
PLANE 3-TREES: EMBEDDABILITY & APPROXIMATION∗

STEPHANE DUROCHER† AND DEBAJYOTI MONDAL‡

Abstract. We give an O(n log3 n)-time linear-space algorithm that, given a plane 3-tree G with
n vertices and a set S of n points in the plane, determines whether G has a point-set embedding
on S (i.e., a planar straight-line drawing of G where each vertex is mapped to a distinct point of
S), improving the O(n4/3+ε)-time O(n4/3)-space algorithm of Moosa and Rahman (2011). Given
an arbitrary plane graph G and a point set S, Kaufmann and Wiese (2002) gave an algorithm to
compute 2-bend point-set embeddings of G on S. Later, Di Giacomo and Liotta (2010) showed how
such a drawing can be computed using O(W 3) area, where W is the length of the longest edge of
the bounding box of S. Their algorithm uses O(W 3) area even when the input graphs are restricted
to plane 3-trees. We introduce new techniques for computing 2-bend point-set embeddings of plane
3-trees that takes only O(W 2) area. We also give approximation algorithms for point-set embeddings
of plane 3-trees. Our results on 2-bend point-set embeddings and approximate point-set embeddings
hold for partial plane 3-trees (e.g., series-parallel graphs and Halin graphs).

Key words. graph drawing, point-set embedding, plane 3-tree, approximation

AMS subject classifications. 05C10, 68R10

1. Introduction. A planar drawing of a graph G is an embedding (i.e., a map-
ping) of G onto the Euclidean plane R

2, where each vertex in G is assigned a unique
point in R

2 and each edge in G is a simple curve in R
2 joining the points corresponding

to its endvertices such that no two curves intersect except possibly at their endpoints.
A graph is planar if it has a planar drawing. A straight-line drawing of a planar
graph is a planar drawing, where each edge is drawn as a straight line segment. The
straight-line drawing style is popular since it naturally produces drawings that are
easier to read and to display on smaller screens [13, 33, 36]. To meet the requirements
of different practical applications, researchers have examined graph drawing problems
under various constraints, e.g., when the vertices are constrained to be placed on a set
of pre-specified locations [4, 9], or when a bijection between the vertices and locations
are given [32]. If the pre-specified locations for placing the vertices of the input graph
are points on the Euclidean plane, then we call the problem a point-set embedding
problem. Such problems have applications in VLSI circuit layout, where different cir-
cuits need to be mapped onto a fixed printed circuit board [25], simultaneous display
of different social and biological networks [7], and construction of a desired network
among a set of fixed locations. Formally, a point-set embedding of a plane graph G
(i.e., a fixed combinatorial planar embedding of G) with n vertices on a set S of n
points is a straight-line drawing of G, where the vertices are placed on distinct points
of S. Figures 1(a), (b) and (c) illustrate a plane graph G, a point set S and a point-set
embedding of G on S, respectively.

Point-Set Embeddings. In 1994, Ikebe et al. [24] gave an O(n2)-time algorithm to
embed any tree with n vertices on any set of n points in general position, i.e., no three

∗A preliminary version of the paper appeared in Debajyoti Mondal’s M.Sc. thesis [28] and in
the Proceedings of the 13th International Symposium on Algorithms and Data Structures (WADS
2013) [20].

†Department of Computer Science, University of Manitoba, Canada, durocher@cs.umanitoba.ca.
Work of the author is supported in part by the Natural Sciences and Engineering Research Council
of Canada (NSERC).

‡Department of Computer Science, University of Manitoba, Canada, jyoti@cs.umanitoba.ca.
Work of the author is supported in part by a University of Manitoba Graduate Fellowship.

1

2 Plane 3-trees: Embeddability & Approximation

a

b
c

d

e
f

g
a

bc

d

e

g

f

a

b

f
g

c
d

e

a

b c
d

e
f

g

(a) (b) (c) (d) (e) (f)

Fig. 1. (a) A plane graph G. (b) A point set S. (c) A point-set embedding of G on S. (d)
A point set S′. (e) A 2-bend point set embedding of G on S′. (f) A straight-line embedding of G,
where S′(Γ) = 5. The vertices that are not mapped to any points of S′ are shown in black square,
and the points of S′ that does not contain any vertex of G are shown in gray.

points are collinear. Later, Bose et al. [5] devised a divide and conquer algorithm
that runs in O(n log n) time. In 1996, Castañeda and Urrutia [10] gave an O(n2)-
time algorithm to construct point-set embeddings of maximal outerplanar graphs.
Later, Bose [4] improved the running time of their algorithm to O(n log3 n) using a
dynamic convex hull data structure. In the same paper Bose posed an open problem
that asks to determine the time complexity of testing the point-set embeddability
for planar graphs. In 2006, Cabello [9] proved the problem to be NP-complete for
graphs that are 2-connected and 2-outerplanar. The problem remains NP-complete
for 3-connected planar graphs [19], even when the treewidth is constant [3].

In the last few years researchers have examined the point-set embeddability prob-
lem restricted to plane 3-trees (also known as stacked polytopes, Apollonian networks,
and maximal planar graphs with treewidth three) because of their wide range of ap-
plications in many theoretical and applied fields [1, 2, 14], e.g., in structure analysis
of polydisperse granular packings, as a model for porous media and for the analysis
of electrical supply systems. Nishat et al. [30] first gave an O(n2)-time algorithm
for deciding point-set embeddability of plane 3-trees, and proved an Ω(n logn)-time
lower bound. Later, Durocher et al. [21] and Moosa and Rahman [29] independently
improved the running time to O(n4/3+ε), for any ε > 0. Since Ω(n4/3) is a lower
bound on the worst-case time complexity for solving various geometric problems [22],
it may be natural to accept the possibility that the O(n4/3+ε)-time algorithm could
be asymptotically optimal. In fact, Moosa and Rahman mention that an o(n4/3)-time
algorithm seems unlikely using currently known techniques. However, in this paper
we prove that the Ω(n logn) lower bound is nearly tight, giving an O(n log3 n)-time
algorithm for deciding point-set embeddability of plane 3-trees.

Theorem 2.4 Let G be a plane 3-tree with n vertices and let S be a set of n points in

general position in R
2. We can decide in O(n log3 n) time and linear space, whether

G admits a point-set embedding on S and compute such an embedding if it exists.

Universal Point Set. Observe that a planar graph may not always admit point-set
embedding on a given point set. Attempts have been made at constructing a set
S of k ≥ n points such that every planar graph with n vertices admits a point-set
embedding on a subset of S [6, 12, 18, 23, 27]. Such a point set that supports all
planar graphs with n vertices is called a universal point set of size n. A long standing
open question in graph drawing asks to design a set of O(n) points that is universal
for all planar graphs with n vertices [6]. The best known upper bound on the size
of a universal point set is O(n2), which is implied by existing algorithms for drawing
planar graphs on an O(n) × O(n) integer grid [13, 33]. Recently, Everett et al. [23]
have designed a 1-bend universal point set Sn for planar graphs with n vertices, i.e.,

3

every planar graph with n vertices admits a straight-line drawing on Sn such that
each vertex is mapped to a distinct point and each edge is drawn as a chain of at
most two straight line segments.

The point-set embeddability problem seems to have close relation with the uni-
versal point set problem. Castañeda and Urrutia [10] proved that any set of n points
in general position is universal for all outerplanar graphs with n vertices. Later, Kauf-
mann and Wiese [26] proved that any set S of n points is 2-bend universal for n (i.e.,
every planar graph with n vertices admits a straight-line drawing on S such that each
vertex is mapped to a distinct point and each edge is drawn as a chain of at most three
straight line segments, as shown in Figures 1(d)–(e)). However, the area required for
the drawing could be exponential in W , where W is the length of the side of the
smallest axis-parallel square that encloses S. Di Giacomo and Liotta [16, Theorem 7]
showed that using the concept of monotone topological book embedding [15] one can
reduce the area requirement to O(W 3). Even when restricted to simpler classes of
graphs (e.g., series parallel graphs or plane 3-trees), the technique of Di Giacomo and
Liotta is the best known, which still requires O(W 3) area. In this paper, we contribute
a new technique that uses only O(W 2) area to compute 2-bend point set embeddings
of plane 3-trees, and hence also for partial plane 3-trees (e.g., series-parallel graphs
and Halin graphs).

Theorem 3.1 Given a plane 3-tree G with n vertices and a point set S of n points

in general position, we can compute a 2-bend point-set embedding of G in O(n log3 n)
time with O(W 2) area, where W is the length of the side of the smallest axis-parallel

square that encloses S.

Approximate Point-Set Embeddings. Although any set of n points in general
position is universal for n-vertex outerplanar graphs [10], a plane 3-tree with n ver-
tices may not admit a point-set embedding on a given set of n points [30]. On the
other hand, while allowing two bends per edge, any set of n points in general position
is 2-bend universal for plane 3-trees. Due to this apparent difficulty of defining algo-
rithms that simultaneously minimize area, the number of bends, and running time, we
consider algorithms that provide approximate solutions, that is, at least a fraction ρ
of the vertices of the input graph are mapped to distinct points of the given point set.
Specifically, let G be a plane graph and let Γ be a straight-line drawing of G. Let S
be a set of n points in general position. Then S(Γ) denotes the number of vertices in
Γ that are mapped to distinct points of S, e.g., see Figure 1(f). The optimal point-set

embedding of G is a straight-line drawing Γ∗ such that S(Γ∗) ≥ S(Γ′) for any straight-
line drawing Γ′ of G. A ρ-approximation point-set embedding algorithm computes a
straight-line drawing Γ of G such that S(Γ)/S(Γ∗) ≥ ρ. As opposed to embedding
only a subgraph of G (which could be highly disconnected and, therefore, significantly
easier to embed) the output is a straight-line planar embedding of the entire graph
G for which the fraction of the vertices of G drawn on points of S is optimized. This
distinction is important, since otherwise it would suffice to map the vertices of any
independent set of size n/4 onto S to achieve a constant-factor approximation.

We show that given a plane 3-tree G with n vertices, we can construct a straight-
line drawing Γ of G such that S(Γ) is Ω(

√
n), and hence the point-set embeddability is

approximable with factor Ω(1/
√
n) for plane 3-trees. Specifically, if the input points

are in general position, then we prove that the point-set embeddability of plane 3-trees
is approximable with factor Ω(1/

√
n).

Theorem 4.3 If the input points are in general position, then the point-set embed-

dability of plane 3-trees is approximable with factor Ω(1/
√
n).

4 Plane 3-trees: Embeddability & Approximation

2. Faster Point-Set Embeddings of Plane 3-Trees. Nishat et al. [30] gave
an O(n2) algorithm for deciding point-set embeddability of plane 3-trees. Recently,
Durocher et al. [21] and Moosa et al. [29] proposed different techniques to improve
the running time of the algorithm of Nishat et al. to O(n4/3+ε), for any ε > 0, using
a triangular range search data structure. We use the basic techniques of Nishat et
al.’s algorithm, but we do not use any range search data structure. Instead, we make
some simple but crucial observations that help exploit a dynamic convex hull data
structure to achieve even a faster algorithm. Our algorithm takes O(n log3 n) time to
decide point-set embeddability of plane 3-trees, and constructs the embedding within
the same time if such an embedding exists. Before going into details, we review a few
definitions.

A plane 3-tree G with n ≥ 3 vertices is a triangulated plane graph such that
if n > 3, then G contains a vertex whose deletion yields a plane 3-tree with n − 1
vertices. Let r, s, t be a cycle of three vertices in G. By Grst we denote the subgraph
induced by r, s, t and the vertices that lie interior to the cycle. Every plane 3-tree G
with n > 3 vertices contains a vertex that is the common neighbor of all the three
outer vertices of G. We call this vertex the representative vertex of G. Let p be the
representative vertex of G and let a, b, c be the three outer vertices of G in clockwise
order. Then each of the subgraphs Gabp, Gbcp and Gcap is a plane 3-tree. Let S be
a set of n points in the plane. Let p, q and r be three points that do not necessarily
belong to S. Then S(pqr) consists of the points of S that lie either on the boundary
or in the interior of the triangle pqr.

Overview of Known Algorithms. Let G be a plane 3-tree with n vertices, and let
a, b, c and p be the three outer vertices and the representative vertex of G, respectively.
Nishat et al. [30] used the following steps to compute a point-set embedding of G on
S.

Step 1. If the number of points on the boundary of the convex hull C of S is not
exactly three, then G does not admit a point-set embedding on S. Otherwise,
let x, y, z be the points on C.

Step 2. For each of the possible six different mappings of the outer vertices a, b, c to
the points x, y, z, execute Step 3.

Step 3. Let n1, n2 and n3 be the number of vertices of Gabp, Gbcp and Gcap, respec-
tively. Without loss of generality assume that the current mapping of a, b
and c is to x, y and z, respectively. Find the unique mapping of the repre-
sentative vertex p of G to a point w ∈ S such that the triangles xyw, yzw
and zxw contain exactly n1, n2 and n3 points, respectively. If no such map-
ping of p exists, then G does not admit a point-set embedding on S for the
current mapping of a, b, c; hence go to Step 2 for the next mapping. Oth-
erwise, recursively compute point-set embeddings of Gabp, Gbcp and Gcap on
S(xyw), S(yzw) and S(zxw), respectively. See Figures 2(a)–(d).

The time complexity of any algorithm that uses Steps 1–3 is dominated by the
cost of Step 3 and the bottleneck of this step is the recursive computation of the
valid mappings. Observe that the recurrence relation for the time taken in Step
3 is T (n) = T (n1) + T (n2) + T (n3) + T , where T denotes the time required to
find the mapping of the representative vertex. The algorithm of Nishat et al. [30]
preprocesses the set S in O(n2) time so that the computation for the mapping of
a representative vertex takes O(n) time. Hence T = O(n) and the overall time
complexity becomes O(n2). Moosa and Rahman [29] used a binary search technique

5

(a)

a

b

cp
h

ed
f

(d)(c)

a

b

c

(b)

p
a

b

c

e
f

h

d
p

Fig. 2. (a) A plane 3-tree G. (b) A point set S. (c)–(d) A valid mapping of the representative
vertex of G, and the recursive computation of the three subproblems.

with the help of a triangular range search data structure of Chazelle et al. [11] to
obtain T = min{n1, n2, n3} · n1/3+ε and T (n) = O(n4/3+ε). Durocher et al. [21] use
the same idea, but instead of a binary search they use a randomized search.

Embedding Plane 3-trees in O(n log3 n) time. We speed up the mapping of the
representative vertex as follows. We first select O(min{n1, n2, n3}) points interior to
the triangle xyz in O(min{n1 + n2, n2 + n3, n1 + n3} log2 n) time using a dynamic
convex hull data structure. We prove that these are the only candidates for the
mapping of the representative vertex. We then make some non-trivial observations to
test and compute a mapping for the representative vertex in O(min{n1, n2, n3}) time.
Hence we obtain T = O(min{n1 + n2, n2 + n3, n1 + n3} log2 n) and a running time
of T (n) = O(n log3 n), which dominates the O(n log2 n) time for building the initial
dynamic convex hull data structure.

In the following we use three lemmas to obtain our main result. Lemma 2.1
selects a region R containing the candidate points inside the triangle xyz. Lemma 2.2
reduces the problem of finding a mapping inside the triangle xyz to the problem
of finding a point satisfying specific criteria inside R. Lemma 2.3 gives an efficient
technique to find such a point. Finally, we use these lemmas to obtain a mapping for
the representative vertex in O(min{n1 + n2, n2 + n3, n1 + n3} log2 n) time.

Without loss of generality assume that n3 ≤ n2 ≤ n1. Observe that n1+n2+n3−
5 = n. Let S be a set of n points in general position such that the convex hull of S
contains exactly three points x, y, z on its boundary. Without loss of generality assume
that the vertices outer vertices a, b, c are mapped to the points x, y, z, respectively.

Let u and v be two points on the straight line segment xz such that |S(uxy)| =
n1−1 and |S(vzy)| = n2−1, as shown in Figure 3(a). Note that none of u and v belong
to S. It is straightforward to verify that if a valid mapping for the representative
vertex exists (i.e, there exists a point w ∈ S such that |S(wxy)| = n1, |S(wyz)| =
n2 and |S(wzx)| = n3), then the corresponding point (i.e., the point w) must lie
inside S(uvy). Let r and s be two points on the straight line segments uy and vy,
respectively, such that |S(rux)| = |S(svz)| = n3 − 1. We call the region defined by
the simple polygon x, u, v, z, s, y, r, x the region of interest. An example is shown in
Figures 3(b). The following lemma shows that the region of interest must contain the
edges corresponding to a valid mapping.

Lemma 2.1. If there exists a point w ∈ S that corresponds to a valid mapping

for the representative vertex of G, then the straight line segments wx,wy and wz lie

inside the region of interest R. Moreover, the number of points in R that belong to S
is O(n3), and the following properties hold.

(a) If the points s, y, z (respectively, points r, x, y) are distinct, then |S(syz)| =
n2 − n3 + 2 (respectively, |S(rxy)| = n1 − n3 + 2).

6 Plane 3-trees: Embeddability & Approximation

r

sn 2 1

1n 1

x

y

z

u

v
1n 3

1n 3

s

r
w

w
1

x

y

z

u

v

(a)

n 3

(b) (d)

x

y

z

(c)

x

y

z

Fig. 3. (a)–(b) Illustration for the lines uy, vy, xr and zs. The region of interest is shown in
gray. (c)–(d) Illustration for the proof of Lemma 2.1.

(b) Otherwise, point s (respectively, point r) coincides with y (respectively, y) and
|S(syz)| = 2 (respectively, |S(rxy)| = 2).

Proof. The point w must be in S(uvy). Otherwise, either |S(wxy)| < n1 or
|S(wyz)| < n2 holds, which implies that w does not correspond to a valid mapping.
We now claim that the straight line segments wx,wy and wz lie interior to R, as
shown in Figure 3(c). Since w ∈ S(uvy), the straight line segment wy must lie inside
R. Suppose for a contradiction that either one of wx,wz or both properly crosses
the boundary of R. In this situation S(wxz) must contain one of S(rux) and S(svz)
implying that |S(wxz)| > n3, as shown in Figure 3(d). Consequently, wx,wy and wz
must lie interior to R. By the construction of R, the number of points that lie on the
boundary and the interior of R is at most (n3 − 1) + 2(n3 − 1) = O(n3).

We now determine the value of |S(syz)|. If the points s, y, z are distinct, then
the triangle syz contains (n2 − 1)− (n3 − 1)− 1 points of S in its proper interior and
three points (i.e., y, z and the other point on line sz) of S on its boundary. Therefore,
|S(syz)| = n2 − n3 + 2. Otherwise, if s coincides with y, then n3 = n2 and S(syz)
consists of exactly two points of S, i.e., y and z. Since y and z are distinct, we are
only left with the case when s coincides with z. But this case does not arise since s
is a point of the segment yv, and v does not coincide with z since n ≥ 4 and n3 ≥ 3.
We can determine the value of |S(rxy)| in a similar way.

Let S′ ⊆ S be the set that consists of the points lying on the boundary of R
and the points lying in the proper interior of R. We call S′ the set of interest. By
Lemma 2.1, |S′| = O(n3). We reduce the problem of finding a valid mapping in S to
the problem of finding a point with certain properties in S′, as shown in the following
lemma.

Lemma 2.2. There exists a valid mapping for the representative vertex of G in

S if and only if there exists a point w′ ∈ S′ such that |S′(w′yz)| = n2 − |S(yzs)|+ 3,
|S′(w′xy)| = n1 − |S(xyr)| + 3 and |S′(w′xz)| = n3.

Proof. Assume that there exists a valid mapping for the representative vertex
of G in S and the point corresponding to the valid mapping is w. By Lemma 2.1,
w ∈ S′. We now prove that if we choose w = w′, then |S′(w′yz)|, |S′(w′xy)| and
|S′(w′xz)| must have the required number of points.

Observe that the number of points in the proper interior of triangle yzs is |S(yzs)|−
3. All the points on the boundary of yzs are also on the boundary of R. Since w corre-
sponds to a valid mapping in S, |S(wyz)| = n2. Consequently, |S′(w′yz)| = |S(wyz)|−
|S(yzs)|+ 3 = n2 − |S(yzs)|+ 3. We can prove that |S′(w′xy)| = n1 − |S(xyr)| + 3
and |S′(w′xz)| = n3 in a similar way.

Assume now that there exists a point w′ ∈ S′ such that |S′(w′yz)| = n2 −
|S(yzs)|+ 3, |S′(w′xy)| = n1 − |S(xyr)|+ 3 and |S′(w′xz)| = n3. We now prove that
|S(wyz)| = n2. Since the number of points in the proper interior of triangle yzs is

7

x

y

z

m

m m

(b)

x

y

z

m

(c)

x

y

z

mw

(a) (d)

x

y

z

m

w

Fig. 4. Illustration for the proof of Lemma 2.3, where {m,m′} ∩ S=Ø and {x, y, z, w}⊂S.

|S(yzs)| − 3, |S(wyz)| = |S′(w′yz)|+ |S(yzs)| − 3 = n2. Similarly, we can verify that
|S(wxy)| = n1 and |S(wyz)| = n3.

We can use the point w′ to define a partition of the set S′ into three sub-
sets S′(w′yz), S′(w′xy) and S′(w′xz), where the values |S′(w′yz)|, |S′(w′xy)| and
|S′(w′xz)| are fixed. In other words, w′ acts as a valid mapping for S′ with respect to
the values |S′(w′yz)|, |S′(w′xy)| and |S′(w′xz)|. Since a valid mapping is unique [30],
the point w′ must also be unique.

We call the point w′ the principal point of S′. Observe that this principal point
corresponds to the valid mapping of the representative vertex of G in S. We will use
the following lemma to efficiently find a valid mapping.

Lemma 2.3. Let S be a set of t ≥ 4 points in general position such that the convex

hull of S is a triangle xyz. Let i, j, k be three non-negative integers, where i ≥ 3, j ≥ 3
and k = t + 5 − i − j. Then we can decide in O(t) time whether there exists a point

w ∈ S such that |S(wxy)| = i, |S(wyz)| = j and |S(wxz)| = k, and compute such a

point if it exists.

Proof. Consider first a variation of the problem, where we want to construct
a point m 6∈ S interior to xyz such that |S(mxy)| = i + 1, |S(myz)| = j − 1 and
|S(mxz)| = k − 1. Steiger and Streinu [35] proved the existence of m and gave an
O(t)-time algorithm to find m. If there exists a point w ∈ S such that |S(wxy)| =
i, |S(wyz)| = j and |S(wxz)| = k, then it is straightforward to observe that there
exists a point m 6∈ S interior to xyz such that |S(mxy)| = i+1, |S(myz)| = j− 1 and
|S(mxz)| = k − 1. We now prove that the existence of m implies a unique partition
of S. Hence we can efficiently test whether w exists.

We claim that if there exists a pointm′ 6= m, wherem′ 6∈ S, such that |S(m′xy)| =
i + 1, |S(m′yz)| = j − 1 and |S(m′xz)| = k − 1, then the sets S(m′xy), S(m′yz) and
S(m′xz) must coincide with the sets S(mxy), S(myz) and S(mxz). To verify the
claim assume without loss of generality that m′ ∈ S(myz). Since the triangle m′yz
lies interior to the triangle myz, the sets S(m′yz) and S(myz) must be identical. On
the other hand, either the trianglemxz lies interior to the trianglem′xz, or the triangle
mxy lies interior to the triangle m′xy, as shown in Figures 4(a)–(b). Therefore, either
the sets S(mxz) and S(m′xz), or the sets S(mxy) and S(m′xy) must be identical.
Consequently, the remaining pair of sets must also be identical.

Observe that if the point w ∈ S we are looking for exists, then w must lie
interior to S(mxy), as shown in Figure 4(c). Otherwise, if w ∈ S(myz) (respec-
tively, w ∈ S(mxz)), then |S(myz)| ≥ |S(wyz)| = j (respectively, |S(mxz)| ≥
|S(wxz)| = k), which contradicts our initial assumption that |S(myz)| = j − 1 (re-
spectively, |S(mxz)| = k − 1). Figure 4(d) depicts such a scenario. If w exists,
then the convex hull of S(mxy) must be a triangle xym′′, where m′′ ∈ S(mxy). If
|S(m′′xy)| = i, |S(m′′yz)| = j and |S(m′′xz)| = k, then m′′ is the required point w.

8 Plane 3-trees: Embeddability & Approximation

Otherwise, no such w exists.

We can test whether the convex hull of S(mxy) is a triangle in O(t) time (e.g.,
find the leftmost point a, the rightmost point b and the point c with the largest
perpendicular distance to the line determined by the line segment ab, and then test
whether triangle abc contains all the points). It is also straightforward to compute
the values |S(m′′xy)|, |S(m′′yz)| and |S(m′′xz)| in O(t) time.

Given the set of interest S′ ⊆ S, we use Lemmas 2.2 and 2.3 to find the principal
point w′ ∈ S′ in O(n3) time. Observe that this principal point corresponds to the
valid mapping of the representative vertex of G in S. We now show how to compute
the set S′ in O((n2 + n3) log

2 n) time using the dynamic planar convex hull data
structure of Overmars and van Leeuwen [31], which supports a single update (i.e., a
single insertion or deletion) in O(log2 n) time. We refer the reader to Figures 3(a)–(b)
to recall the definition of the region of interest.

Step A. Assume that the points of S are placed in a dynamic convex hull data
structure D. We repeatedly delete the neighbor of y on the boundary of
the convex hull of S starting from z in anticlockwise order. After deleting
n2 − 2 points, we insert all the deleted points into a new dynamic convex
hull data structure D′. We then insert a copy of y into D′. Recall u and v
from Figure 3(b). Observe that all the points of S(vyz) are placed in D′. In a
similar way we construct another dynamic convex hull data structure D′′ that
maintains all the points of S(uvy). Consequently, D now only maintains the
points of S(uxy). Since a single insertion or deletion takes O(log2 n) time, all
the above O(n2 + n3) insertions and deletions take O((n2 + n3) log

2 n) time
in total.

Step B. We now construct two other dynamic convex hull data structures D1 and
D2 using D and D′ such that they maintain the points of S(rux) and S(svz),
respectively. Since |S(rux)|+ |S(svz)| = O(n3), this takes O(n3 log

2 n) time.

Step C. We construct the point set S′ using the points maintained in D′′,D1 and
D2, which also takes O(n3 log

2 n) time. In similar way we can restore the
original point set S and the initial data structure D in O((n2 + n3) log

2 n)
time.

The time for the construction of S′ using Steps A–C is O((n2 + n3) log
2 n), which

dominates the time required for the computation of the valid mapping of the repre-
sentative vertex p. Let w be the point that corresponds to the valid mapping. We now
need to construct the point sets S(wxy), S(wyz) and S(wzx) for recursively testing
the point-set embeddability of Gabp, Gbcp and Gcap, respectively. We can construct
S(wxy), S(wyz) and S(wzx) and their corresponding dynamic convex hull data struc-
tures in O((n2 + n3) log

2 n) time as follows. Let l be the point of intersection of the
infinite straight lines determined by the line segments wy and xz. First construct
the set S(lyz) and then modify it to obtain the sets S(wyz) and S(lwz), which takes
O((n2+n3) log

2 n) time. Now modify the set S(lxy) to construct the set S(lwx), and
then use the sets S(lwx) and S(lwz) to construct S(wxz), which takes O(n3 log

2 n)
time. Observe that after the modification of the set S(lxy), we are left with the set
S(wxy).

We now show that the total time taken is T (n) ≤ dn log3 n, for some constant d,
as follows. There exists c > 0 such that for all d ≥ c,

9

T (n) = T (n1) + T (n2) + T (n3) +O((n2 + n3) log
2 n)

≤ dn1 log
3 n1 + dn2 log

3 n2 + dn3 log
3 n3 + c(n2 + n3) log

2 n

≤ dn1 log
3 n+ dn2 log

2 n log n
2
+ dn3 log

2 n log n
2
+ c(n2 + n3) log

2 n

= dn1 log
3 n+ dn2 log

2 n(logn− 1) + dn3 log
2 n(log n− 1) + c(n2 + n3) log

2 n

= d(n1 + n2 + n3) log
3 n− (d− c)(n2 + n3) log

2 n

≤ dn log3 n.

Observe that the construction of the initial data structure D takes O(n log2 n) time,
which is dominated by T (n). The dynamic planar convex hull of Brodal and Jacob [8]
takes amortized O(log n) time per update. Therefore, using their data structure in-
stead of Overmars and van Leeuwen’s data structure [31] we can improve the expected
running time of our algorithm. Since the algorithms of [31, 35] take linear space, the
space complexity of our algorithm is O(n).

Theorem 2.4. Given a plane 3-tree G with n vertices and a set S of n points

in general position in R
2, we can decide the point-set embeddability of G on S in

O(n log3 n) time and O(n) space, and compute such an embedding if it exists.

Our algorithm could be easily adapted to the case when the input points are not
in general position, provided that the algorithms of Overmars and van Leeuwen [31]
and Steiger and Streinu [35] can handle degenerate cases.

3. Universal Point Set for Plane 3-Trees. In this section we give an algo-
rithm to compute 2-bend point-set embeddings of plane 3-trees on a set of n points
in general position in O(W 2) area, where W is the length of the side of the smallest
axis-parallel square that encloses S.

We describe an outline of the algorithm. Given a plane 3-treeG and a set of points
S in general position, we first construct a straight-line drawing Γ of G such that every
point of S other than a pair of points on the convex hull of S lies in the proper interior
of some distinct inner face in Γ, as shown in Figure 5(c). While constructing Γ, we
compute a bijective function φ from the vertices of Γ to the points of S. We then
extend each edge (u, v) in Γ using two bends to place the vertices u and v onto the
points φ(u) and φ(v), respectively, as shown in Figure 5(d). We prove that Γ and φ
maintain certain properties so that the resulting drawing Γ′ remains planar.

In the following we describe the algorithm in detail. Let H be the convex hull of
S. Construct a triangle xyz with O(W 2) area such that xyz encloses H and the side
yz passes through a pair of consecutive points y′, z′ on the boundary of H . Assume
that y′ is closer to y than z′. Set φ(y) = y′ and φ(z) = z′. Set φ(x) = x′, where
x′ is the point on the convex hull of S(xyz) for which the angle ∠xyx′ is smallest.
Figure 5(e) illustrates the triangle xyz and the function φ. We call the straight line
segments xφ(x), yφ(y), zφ(z) the wings of xyz. Observe that only xφ(x) among the
three wings of xyz lie in the proper interior of xyz. We use this invariant throughout
the algorithm, i.e., every face f in the drawing will contain at most one wing that is
in the proper interior of f . We call such a wing the major wing of f .

Let a, b, c be the outer vertices of G in anticlockwise order and let p be the
representative vertex of G. Map the vertices a, b, c to the points x, y, z. Let S \
{x′, y′, z′} be the point set S′. Let n̂1, n̂2 and n̂3 be the number of inner vertices of
Gabp, Gbcp and Gcap, respectively. Since the major wing of xyz is incident to x, we
compute a point w 6∈ S such that S′(wxy) = n̂1, S

′(wyz) = n̂2+1 and S′(wxz) = n̂3,

10 Plane 3-trees: Embeddability & Approximation

as shown in Figure 5(e). Steiger and Streinu [35] proved that such a point always
exists and gave an O(|S′|)-time algorithm to find w. Since the angle ∠xyφ(x) is the
smallest, if wy or wz intersects xφ(x), then by continuity there must exist another
point w̄ on the line wz such that S′(w̄xy) = n̂1, S

′(w̄yz) = n̂2 + 1, S′(w̄xz) = n̂3

hold, and we choose w̄ as the point w. Figures 5(f)–(g) depict such scenarios. Note
that xφ(x) now lies either in the triangle wxy or wxz. Set φ(w) = w′, where w′ is
the point on the convex hull of S′(wyz) for which the angle ∠wyw′ is smallest. Since
wyz does not contain xφ(x), the mapping we compute maintains the invariant that
every face contains at most one major wing.

w w

ww v()

Pv

y etet1e
2e

3e

1e
2e

3e

z()= z

x()= x

v()

e

a

b c
p

d
f

y

x

w

x

w
C

m

E

v

u

(i)(h)(g)(f)

x

y

z

()=

p
b

c

a

d e

a

b

c

p

d e

(e)

(b)

(c) (d)

(a)

f
f

y

zyz

w

Fig. 5. (a) A plane 3-tree G. (b) A set of points S. (c) Γ and φ, where φ is illustrated with
dashed lines. (d) A 2-bend point-set embedding of G on S. (e) Illustration for the triangle xyz.
(f)–(g) Construction of w and φ(w), where φ(w) = w′ is shown in white and the convex hull of
S(xyz) is shown in gray. (h) The region R and ellipse E, where R is shown in gray. (i) Illustration
for Pv.

We now recursively construct the drawings of Gabp, Gbcp and Gcap with the point
sets S′(xyw), S′(yzw) \ w′ and S′(zxw), respectively. Note that while recursively
constructing a point w for the representative vertex inside some triangle xyz, then
the triangle may not have any major wing. Also in this case, it suffices to compute w
such that S′(wxy) = n̂1, S

′(wyz) = n̂2+1 and S′(wxz) = n̂3 holds. Once we complete
the recursive computation, we obtain a straight-line drawing Γ of G, and a bijective
function φ from the vertices of Γ to the points of S. The idea now is to extend each
edge (u, v) in Γ using two bends to place the vertices u and v onto the points φ(u) and
φ(v), respectively. We use φ and the property that every face in Γ contains at most
one major wing, to maintain planarity. We now describe the construction details.

For each vertex v in Γ we do the following. Let e1, e2, . . . , et be the edges adjacent
to v in clockwise order such that e1 and et form the smallest angle that contains φ(v).
Construct a strictly convex polygon Pv = φ(v), v1, v2, . . . , vt, where vi, 1 ≤ i ≤ t, is
a point on ei and no point of S other than φ(v) lie inside the polygon. Now delete
the straight line segments vvi and draw the segments φ(v)vi, as shown in Figure 5(i).
Since every face in Γ contains at most one major wing, we can construct the Pvs such
that for two different vertices v1 and v2 in Γ, the corresponding convex polygons Pv1

and Pv2 are disjoint. Later in this section, we precisely describe such a construction

11

for Pvs.
We claim that the resulting drawing Γ′ is a 2-bend point-set embedding of G

on S. Since every edge in Γ has only two endpoints, the corresponding edge e in Γ′

has exactly two bends. Since φ is a bijective function, e does not create any loop in
Γ′. It now suffices to prove that Γ′ is a planar drawing of G. Observe that Γ is a
planar straight-line drawing. Therefore, if Γ′ is not a planar drawing, then either two
of the newly added segments properly intersect (Case 1), or a newly added segment
intersects an old segment that originally belongs to Γ (Case 2). Case 1 cannot happen
since all Pvs are disjoint. Case 2 cannot appear since every newly added segment lie
in some convex polygon Pv that does not contain any old segment in Γ′.

We can construct Γ in O(n log3 n) time with a similar technique as in Section 2.
We now describe how to construct Γ′ from Γ in O(n logn) time. Let S be a set that
consists of the points corresponding to the vertices in Γ and the points that belong
to S. Let η be the Euclidean distance between the closest pair of points in S. We
can compute η in O(n logn) time [34]. For each vertex v in Γ, we now construct the
convex polygon Pv in O(deg(v)) time as follows.

Let C be the circle centered at v with radius η/2. Assume that e1 = (u, v), and
m is the intersection point of edge et and the line determined by u, φ(v). Let R be
the region determined by the union of C and the triangle uvm. Consider now an
ellipse E with foci v and φ(v) such that the half of the ellipse (determined by the
minor axis of E) that contains v lies interior to R. We can always find such an ellipse
since a straight line segment can be viewed as a degenerate case of an ellipse. We now
define v1, v2, . . . , vt as the intersection points of E with e1, e2, . . . , et, respectively, as
shown in Figures 5(h)–(i). Since R does not contain any point of S other than φ(v),
the polygon Pv = φ(v), v1, v2, . . . , vt does not contain any point of S other than φ(v).
Since every face in Γ contains at most one major wing and C is a circle with radius
η/2, any two Pvs must be disjoint.

Consequently, the algorithm takes O(n log3 n) + O(n logn) +
∑

∀v O(deg(v)) =
O(n log3 n) time. The following theorem summarizes the results of this section.

Theorem 3.1. Given a plane 3-tree G with n vertices and a point set S of

n points in general position, we can compute a 2-bend point-set embedding of G in

O(n log3 n) time with O(W 2) area, where W is the length of the side of the smallest

axis-parallel square that encloses S.

4. Approximate Point-Set Embeddings. Let Γ be a straight-line drawing
of G. Then S(Γ) denotes the number of vertices in Γ that are mapped to distinct
points of S. The optimal point-set embedding of G is a straight-line drawing Γ∗

such that S(Γ∗) ≥ S(Γ′) for any straight-line drawing Γ′ of G. A ρ-approximation
point-set embedding algorithm computes a straight-line drawing Γ of G such that
S(Γ)/S(Γ∗) ≥ ρ. In this section we show that given a plane 3-tree G with n vertices,
we can construct a straight-line drawing Γ of G such that S(Γ) = Ω(

√
n), and hence

point-set embeddability is approximable with factor Ω(1/
√
n) for plane 3-trees.

We first introduce a few more definitions. Let G be a plane 3-tree with the outer
vertices a, b, c and representative vertex p, and let the number of vertices of G be n.
Then the representative tree Tn−3 of G satisfies the following conditions [30].

(a) If n = 3, then Tn−3 is empty.
(b) If n = 4, then Tn−3 consists of a single vertex.
(c) If n > 4, then the root p of Tn−3 is the representative vertex of G and the

subtrees rooted at the three counter-clockwise ordered children p1, p2 and p3
of p in Tn−3 are the representative trees of Gabp, Gbcp and Gcap, respectively.

12 Plane 3-trees: Embeddability & Approximation

Since a rooted tree with n nodes is a partially ordered set under the ‘successor’
relation, by Dilworth’s theorem [17], either the height or the number of leaves in the
tree is at least

√
n. Let G be the input plane 3-tree with n vertices and let T be its

representative tree with n− 3 vertices [30].

If T has Ω(
√
n) leaves, then we use the technique of Theorem 3.1 to have a

straight-line drawing Γ of G such that S(Γ) = Ω(
√
n) as follows. Find a straight-line

drawing of G and the bijective function φ, as shown in Figure 5(c). Observe that
the leaves of T (i.e., the inner vertices of degree three in G) correspond to distinct
K4s in the drawing, and hence we can place each leaf l to the point φ(l) avoiding any
edge crossing. Otherwise, the height of T is Ω(

√
n). In this case we prove that G has

a ‘canonical ordering tree’ (also, called Schnyder’s realizer [33]) with height Ω(
√
n),

as shown in Lemma 4.1. We then show (in Lemma 4.2) a simple way to compute a
straight-line drawing Γ of G such that S(Γ) = Ω(

√
n).

Before proving Lemmas 4.1 and 4.2 we recall the definition of canonical ordering.
Let G be a triangulated plane graph with the outer vertices x, y and z in clockwise
order on the outer face. Let π = (u1(= x), u2(= z), ..., un(= y)) be an ordering
of all vertices of G. By Gk, 3 ≤ k ≤ n, we denote the subgraph of G induced by
{u1, u2, ..., uk} and by Ck the outer cycle (i.e., the boundary of the outer face) of Gk.
We call π a canonical ordering of G with respect to the outer edge (x, z) if for each
index k, 3 ≤ k ≤ n, the following conditions are satisfied [13].

(a) Gk is 2-connected and internally triangulated.
(b) If k+ 1 ≤ n, then uk+1 is an outer vertex of Gk+1 and the neighbors of uk+1

in Gk appears consecutively on Ck.

Assume that for some k ≥ 3, the outer cycle Ck is w1(= x), . . . , wp, wq(= uk), wr . . . , wt(=
z), where the vertices appear in clockwise order on Ck. Then we call the edges (wp, uk)
and (uk, wr) the left-edge and the right-edge of uk, respectively. Let E

∗ be the set of
edges that does not belong to any Ck, 3 ≤ k ≤ n. Then the graph induced by the
edges in E∗ is a tree. The graph induced by the right-edges (respectively, left-edges)
of the vertices uk, 3 ≤ k ≤ n− 1, is also a tree. These three trees form the Schnyder’s

realizer of G, and each of them is known as a canonical ordering tree of G.

Lemma 4.1. Let G be a plane 3-tree and let T be its representative tree. If the

height of the representative tree is Ω(
√
n), then G has a canonical ordering tree with

height Ω(
√
n).

Proof. Let P = (v1, v2, . . . , vk), k = Ω(
√
n), be the longest path from the root v1

of T to some leaf vk. Without loss of generality assume that k is even. By Gi, where
1 ≤ i ≤ k, we denote the plane 3-tree induced by the outer vertices of G and the
vertices v1, v2, . . . , vi. We now incrementally construct Gk. First construct a triangle
xyz, place the vertex v1 interior to xyz and add the segments v1x, v1y, v1z. Since
v2 is a child of v1, v2 must be placed interior to one of the triangles incident to v1.
Since vi+1, where i + 1 ≤ k, is a child of vi, this condition holds throughout the
construction. Let Tx, Ty, Tz be the trees of the Schnyder’s realizer rooted at x, y, z,
respectively. Figure 6(a) illustrates the realizer of G2, where the heights of Tx, Ty

and Tz are one, one and two, respectively. By A and B we denote the rooted trees
isomorphic to Tx and Tz in G2, respectively. The nodes of Tw, w ∈ {x, y, z}, where
the realizer grows while adding vi+1 to Gi, i ≥ 2, are called the connectors of Tw in
Gi. Figures 6(e)–(g) illustrate all possible ways to insert v3, and show the vertices
where the realizer Ty can grow in gray. Here the realizer grows only at the vertices y
and v2, and hence these are the connectors for Ty while adding v3 to G2. Figure 6(b)
illustrates the connectors for every Tw in gray.

13

Consider now the steps when we obtain the graphs G2, G4, G6, . . . , Gk. Observe
that each time some tree of the form A (or B) gets connected with some Tw, w ∈
{x, y, z}, of Gi, the connectors of A (or B) become the only connectors of Tw in Gi+2.
We describe this scenario with an example of G4, as shown in Figure 6(c). Figure 6(d)
shows the connectors of Tx, Ty and Tz in gray. The tree Tx consists of two trees: one is
of the form A and the other is of the form B, where the root of B coincides with some
connector of A (i.e., v2). Since the subsequent vertex v5 must lie inside the triangle
yv1v3, the connectors of B become the only connectors of Tx in G4. Similarly, we can
verify this condition for Ty and Tz.

Consequently, each time some tree of the form B gets connected with some
Tw, w ∈ {x, y, z}, of Gi, the height of Tw increases by one in Gi+2. Since we need k/2
steps before we obtain Gk, one of Tx, Ty or Tz must have height at least k/6 = Ω(

√
n).

Since each tree of the Schnyder’s realizer of Gk is a subtree of a distinct tree of the
Schnyder’s realizer of G, the proof is complete.

v1
v2

v2 v1

v1

v2 v1

v2v1 v3
v4

v2
v3

v4

v1
v1

v4 v2
v3v2

v3

v4

v1
v2

A

y

(f)

v1
v2

y

x z

v1
v2

(g)

y

x z

v1

v2

(e)

y

x z

v3
v3

v3

(a)

x

y

z

(b) (c)

A B

z y

zx AB

A A
yx zB

A

(d)

x

(d)

Fig. 6. (a) Illustration for G2, where each edge of Tx, Ty and Tz is shown in one, two and
three parallel lines, respectively. (b) Illustration for the connectors, shown in gray. (c)–(d) Example
of a connection of A,A,B with B,A,A, respectively. (e)–(g) Illustration for the connectors of Ty

by considering the possible insertions of v3 in G2.

Lemma 4.2. Let G be a plane 3-tree with n vertices and let S be a set of n or

more points in general position. If G contains a canonical ordering tree T with height

k, then G admits a straight-line drawing Γ such that S(Γ) = k.
Proof. We prove the lemma using an induction on the number of vertices n of

G. The case when n ≤ 4 is straightforward. We assume that the lemma holds for
all plane 3-trees with fewer than n vertices, and now consider the case when G has n
vertices.

Let P = (v1, v2, . . . , vk), be the longest path from the root v1 of T to some leaf vk.
Let p1, p2, . . . , pk be k points of S in decreasing order of their y-coordinates. Let C
be a polygonal chain that consists of the straight-line segments pi, pi+1, 1 ≤ i ≤ k−1.

We now construct a triangle xyz such that x = p1, and all the points of the
chain C are visible to both y and z, i.e., the straight-lines from the points of C to the
point y or z do not cross any segment of C, as illustrated in Figure 7. Let a, b, c be
the outervertices of G and let p be the representative vertex of G. Without loss of
generality assume that T is rooted at b.

If the edge (b, p) is not contained in the path P , then without loss of generality

14 Plane 3-trees: Embeddability & Approximation

assume that (b, p) is an inner edge of Gbcp. We now find a point w interior to the
triangle xyz such that the distance between w and y is very small and all the points of
C are visible to w. We then construct a straight-line drawing of Gabp and Gcap interior
to the triangles xyw and yzw. By induction, Gbcp admits a straight-line drawing Γ′

interior to zxw such that S(Γ′) = k. See Figures 7(b)–(c).
Otherwise, the path P contains the edge (b, p). In this case we choose w = p2.

We then construct a straight-line drawing of Gabp and Gbcp interior to the triangles
xyw and zxw. By induction, Gcap admits a straight-line drawing Γ′ interior to yzw
such that S(Γ′) = k − 1. See Figures 7(d)–(e).

(d)

b

a c

p
y

z

x

(e)

y

z

x

(c)

w

w

y

z

x

(a) (b)

b

a c

p

Fig. 7. Illustration for the proof of Lemma 4.2. The points of S are shown in gray.

The following theorem summarizes the result of this section.
Theorem 4.3. Given a plane 3-tree G with n vertices and a point set S of n

points in general position in R
2, we can compute a straight-line drawing Γ of G in

polynomial time such that the number of vertices in Γ that are mapped to distinct

points of S is 1/(6
√
n) times to the optimal. Hence the point-set embeddability of

plane 3-trees is approximable with factor Ω(1/
√
n).

Observe that we can use the technique of Theorem 3.1 to have a 1-bend straight-
line drawing of G that uses n/4 distinct points of S (e.g., choose an independent set
of n/4 vertices and place those vertices on n/4 distinct points of S determined by φ
using at most one bend per edge). Consequently, 1-bend point-set embeddability is
approximable with at least factor 0.25 for plane 3-trees.

5. Conclusion. Using techniques that are completely different from those used
in the previously best known approaches for testing point-set embeddability of plane
3-trees (achieving O(n4/3+ε) time and O(n4/3) space), in Section 2 we described an
algorithm that solves the problem for a given plane 3-tree in O(n log3 n) time using
O(n) space. As suggested by an anonymous reviewer, one possibility for potentially
reducing the running time further might be to apply the algorithm of Moosa and
Rahman [29], where an orthogonal range search would be used instead of a triangular
range search. Specifically, given points x and y and an integer k, a triangle wxy
that contains k points can be found by encoding each point w using two values: the
slopes of wx and wy. The triangle wxy is then mapped to a two-sided axis-aligned
orthogonal range query. It is not obvious, however, how this technique would be
applied in recursive levels. One possibility might be to use a dynamic orthogonal
range counting data structure. A natural optimization question in this direction is as
follows.

15

Open Question 1. Given a plane 3-tree G with n vertices and a set S of n points

in general position, how fast can we compute a straight-line embedding of G such that

the number of vertices placed on the points of S is maximized?

In Section 3 we proved that every plane 3-tree admits a 2-bend point-set embed-
ding on any set of n points in general position in O(W 2) area. An important issue
here is to examine the amount of scale up required to ensure that the vertices and
bend points of the drawings produced in Section 3 lie on integer coordinates, i.e.,
the area requirement under minimum resolution assumption. While our result holds
for partial plane 3-trees, one may try to characterize the graphs that admit 2-bend
point-set embeddings in small area.

Open Question 2. Characterize the planar graphs with n vertices that admit 2-bend
point-set embeddings on any set of n points in general position in O(W 2) area, where
W is the length of the side of the smallest axis parallel square that encloses the given

point set.

In Section 4 we proved that the point-set embeddability problem (respectively, the
1-bend point-set embeddability problem) is approximable with factor at least Ω(1/

√
n)

(respectively, 0.25) for plane 3-trees within O(n log3 n) time, which motivates us to
ask the following question.

Open Question 3. Design an o(n2)-time algorithm that can approximate point-set

embeddability for plane 3-trees with a constant factor, or prove that no such algorithm

exists.

Acknowledgement. We thank Valentin Polishchuk and the other anonymous
reviewers for many constructive and helpful comments.

REFERENCES

[1] José S. Andrade, Jr., Hans J. Herrmann, Roberto F. S. Andrade, and Luciano R.

da Silva, Apollonian networks: Simultaneously scale-free, small world, euclidean, space
filling, and with matching graphs, Physical Review Letters, 94 (2005).

[2] Reza Mahmoodi Baram, Polydisperse Granular Packings and Bearings, PhD thesis, Univer-
sity of Stuttgart, Germany, 2005.

[3] Therese Biedl and Martin Vatshelle, The point-set embeddability problem for plane graphs,
in Proc. of the 28th Annual Symposium on Computational geometry (SoCG), ACM, 2012,
pp. 41–50.

[4] Prosenjit Bose, On embedding an outer-planar graph in a point set, Comput. Geom., 23
(2002), pp. 303–312.

[5] Prosenjit Bose, Michael McAllister, and Jack Snoeyink, Optimal algorithms to embed
trees in a point set, J. Graph Algorithms Appl., 1 (1997), pp. 1–15.

[6] Franz J. Brandenburg, David Eppstein, Michael T. Goodrich, Stephen G. Kobourov,

Giuseppe Liotta, and Petra Mutzel, Selected open problems in graph drawing, in Proc.
of the 11th International Symposium on Graph Drawing (GD), vol. 2912 of LNCS, Springer,
2004, pp. 515–539.

[7] Peter Brass, Eowyn Cenek, Christian A. Duncan, Alon Efrat, Cesim Erten, Dan

Ismailescu, Stephen G. Kobourov, Anna Lubiw, and Joseph S. B. Mitchell, On
simultaneous planar graph embeddings, Comput. Geom., 36 (2007), pp. 117–130.

[8] Gerth Stølting Brodal and Riko Jacob, Dynamic planar convex hull, in Proc. of the 43rd
Annual Symposium on Foundations of Computer Science (FOCS), IEEE, 2002, pp. 617–
626.

[9] Sergio Cabello, Planar embeddability of the vertices of a graph using a fixed point set is
NP-hard, J. Graph Algorithms Appl., 10 (2006), pp. 353–363.

[10] Netzahualcoyotl Castañeda and Jorge Urrutia, Straight line embeddings of planar graphs
on point sets, in Proc. of CCCG, 1996, pp. 312–318.

[11] Bernard Chazelle, Micha Sharir, and Emo Welzl:, Quasi-optimal upper bounds for sim-
plex range searching and new zone theorems, Algorithmica, 8 (1992), pp. 407–429.

16 Plane 3-trees: Embeddability & Approximation

[12] Marek Chrobak and Howard J. Karloff, A lower bound on the size of universal sets for
planar graphs, SIGACT News, 20 (1989), pp. 83–86.

[13] Hubert de Fraysseix, János Pach, and Richard Pollack, How to draw a planar graph on
a grid, Combinatorica, 10 (1990), pp. 41–51.

[14] Eric D. Demaine and André Schulz, Embedding stacked polytopes on a polynomial-size grid,
in Proc. of the 22nd Annual ACM-SIAM symposium on Discrete Algorithms (SODA),
ACM, 2011, pp. 77–80.

[15] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Stephen K. Wismath, Curve-
constrained drawings of planar graphs, Comput. Geom., (2005), pp. 1–23.

[16] Emilio Di Giacomo and Giuseppe Liotta, The Hamiltonian augmentation problem and its
applications to graph drawing, in Proc. of the 4th Workshop on Algorithms and Compu-
tation (WALCOM), vol. 5942, Springer, 2010, pp. 35–46.

[17] Robert P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math., 51
(1950), pp. 161–166.

[18] Vida Dujmović, William Evans, Sylvain Lazard, William Lenhart, Giuseppe Liotta,

David Rappaport, and Stephen K. Wismath, On point-sets that support planar graphs,
Comput. Geom., (2012).

[19] Stephane Durocher and Debajyoti Mondal, On the hardness of point-set embeddability,
in Proc. of the 6th International Workshop on Algorithms and Computation (WALCOM),
vol. 7157 of LNCS, Springer, 2012, pp. 148–159.

[20] , Plane 3-trees: Embeddability & approximation (extended abstract), in Proc. of the 13th
International Symposium on Algorithms and Data Structures (WADS), vol. 8037, Springer,
2013, pp. 291–303.

[21] Stephane Durocher, Debajyoti Mondal, Rahnuma Islam Nishat, Md. Saidur Rahman,

and Sue Whitesides, Embedding plane 3-trees in R
2 and R

3, in Proc. of the 19th Inter-
national Symposium on Graph Drawing (GD), vol. 7034 of LNCS, Springer, 2012.

[22] Jeff Erickson, On the relative complexities of some geometric problems, in Proc. of the 7th
Canadian Conference on Computational Geometry (CCCG), 1995, pp. 85–90.

[23] Hazel Everett, Sylvain Lazard, Giuseppe Liotta, and Stephen K. Wismath, Univer-
sal sets of n points for one-bend drawings of planar graphs with n vertices, Discrete &
Computational Geometry, 43 (2010), pp. 272–288.

[24] Yoshiko Ikebe, Micha A. Perles, Akihisa Tamura, and Shinnichi Tokunaga, The rooted
tree embedding problem into points in the plane, Discrete & Comp. Geometry, 11 (1994),
pp. 51–63.

[25] Bastian Katz, Marcus Krug, Ignaz Rutter, and Alexander Wolff, Manhattan-geodesic
embedding of planar graphs, in Proc. of the 17th International Symposium on Graph Draw-
ing (GD), vol. 5849 of LNCS, Springer, 2010, pp. 207–218.

[26] Michael Kaufmann and Roland Wiese, Embedding vertices at points: Few bends suffice for
planar graphs, J. Graph Algorithms Appl., 6 (2002), pp. 115–129.

[27] Maciej Kurowski, A 1.235 lower bound on the number of points needed to draw all n-vertex
planar graphs, Information Processing Letters, 92 (2004), pp. 95–98.

[28] Debajyoti Mondal, Embedding a planar graph on a given point set, master’s thesis, University
of Manitoba, Canada, 2012.

[29] Tanaeem Md. Moosa and Md. Sohel Rahman, Improved algorithms for the point-set embed-
dability problem for plane 3-trees, in Proc. of the 17th Annual International Conference on
Computing and Combinatorics (COCOON), vol. 6842, Springer, 2011, pp. 204–212.

[30] Rahnuma Islam Nishat, Debajyoti Mondal, and Md. Saidur Rahman, Point-set embed-
dings of plane 3-trees, Comput. Geom., 45 (2012), pp. 88–98.

[31] Mark H. Overmars and Jan van Leeuwen, Maintenance of configurations in the plane,
Journal of Computer and System Sciences, 23 (1981), pp. 166–204.

[32] János Pach and Rephael Wenger, Embedding planar graphs at fixed vertex locations, Graphs
Combin., 17 (2001), pp. 717–728.

[33] Walter Schnyder, Embedding planar graphs on the grid, in Proc. of the 1st Annual ACM-
SIAM symposium on Discrete algorithms (SODA), ACM, 1990, pp. 138–148.

[34] Michael Ian Shamos and Dan Hoey, Closest-point problems, in Proc. of the 16th Annual
Symposium on Foundations of Computer Science (FOCS), IEEE, 1975, pp. 151–162.

[35] William L. Steiger and Ileana Streinu, Illumination by floodlights, Comput. Geom., 10
(1998), pp. 57–70.

[36] Roberto Tamassia, Giuseppe Di Battista, and Carlo Batini, Automatic graph drawing
and readability of diagrams, IEEE Transactions on Systems, Man and Cybernetics, 18
(1988), pp. 61–79.

