc or A move the system to state
4¢2 and occur at arateof 2. Call requestsfrom clients f or
i move the system to state 4e3 and occur at arate of 2.

2.4  Policy Decisions

In some cases, a client makes a cdl request and both of
itsneighbouringservers arefree. Whenthisoccurs, we must
decide which server should take the call. Since such arout-
ing decision affects the placement of available servers re-
maining, it has a globa effect on the optimality of the sys-
tem. We denote adecision by d., aboolean which takes on
thevaue 0 or 1. d, isthe negation of the decision, d, =
1 —d,.

131 2

Figure 12. dyg: 3¢l — 4el or 4e2

Figure 12 shows one of the 27 decisionsin the state tran-
sitions. In this case, edge @ makes a call request with both
servers3 and 4 being free. Choosing server 3 movesthesys-
temto state4e1, whilechoosing server 4 movesto state4e?2.

The set of al decisions makes up the routing policy for
the network. Our problemisto find an optimal policy such
that we minimize the expected number of blocked callsfor
given expected rates A and «.

Since the routing of a new cal requires the decision-
making, all decisions occur on forward transitions. Some
decisions lead to the same equivalence class regardless of
which path is chosen. We assume that the policy arbitrarily
picks one of the two symmetric outcomes; these are not ac-
tua policy decisionsand are not included inthe 27 decisions
which we study. There are 5 such random symmetric deci-
sionsin the state hierarchy. Figure 13 displays one of these.

1 op1 2

Figure 13. random symmetric decision

Furthermore, the optimality of some policy decisionsis
deemed obvious by the layout of the busy clients. Such an
obvious decision occurs whenever al neighbouring clients
of one of the two servers involved are al currently con-
nected to another server. The outcome of the decision ren-
ders one of the serversusdless. That is, it keeps the server
idlewithout there being any nei ghbouring clientswhich may
place call requests. Since clients outhumber servers, the
advantageous decision aways chooses a state in which no
server iswasted. 6 of the27 decisionsare obviousdecisions.
Figure 14 displays one of these; edge a may be served by
servers 1 or 2. Choosing server 1 would cause server 2 to
be of no use to the system. Thus the obvious decisionisto
choose server 2.

See the appendix for atablelisting al forward and back-
ward transition rates including decision variabl es.

2.5 Steady State Expectation

For any state, we know therates of traffic to and from ev-
ery neighbouring state in the hierarchy. In order to measure
the performance of apolicy, wemust find the expected prob-
ability of beingin astateinterms of A and v. Given thisex-
pectation, one may easily calculate the expected number of



Figure 14. obvious decision

busy servers and thus compare policiesfor optimality.

€
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Figure 15. state transitions to and from state

k

We define Py, to be the probability that the system isin
state k, 0 < P, < 1. Figure 15 shows a state k¥ which re-
ceivesincoming traffic from statesk — 1 and k& — 2 at rates
o1 and o4, respectively, and sends outgoing traffic to states
k+ 1and k + 2 a rates p; and p-, respectively. We know
that traffic into P, must be equal to traffic out from Py,. We
write down the following traffic flow equilibrium equation:

Py_101 + Py_s09 = Py(p1 + p2)

& Py_101+ Py_soa+ Pe(—p1 —p2) =0 (D

Note that this situation is over-simplified since in our case,
the existence of atransition from one state to the next usu-
aly impliesthat the reverse transition back into the state of
originmust aso exist; thisisalwaystrue except for decision
transitionswhich are never followed.

For m states we write m such distinct linear equations
interms of P; through P, and the rates of traffic between
them. These m equations are linearly dependent. To elimi-
nate linear dependence and solvefor {P; ..., P, }, we use
thefact thatsince{P; . .., P, } areprobabilitiesover acom-

mon event then,

i P=1 ?)
i=1

3 Method of Analysis
3.1 Computational versus Theoretic Methods

Routing policies for small graphs contain few decisions.
The routing policiesfor K5 » and K4 each have three rout-
ing decisions meaning that there are 23 = 8 possible poli-
cies. For each of these eight policies we can calculate and
compare the expected number of busy servers over varying
Aand . For K3 3, however, we have 27 routing decisions
and, therefore, 2°7 = 134,217, 728 possible policies. Fur-
thermore, aswe will see, no one single policy remains max-
imal over al A and v. Such exponentia growth means that
finding the optimal policy for larger networks requires the-
oretica anaysis as opposed to simple direct computation.

3.2 Using a Computational Method to Find the
Optimal Policy for K »

To illustrate the use of a computationa method, we find
the optimal policy for K 5. Figure 16 displaysthe alowed
state transitionsa ong with decision variables and transition
ratesfor K5 5. From equation 1 we get the following:

Pg’)/ = P14A

P14\ 4 P32y + Py2vy + P52y + Ps2y =
Po(y 4+ did+ (1 + do)X + diX + d2))
PydiA + Pry = P3(2y + 2))
Py(1 4 do)A + Pr2y + Pgy = Pa(2y + (1 + d3) A + d3))
Pydi A + Py = Ps(2y + )
PydoX + Pey = Ps(2y + 2))
P32 + Py(1 + d3)A + Pody = Pr(y + 2y + A)
Pyd3) + PsA + Ps2X = Ps(y + v +7)
Pr)\ = Pody

To remove linear dependence, we replace the last equa
tion using equation 2. We write the equations in matrix
form. Seefigure 17 for the matrix.

The right sides of the equations are,

z:[0,0,0,0,0,0,0,0,l]
We wish to solvefor,

a=[ Py, Py, P3, Py, Ps, Ps, P;, Ps, Py |
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Figure 16. state transitions for Ky o

where,
Qa" =2 (©)

a gives us the expectations { Py, . . ., P, }. We then multi-
ply these probabilitiesby the number of busy serversineach
state, s,

=[0,1,2,2,2,2,3,3,4 ]

vg=a’s 4

Giventhedecisionsd = {d1, ds, d3}, we can thus solvefor
the expected number of busy serversfor variable A and v for
any policy on K 5.

In this way, we compare all eight policies. Policy d; =
1,d2 = 1,ds = 1 hasitsnumber of expected busy servers
given by,

A
V11,1 = 4)\ T

Solving for dl eight expressions, v4, 4, 4, , and compar-

ing the results, we find that,

YA>0Vd € {0,1}P vy <wvian 5)

—4X v 0 0 0 0 0 0 0
4N =y =3X 2y 2y 2y 2y 0 0 0
0 diA -2y —2X 0 0 0 ¥ 0 0
0 (1+4dy)A 0 —2y - 2) 0 0 2y 7 0
Q= 0 di) 0 0 -2y - A 0 0 v 0
0 dy X 0 0 0 —2y—2X 0 v 0
0 0 2) (1+ds)A 0 0 “3y—A 0 4y
0 A 2 0 R
1 1 1

|
= o
2
=]

Figure 17. matrix form of equilibrium equa-
tions

| anbda

Figure 18. expected number of busy servers
for K3 o for all possible policies

That is, for any rate of traffic, we maximize the expected
number of busy servers by choosing policy d; = 1,ds =
1,ds = 1. Figure 18 displaysthefunctionsfor al eight poli-
ciesover varying A. Note that we diminate v by fixing our
timeunit such that v = 1.

Whenever we have a small number of decisions, such a
computational method allows us to find a globally optimal
policy if oneexists. For more complex graphs, suchas K3 3,
however, we must use an analytical approach.

3.3 Examining Blocked Calls for High and Low
Traffic in Ks 3

We study the policy decisionsfor K5 3 by local examina-
tion of the states to which each decision leads. We compare
these two states by counting the number of blocked calls
which may occur in each state. We say that state v has a
probability of blocking B,,, 0 < B, < 1. Thus, when de-
ciding between states » and v, we choose the state with a



Figure 19. comparing blocking probability in
dis

lower probability of blocking, namely, min,, B;.

Figure 19 displays arouting decision for client 4. In this
example, either servers 2 or 3 may serve the call. In state
462, four clientsareblocked: a, d,iand g. Instate 453, how-
ever, only two clientsare blocked: d and i. When deciding
between these two states, therefore, onewould prefer theop-
tion with lower probability of blocking, namely, 453.

Many such decision have two immediately neighbour-
ing states with differing numbers of possible blocked
calls. For I(3)3, these are {dg, d4, R le; d13, Caay d16,
dis, ..., dss, do7}. Seefigure 27 intheappendix for the de-
cision results.

Included in these are the six obvious decisions, some of
which do not actually have differing numbers of possible
blocked cdls: {d5, (115, (119, (123, (125, (127}.

We solve 21 of the 27 decisionsinthisway. Inthesix re-
mai ning decisions, both resulting states have equal probabil -
ity of blocking. In order to compare these, we examine not
only immediately neighbouring states, but al states which
may be reached through aoneevent jump. That is, for every
state, we wish to find the probability of blocking given that
onehang-up or onecall request occurs beforethe second call
request. We wish to find the probability of blocking over a
larger subgraph of the state hierarchy, namely, al states that
are distance two or less from the given state.

We know the constant factor B,, for any one state, u. If k
isthe number of busy serversin a state, then the probability
that the next event isacall request is given by,

A9 — k)
vk + A9 —k)
The probability that the next event is ahang-up is given by,

(6)

~k
vk + A9 — k) 7

Q Q oo Q 9 - k clients may place call requests.

9-k

k busy servers

k
Q Q eee Q k clients may hang up.

Figure 20. moving up or down in the hierarchy

Notethat thisincludesthe probability that the next eventisa
call request that isblocked. We can find aweighted average
of the probabilitiesof blocking for the states directly above
and below any state and combine them using ( 6) and ( 7).

For example, consider the state transitions displayed in
figure 10. State 364 has three busy servers. Thus, the prob-
ability that the next event isa call request is,

A9 —3) 2)

3y +A9-3) y+2A ®
The probability that the next event isahang-up is,
3
= ©)

By +A9—3)  y+2)

The blocking probabilitiesfor 2a2 and 2b2 are both 0. Their
weighted average, therefore, isaso 0. The blocking proba-
bilitiesfor 4a2, 463, 4c2 and4e3 are0, 2/5,1/5and 2/5, re-
spectively. Their weighted averageis4/15. Thus, the prob-
ability of blocking by moving down in the state hierarchy is
0 and by moving upitis4/15. We combine these using ( 8)
and ( 9) and get the overall probability of blocking after one
event followed by a call request,

4 2A ~ 8A

= = 10
157+2)\+07+2A 15(y + 2X) (19

At this point, we consider two different cases: high traffic
and low traffic systems. As noted, we may eliminate either
one but not both of A or + by fixing our time unit appro-
priately such that the desired rate is forced to be equa to
1. Thus, when considering low traffic scenarios, we wish to
eliminate~. Inthiscase, A will be small meaning that higher
order terms of A become less significant. When considering
high traffic scenarios, we wish to eliminate A. In this case,
~ becomes small and, similarly, higher order terms of 4 be-
come less significant.

For example, decision d3 requires deciding between
states 351 and 362. We find that the expected probabilities



of blocking at first-order A and ~ are,

gy DETA gy, 71N (12)
© 3y 46X 3y + 6
Note that in either case, for high or low traffic,
1 47 1 49
=Y+ 35X =y 4+ A
A 7 30 7 30 12
VYA>0Vy >0 37 16X 37 1 6 (12)

Therefore, we choose 361 over 362. Most decisionsin K3 3
are such that the outcomeisnot affected by therate of traffic.
We repeat thisprocessfor every state and resolvethe de-
cisons{di,ds,d11,d12,d17}. Notethat ds6 isnot included
inthelist and still remains to be resolved; both first-order A
and ~ blocking probabilitiesfor d+s are equdl.
Toresolvedss, we apply oneadditional step of thisrecur-
sive method to thefirst-order A and + blocking probabilities
toderiveasecond-order blockingprobability. Theprocessis
identical except that instead of multiplying by the weighted
average of the constant blocking probabilities, we multiply
by the weighted average of the first-order A and ~ blocking
probabilities. Inthisway, all decisions are resolved.

4 AnalysisResults
4.1 The Right Decisions

Figure 27 in the appendix displays the full decision re-
sultsfor K3 3 and figure 30 displaysthosefor K'5. Onemust
keep in mind that for K'» », we found theactual globally op-
timal policy through enumeration of al policies. For K3 3,
we found an approximation to a globally optimal policy to
within second-order A or .

4.2 Emerging Global Patterns
2 4 2 4
DAV ANEPAN AW
1 3 5 1 3 5

Figure 21. single chain decision

In all decisions examined, whenever a single chain appears
as the only connected component and the edge placing the
request lies on the end of the chain, the optimal decision
choses the server towardsthe chain. For example, figure 21
displays two chains of length five. When client a makes
acal request, we may choose between entering these two
states. In this example, we would choose server 2 over
server 1. Notethat thisisnot the case if there are additional
disconnected components within the graph.

4.3 Interesting Decisions

Figure 22. unexpected decision outcome

Contrary to possible conjecture, acall request placed by
a client adjacent to a busy client does not always result in
service being provided by the server common to the two.
For example, figure 22 displays client a requesting service
fromeither servers1 or 6. Wemay guessthat 362 isadvanta
geous when compared to 3b4, sincein 352, server 1 hastwo
idle neighbouring clients, whereas server 6 only has onein
3b4. The better choice, however, is 3b4. The explanation
is straightforward; no clients are blocked in 3b4, whereas
client b isblocked in 352.

4.4 Dependence upon Rate of Traffic

3p1 2

Figure 23. d11: decision depends on A

In deciding between two states, we compared blocking
probabilitiesin constant, first and second-order A and y. We
need to consider both hightraffic and low traffic cases when



comparing two expectation expressions. As mentionned,
these do not always coincide.

Decision dy; involves a transition from 361 — 451 or
from 361 — 4b3. The first-order blocking probabilities of
4b1 and 4b3 are,

2y + 3

S
4y + 5\ .

4b1
4y + 5\

(13)

The blocking probability for 451 ispreferable to that of 463
when,

Ty + 2

4y 4+ 5

2y + 32X
44 4+ bBA

2 51 1 14
- —A< = —A
= 37-|- < 27-|- 5

20
14 51
— 2 )
<5 20)

e(2-1), <
37 32)7

= %7 <A (14)

Notethat for 0 < 2+ < X, 4b1 has lower blocking prob-
ability than 43, whereas, for 0 < A < 2+, the oppositeis
true.

Contrary toBeneS' conjecture, our conclusionsabout d
demonstratethat apolicy’soptimality depends upontherate
of traffic. A decision may be optimal within some range
of call request and hang-up rates but sub-optimal outside of
that range. Interestingly, d1; in K3 3 was the only such de-
cision found out of al decisions examined for the network
grapthg, K4, Ks, [(12 and [{33 Pregjmably, other such
decisions exist in more complex graphs.

4.5 Comparing Theoretical and Computational
Results

As aquick test, we take the derived policy for K3 3 and
independently test single decisions. We take each decision
one a atime, reverse it, calculate the the expected number
of busy serversfor thealtered policy, v/, using equation ( 4)
and compare the result with the origina policy, v4. We find
that reversing any one of the 27 decisions, with theexception
of dqq, resultsin v/, < v, for all rates of treffic.

5 FutureWork and Open Problems

Future considerations include possible attempts at solv-
ing the policies for the cube, the Petersen graph, the octa-
hedron, the dodecahedron and K4 4 which, of course, may
require new andysis techniques or improvements on these
techniques presented here. We may a so require automation
of the equival ence class generation, transition rate computa:
tion and decision anaysis.

We may examine the significance of client-server ratio.
In our models, we aways considered clients that were con-
nected to only two servers, which alowed usto use agraph-
ical model where edges represented clients. Without thisre-
striction, we might discover interesting results by allowing
greater than two servers per client.

Finally, we may consider the existence of genera deci-
sion rulesto encompass families of network models such as
K, or K, ,. Suchaguidewouldallow general routingdeci-
sionsto be made without having to perform analysis specific
to the network.
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6 Appendix

1. Figure 24 shows busy server states and busy client
states for K3 3 (vertex permutations and connected
edge components which can be embedded into the

graph, respectively).

2. Figure 25 displays dl client-server equivaence
classesfor K 3.

3. TablesAland A2 giveadl forward and backward tran-
sition rates between statesin K 3.

4. Figure27 display completedecisionsresultsfor K 3.

5. Figure 28 showsthe client-server equiva ence classes
for Ks.

6. TablesA3and A4 giveadl forward and backward tran-
sition rates between statesin Ks.

7. Figure 30 displays complete decisionsresultsfor Ks.
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Figure 24. busy server states and busy client states for K3 3



5al 5a2 5b1 5b2 5b3

Figure 25. client-server states for K33
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Table A2

Table A1
State Forward Transition Rates for K33
110 = [ 19X
2 |1 — | 2al (2+2d1)X  2a2 2d1\ 2b1 4do X 252 4da\
3 [2al — [ 3a2 X 3b1 2dzh 3b2 2d3\ 3cl (24 2d)X 3¢2 2dah
4 | 2a2 — | 3al dsA 3a2 ds) 3b3 2dgA 3b4 2dg 3c2 41
5 | 2b1  — | 3bl 2d7) 3b2 2) 3b3 2d7\ 3c2 A 3d1 A
6 |2b2 — | 3bl12X 3b2 2dg) 3b4 2dg 3cl 24 3d1 dgA  3d2 dgX
7 [3al = | 4al 6X
8 |3a2 — | 4a2 2dior 4a3 4X 4a4 2d10)
9 [3bl — |4a3 ) 4b1 dyg A 4b3 dy X del dyg 4¢3 digh  4e2 X 4cl A
10 | 3b2 — | 4bl A 4cl A 4c2 di3) 4c3 dya) 4el A 4¢2 dia)  4ed dia)
11| 3b3  — | 4al disA 4ad disA 4b2 disA 4b3 dieA 4e4 2)
12 | 3b4  — | 4a2 A 4b3 A 4c2 2) 4¢3 2)
13 | 3¢l — | 4a2 X 4a3 X 4cl (14+dig)X  4c2 dyz) 4d X del dig)h  4e2 digh
14 | 3c2 = | 4al digh 4a3 digh 4a4 X 4c2 X 4c3 A 4¢3 dgg)  4ed dyg
15 | 3d1  — | 4el 2) 4¢3 2da1 ) 4¢4 2dgi A
16 | 3d2  — | 4e2 6)
17 [ 4al  — | 5al X 5b1 2%
18 | 422 — | 5a2 A 5b3 2 5d 2X
19 | 423 — | 5a2 A 5b2 dgs A 5b3 dgah 5b4 A 5d A
20 | 4a4  — | 5al dagh 5a2 dogh 5b2 2)
21 | 4b1  — | 5el 2X 5c3 A
22 | 4b2 = | bal A
23 | 4b3  — | 5a2 A 5c2 2)
24 | 4cl  — | 5b3 A 5cl (14 doa)X 5c2 daa) 5d A
25 | 4c2  — | 5b2 A 5c2 A 5c3 A 5d A
26 | 4¢3 — | 5bl das) 5b4 dgsA 5c3 24
27 | 4d  — | 5d 4X 5¢ A
28 | 4el  — | 5b3 A 5c2 dagh 5c3 daogh 5e A
29 | 462 — | 5b4 A 5cl 22 5¢ A
30 | 4¢3 — | 5b2 X 5b3 A 5c3 A
31 | 4e4  — | 5bl dgz) 5b2 dgz X 5c2 A
32 | bal — | null
33 | 5a2 — | 6a 2)
34 | 5b1  — | null
35 | 5b2 — | Ba X
36 | 5b3  — | 6a A 6d A
37 | 5b4  — | 6d 2
38 | 5cl  — | 6b A 6d A
39 | 52 — | 6a A
40 | 5¢3  — | 6d A
41 | 5d  — | 6a2) 6d A
42 | 5e = | 6d 2X
43 | 6a — | null
44 | 6b — | null
45 | 6d — | null

State Backward Transition Rate for K33
1 0 — | null
2 |1 - |0y
3 |21 = |12y
4 |22 — |12y
5 |91 o |12y
6 |22 o |12y
7 |3al  — | 2a2 3y
8 | 3a2 — | 2al2y 2a2y
9 | 3bl —|2aly 2bly 2b2«y
10 [ 3b2 — | 2aly 2bly 2b2y
11 | 3b3 — | 2a2y  2bl 2y
12 | 3b4  — | 2a2y  2b2 2y
13 | 3¢l — | 2al2y 2b2y
14 | 3¢2 — | 2aly 2a2y 2bly
15 | 3d1  — | 2b1 2y 2b2«y
16 | 3d2 — | 2b2 3y
17 | 4al  — | 3aly  3b3 vy  3c2 2y
18 | 4a2 — | 3a2y  3b4y  3cl 2y
19 | 4a3 — | 3a2 vy 3bly  3cly 3c2 y
20 | 4a4 — | 3a2 v 3b3y  3c2 2y
21 | 4b1  — | 3b12y 3b2 2y
22 | 4b2  — | 3b3 4y
23 | 4b3 — | 3bly 3b3y  3b4 2y
24 | 4cl  — | 3bly  3b2y  3cl2y
25 |42 — | 3b2~y 3bdy  3clny 32 y
26 | 4¢3  — | 3b22y  3c2 2y
27 | 4d - | 3cl 4y
28 | 4el  — | 3bly 3b2y  3clny 3d1 4
29 | 42 — | 3bly 3b2y  3cly 3d2 v
30 | 4¢3 — | 3bly 3bdy 324 3d1 4
31 |4e4  — | 3b2y 3b3y 3c24 3d1 4
32 | 5al — [ 4al2y 4ad2y 4b2«y
33 | 5a2 — |4a2y 4a3 2y 4dady 4b3 vy
34 | 5b1  — | 4al2y 4c3y  ded 2y
35| 5b2 — |4a3y dady  4Ac2«y 4e3 vy ded vy
36 | 5b3 — | 4a2y 4a3y 4dcly  dely 4e3 y
37| 5b4  — | 4a3 2y 43y 4e2 2y
38 | 5c1  — | 4bly  4cl 2y 4e2 2y
39 | 52 — | 4b3y  4cly  4c2y  dely  ded y
40 | 5¢3  — | 4bly 42y 4c3 vy dely  4e3 v
41 | 5d — | 4a2 ¥ 4a3y  4dcly 42y Ad vy
42 | be — | 4d y el 2y 4e2 2y
43 | 6a — | ba2 ¥y 5b2y  5b3y  5c2y 5d 2y
44 | 6b — | bl 6y
45 | 6d — | bb3y  Bb4dy  Bely 5c3y Hdy  Bewy
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Figure 27. optimal decisions for K3 3
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Figure 28. client-server states for K5
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Table A4

Table A3

State Forward Transition Rates for K

1 — | 10X

2 > | 33diA 4 (34+3d)X 53

3 — |84 9 A 10 2dsX 11 2doA
4 = | 6(2+2d3)A T A 8 2dsA 10 2\ 12 A
5 — | 62) 7(2+2d)X 8 A 9 2ds\

6 — [13(1+ds)A 14dsh 16 X 18\ 20 A 23 X
7T = | 132 14 dgA 15 dg\ 18 A 24 A
8 — |14 15 A 16 A 17 d7\ 18 dzA 19 A
9 - | 142x 17 dgA 19 dsh 20 A

10 — | 162X 18 2X 19 dod 20 doh 22 A
11 — | 173x 21 digA 22 dig

12 — | 16 6A 24 A

13 — [ 25\ 27 A 29 A

14 — |26 27 A

15 — | 292\

16 — | 262X 28 A 29 A

17 — | 28 A

18 — |26\ 27 A 29 A

19 — | 262x

20 — | 27 2) 28 A

21 — | null

22 — | 28 3\

23— | 27 4\

24 — | 29 3\

25 — | null

26 — | null

27 — | null

28 — | null

_)

[\
©

null

[\
oo

162y 17y 20y 224

State Backward Transition Rates for K

1 — | null

2 — | 1y

3 = |22

4 5|22

5 = |22

6 —> |42y by

7T - |4y 5 2~

8 = | 3y 45 5y

9 - |3y 5 2y

10 — |37 4 2y

11 — | 33y

12 — | 43y

13 = |62y 72y

14 — |67 T~ 8y 9%«

5 = |72y 82y

16 — |67y 8~ 10y 12«4

17 — |82y 9y 11«

18 — | 67~ 7 8~ 10 v

19 > |82y 9« 10 v

20 - |62y 94« 10 v

21 — | 11 4y

22 = | 103y 11y

23 — | 64y

24 - | T3y 12 4

25 — | 13 by

26 — |14y 162y 18y 19«

27 — |13y 14y 184 20y 23~
%
%.

[\
e

13 v 15 ¥ 16y 18y 247




Figure 30. optimal decisions for K5



