RELATING GRAPH THICKNESS TO PLANAR LAYERS AND BEND COMPLEXITY*

STEPHANE DUROCHER† AND DEBAJYOTI MONDAL‡

Abstract. The thickness of a graph \(G = (V,E) \) with \(n \) vertices is the minimum number of planar subgraphs of \(G \) whose union is \(G \). A polyline drawing of \(G \) in \(\mathbb{R}^2 \) is a drawing \(\Gamma \) of \(G \), where each vertex is mapped to a point and each edge is mapped to a polygonal chain. Bend and layer complexities are two important aesthetics of such a drawing. The bend complexity of \(\Gamma \) is the maximum number of bends per edge in \(\Gamma \), and the layer complexity of \(\Gamma \) is the minimum integer \(r \) such that the set of polygonal chains in \(\Gamma \) can be partitioned into \(r \) disjoint sets, where each set corresponds to a planar polyline drawing. Let \(G \) be a graph of thickness \(t \). By Fáry’s theorem, if \(t = 1 \), then \(G \) can be drawn on a single layer with bend complexity 0. A few extensions to higher thickness are known, e.g., if \(t = 2 \) (resp., \(t > 2 \)), then \(G \) can be drawn on \(t \) planar layers with bend complexity 2 (resp., \(3n + O(1) \)).

In this paper we present an elegant extension of Fáry’s theorem to draw graphs of thickness \(t > 2 \). We first prove that thickness-\(t \) graphs can be drawn on \(t \) planar layers with \(2.25n + O(1) \) bends per edge. We then develop another technique to draw thickness-\(t \) graphs on \(t \) planar layers with bend complexity \(O(\sqrt{2} \cdot n^{\beta-1/2}) \), where \(\beta = 2^{(t-3)/2} \). Previously, the bend complexity was not known to be sublinear for \(t > 2 \). Finally, we show that graphs with linear arboricity \(k \) can be drawn on \(k \) planar layers with bend complexity \(O(k^{-1/2}) \).

Key words. graph drawing, geometric thickness, planar graphs, bend complexity

AMS subject classifications. 05C10, 68R10

1. Introduction. A polyline drawing of a graph \(G = (V,E) \) in \(\mathbb{R}^2 \) maps each vertex of \(G \) to a distinct point, and each edge of \(G \) to a polygonal chain. Many problems in VLSI layout and software visualization are tackled using algorithms that produce polyline drawings. For a variety of practical purposes, these algorithms often seek to produce drawings that optimize several drawing aesthetics, e.g., minimizing the number of bends, minimizing the number of crossings, etc. In this paper we examine two such parameters: bend complexity and layer complexity.

The thickness of a graph \(G \) is the minimum number \(\theta(G) \) such that \(G \) can be decomposed into \(\theta(G) \) planar subgraphs. Let \(\Gamma \) be a polyline drawing of \(G \). Then the bend complexity of \(\Gamma \) is the minimum integer \(b \) such that each edge in \(\Gamma \) has at most \(b \) bends. A set of edges \(E' \subseteq E \) is called a crossing-free edge set in \(\Gamma \), if the corresponding polygonal chains correspond to a planar polyline drawing, i.e., no two polylines that correspond to a pair of edges in \(E' \) intersect, except possibly at their common endpoints. The layer complexity of \(\Gamma \) is the minimum integer \(t \) such that the edges of \(\Gamma \) can be partitioned into \(t \) crossing-free edge sets. Figure 1(a) illustrates a polyline drawing of \(K_9 \) on 3 planar layers with bend complexity 1. At first glance the layer complexity of \(\Gamma \) may appear to be related to the thickness of \(G \). However, the layer complexity is a property of the drawing \(\Gamma \), while thickness is a graph property. The layer complexity of \(\Gamma \) can be arbitrarily large even when \(G \) is

*Submitted to the editors December 23, 2016.

Funding: This work is supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC). A preliminary version appeared in Debajyoti Mondal’s PhD thesis [20] and in the Proceedings of the 43rd International Colloquium on Automata, Languages and Programming (ICALP 2016) [6].

†Department of Computer Science, University of Manitoba, Canada (durocher@cs.umanitoba.ca).

‡David R. Cheriton School of Computer Science, University of Waterloo, Canada (dmondal@uwaterloo.ca).

This manuscript is for review purposes only.
Fig. 1. (a) A polyline drawing of K_9. (b) A drawing of a matching of size 5. (c) A monotone topological book embedding of some graph. The edges that cross the spine ℓ are shown in bold.
1.2. Our Results. The goal of this paper is to extend our understanding of the interplay between the layer complexity and bend complexity in polyline drawings.

We first show that every n-vertex thickness-t graph admits a polyline drawing on t planar layers with bend complexity $2.25n + O(1)$, improving the $3n + O(1)$ upper bound derived from [1, 18]. We then give another drawing algorithm to draw thickness-t graphs on t planar layers with bend complexity $O(\sqrt{2^t \cdot n^{1-(1/\beta)}})$, where $\beta = 2^{[t/2]}$. No such sublinear upper bound on the bend complexity was previously known for $t > 2$. Finally, we show that every n-vertex graph with linear arboricity $k \geq 2$ admits a polyline drawing on k planar layers with bend complexity $\frac{3(k-1)n}{(4k-2)}$, where the linear arboricity of a graph G is the minimum number of linear forests (i.e., each connected component is a path) whose union is G.

The rest of the paper is organized as follows. We start with some preliminary definitions and results (Section 2). In the subsequent section (Section 3) we present two constructions to draw thickness t graphs on t planar layers. Section 4 presents the results on drawing graphs of bounded arboricity. Finally, Section 5 concludes the paper pointing out the limitations of our results and suggesting directions for future research.

2. Technical Details. In this section we describe some preliminary definitions, and review some known results.

Let $G = (V, E)$ be a planar graph. A monotone topological book embedding of G is a planar drawing Γ of G that satisfies the following properties.

- Γ_1: The vertices of G lie along a horizontal line ℓ in Γ. We refer to ℓ as the spine of Γ.
- Γ_2: Each edge $(u, v) \in E$ is an x-monotone polyline in Γ, where (u, v) either lies on one side of ℓ, or crosses ℓ at most once.
- Γ_3: Let (u, v) be an edge that crosses ℓ at point d, where u appears before v on ℓ. Let u, d, \ldots, v be the corresponding polyline. Then the polyline u, d, \ldots, v lies above ℓ, and the polyline \ldots, v lies below ℓ.

Figure 1(c) illustrates a monotone topological book embedding of a planar graph.

Let $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ be two graphs on a common set of vertices. A simultaneous embedding Γ of G_1 and G_2 consists of their planar drawings D_1 and D_2, where each vertex is mapped to the same point in the plane in both D_1 and D_2. Erten and Kobourov [15] showed that every pair of planar graphs admit a simultaneous embedding with at most three bends per edge. Giacomo and Liotta [17] observed that by using monotone topological book embeddings Erten and Kobourov’s [15] construction can achieve a drawing with two bends per edge. Here we briefly recall this drawing algorithm. Without loss of generality assume that both G_1 and G_2 are triangulations. Let π_i, where $1 \leq i \leq 2$, be a vertex ordering that corresponds to a monotone topological book embedding of G_i. Let P_i be the corresponding spinal path, i.e., a path that corresponds to π_i. Note that some of the edges of P_i may not exist in G_i, e.g., edges (a, d) and (b, c) in Figures 2(a) and (b), respectively, and these edges of P_i create edge crossings in G_i. Add a dummy vertex at each such edge crossing. Let $\delta_i(v)$ be the position of vertex v in π_i. Then P_1 and P_2 can be drawn simultaneously on an $O(n) \times O(n)$ grid [5] by placing each vertex at the grid point $(\delta_1(v), \delta_2(v))$; see Figure 2(c). The mapping between the dummy vertices of P_1 and P_2 can be arbitrary; here we map the dummy vertex on (a, d) to the dummy vertex on (b, c). Finally, the edges of G_i that do not belong to P_i are drawn. Let e be such an edge in G_i. If e does not cross the spine, then it is drawn using one bend on one side of P_i according to the book embedding of G_i. Otherwise, let q be a dummy vertex
on the edge \(e = (u, v) \), which corresponds to the intersection point of \(e \) and the spine. The edges \((u, q) \) and \((v, q) \) are drawn on opposite sides of \(P_i \) such that the polyline from \(u \) to \(v \) do not create any bend at \(q \). Since each of \((u, q) \) and \((v, q) \) contains only one bend, \(e \) contains only two bends. Finally, the edges of \(P_i \) that do not belong to \(G_i \) are removed from the drawing; see Figure 2(d).

\[\text{Fig. 2. (a)–(b) Monotone topological book embeddings of } G_1 \text{ and } G_2. \text{ (c)–(d) Simultaneous embedding of } G_1 \text{ and } G_2, \text{ where the deleted edges are shown in dashed lines.} \]

Let \(\Gamma \) be a planar polyline drawing of a path \(P = \{v_1, v_2, \ldots, v_n\} \). We call \(\Gamma \) an uphill drawing if for any point \(q \) on \(\Gamma \), the upward ray from \(q \) does not intersect the path \(v_1, \ldots, q \). Note that \(q \) may be a vertex location or an interior point of some edge in \(\Gamma \). Let \(a \) and \(b \) be two points in \(\mathbb{R}^2 \). Then \(a \) and \(b \) are \(r \)-visible to each other if and only if there exists a polygonal chain of length \(r \) with end points \(a, b \) that does not intersect \(\Gamma \) at any point except at \(a, b \). A point \(p \) lies between two other points \(a, b \), if either the inequality \(x(a) < x(p) < x(b) \) or \(x(b) < x(p) < x(a) \) holds.

A set of points is monotone if the polyline connecting them from left to right is monotone, i.e., increasing or decreasing, with respect to \(y \)-axis. Let \(S \) be a set of \(n \) points in general position. By the Erdős-Szekeres theorem [14], \(S \) can be partitioned into \(O(\sqrt{n}) \) disjoint monotone subsets, and such a partition can be computed in \(O(n^{1.5}) \) time [2].

3. Drawing Thickness-\(t \) Graphs on \(t \) Layers. In this section we give two separate construction techniques to draw thickness-\(t \) graphs on \(t \) planar layers. We first present a construction achieving \(2.25n + O(1) \) upper bound (Section 3.1), which is simple and intuitive. Although the technique is simple, the idea of the construction will be used frequently in the rest of the paper.

Later, we present a second construction (Section 3.2), which is more involved, and relies on a deep understanding of the geometry of point sets. In this case, the upper bound on the bend complexity will depend on some generalization of Erdős-Szekeres theorem [14], e.g., partitioning a point set into monotone subsequences in higher dimensions (Section 3.2.3).

3.1. A Simple Construction with Bend Complexity \(2.25n + O(1) \). Let \(G_1, \ldots, G_t \) be the planar subgraphs of the input graph \(G \), and let \(S \) be an ordered set of \(n \) points on a semicircular arc. Let \(V = \{v_1, v_2, \ldots, v_n\} \) be the set of vertices of \(G \). We show that each \(G_i \), where \(1 \leq i \leq t \), admits a polyline drawing with bend
complexity $2.25n + O(1)$ such that vertex v_j is mapped to the jth point of S. To draw G_t, we will use the vertex ordering of its monotone topological book embedding. The following lemma will be useful to draw the spinal path P_t of G_t.

Lemma 3.1. Let $S = \{p_0, p_1, \ldots, p_{n+1}\}$ be a set of points lying on an x-monotone semicircular arc (e.g., see Figure 3(a)), and let $P = \{v_1, v_2, \ldots, v_n\}$ be a path of n vertices. Assume that p_0 and p_{n+1} are the leftmost and rightmost points of S, respectively, and the points p_1, \ldots, p_n are equally spaced between them in some arbitrary order. Then P admits an uphill drawing Γ with the vertex v_i assigned to p_i, where $1 \leq i \leq n$, and every point p_i satisfies the following properties:

A. Both the points p_0 and p_{n+1} are $(3n/4)$-visible to p_i.

B. One can draw an x-monotone polygonal chain from p_0 to p_{n+1} with $3n/4$ bends that intersects Γ only at p_i.

Proof. We prove the lemma by constructing such a drawing Γ for P. The construction assigns a polyline for each edge of P. The resulting drawing may contain edge overlaps, and the bend complexity could be as large as $n - 2$. Later we remove these degeneracies and reduce the bend complexity to obtain Γ.

Drawings of Edges: For each point $p_i \in S$, where $1 \leq i \leq n$, we create an anchor point p'_i at $(x(p_i), y(p_i) + \epsilon)$, where $\epsilon > 0$. We choose ϵ small enough such that for any j, where $1 \leq i \neq j \leq n$, all the points of S between p_i and p_j lie above (p'_i, p'_j). Figure 3(a) illustrates this property for the anchor point p'_1.

We first draw the edge (v_1, v_2) using a straight line segment. For each j from 2 to $n - 1$, we now draw the edges (v_j, v_{j+1}) one after another. Assume without loss of generality that $x(p_j) < x(p_{j+1})$. We call a point $p \in S$ between p_j and p_{j+1} a visited point if the corresponding vertex v appears in v_1, \ldots, v_j, i.e., v has already been placed at p. We draw an x-monotone polygonal chain L that starts at v_j, connects the anchors of the intermediate visited points from left to right, and ends at v_{j+1}. Figure 3(b) illustrates such a construction.

Since the number of bends on L is equal to the number of visited points of S between p_j and p_{j+1}, each edge contains at most α bends, where α is the number of points of S between p_j and p_{j+1}.

Removing Degeneracies: The drawing D_n of the path P constructed above contains edge overlaps, e.g., see the edges (v_3, v_4) and (v_4, v_5) in Figure 3(c). To remove the degeneracies, for each i, we spread the corresponding bend points in the interval $[p_i, p'_i]$, in the order they appear on the path, see Figure 3(d). Consequently, we obtain a planar drawing of P. Let the resulting drawing be D'_n. Since each edge (p_j, p_{j+1}) is drawn as an x-monotone polyline above the path p_1, \ldots, p_j, D'_n satisfies the uphill property. Note that D'_n may have bend complexity $n - 2$, e.g., see Figure 3(e). We now show how to reduce the bend complexity and satisfy Properties A–B.

Reducing Bend Complexity: A pair of points in S are consecutive if they do not contain any other point of S in between. Let e be any edge of P. Let C_e be the corresponding polygonal chain in D'_n. A pair of bends on C_e are called consecutive bends if their corresponding points in S are also consecutive. A bend-interval of C_e is a maximal sequence of consecutive bends in C_e. Note that we can partition the bends on e into disjoint sets of bend-intervals.

For any bend-interval s, let $l(s)$ and $r(s)$ be the x-coordinates of the left and right endpoints of s, respectively. Let s_1 and s_2 be two bend-intervals lying on two distinct edges e_1 and e_2 in D'_n, respectively, where e_2 appears after e_1 in P. We claim that the intervals $[l(s_1), r(s_1)]$ and $[l(s_2), r(s_2)]$ are either disjoint, or $[l(s_1), r(s_1)] \subseteq
Fig. 3. Illustration for the proof of Lemma 3.1. (a) Construction of the point set, and the anchor points. The anchor points are shown in black squares. (b)–(d) Construction of D'_n. (e) A scenario when the number of bends may be large. (f)–(g) Reducing bend complexity.

[l(s_2), r(s_2)]. We refer to this property as the balanced parenthesis property of the bend-intervals. To verify this property assume that for some s_1, s_2, we have $[l(s_1), r(s_1)] \cap [l(s_2), r(s_2)] \neq \emptyset$. Since s_2 is a maximal sequence of consecutive bends, the inequalities $l(s_2) \leq l(s_1)$ and $r(s_2) \geq r(s_1)$ hold, i.e., $[l(s_1), r(s_1)] \subseteq [l(s_2), r(s_2)]$. We say that s_1 is nested by s_2. Figure 3(f) illustrates such a scenario, where s_1, s_2 are shown in thin and thick gray lines, respectively.
We now consider the edges of \(P \) in reverse order, i.e., for each \(j \) from \(n \) to 1, we modify the drawing of \(e = (v_j, v_{j-1}) \). For each bend-interval \(s = (b_1, b_2, \ldots, b_r) \) of \(C_e \), if \(s \) has three or more bends, then we delete the bends \(b_2, \ldots, b_{r-1} \), and join \(b_1 \) and \(b_r \) using a new bend point \(w \). To create \(w \), we consider the two cases of the balanced parenthesis property.

If \(s \) is not nested by any other bend-interval in \(D'_n \), then we place \(w \) high enough above \(b_r \) such that the chain \(b_1, w, b_r \) does not introduce any edge crossing, e.g., see the point \(w_1(= w) \) in Figure 3(g). On the other hand, if \(s \) is nested by some other bend-interval, then let \(s' \) be such a bend-interval immediately above \(s \). Since \(s' = (b_1', b_2', \ldots, b_r') \) is already processed, it must have been replaced by some chain \(b_1', w', b_r' \). Therefore, we can find a location for \(b \) inside \(\angle b_1'w'b_r' \) such that the chain \(b_1, w, b_r \) does not introduce any edge crossing, e.g., see the points \(w' \) and \(w_2(= w) \) in Figure 3(g). Let the resulting drawing of \(P \) be \(\Gamma \).

We now show that the above modification reduces the bend complexity to \(3n/4 \).

Let \(e \) be an edge of \(P \) that contains \(\alpha \) points from \(S \) between its endpoints. Let \(C_e \) be the corresponding polygonal chain in \(D'_n \). Recall that any bend-interval of length \(\ell \) in \(C_e \) contributes to \(\min\{\ell, 3\} \) bends on \(e \) in \(\Gamma \). Therefore, if there are at most \(\alpha/4 \) bend-intervals on \(C_e \), then \(e \) can have at most \(3\alpha/4 \) bends in \(\Gamma \). Otherwise, if there are more than \(\alpha/4 \) bend-intervals, then there are at least \(\alpha/4 \) points\(^1\) of \(S \) that do not contribute to bends on \(C_e \). Therefore, in both cases, \(C_e \) can have at most \(3\alpha/4 \) bends in \(\Gamma \).

Satisfying Properties A–B: Let \(p_i \) be any point of \(S \setminus \{p_0, p_{n+1}\} \). We first show that \(p_0 \) is \((3n/4)\)-visible to \(p_i \). Let \(D_i \), where \(1 \leq i \leq n \), be the drawing of the path \(v_1, v_2, \ldots, v_i \). Observe that one can insert an edge \((p_0, p_i)\) using an \(x \)-monotone polyline \(L \) such that the bends on \(L \) correspond to the intermediate visited points.

Now the drawing of the rest of the path \(v_i, v_{i+1}, \ldots, v_n \) can be continued such that it does not cross \(L \). Therefore, if the number of points of \(S \) between \(p_0 \) and \(p_i \) is \(\alpha \), then \(L \) has at most \(\alpha \) bends. Finally, the process of reducing bend complexity improves the number of bends on \(L \) to \(3\alpha/4 \).

Similarly, we can observe that \(p_{n+1} \) is at most \(3\alpha'/4 \) visible to \(p_i \), where \(\alpha' \) is the number of points of \(S \) between \(p_i \) and \(p_{n+1} \). Since the edges \((p_0, p_i)\) and \((p_i, p_{n+1})\) are \(x \)-monotone, we can draw an \(x \)-monotone polygonal chain from \(p_0 \) to \(p_{n+1} \) with at most \(3(\alpha + \alpha')/4 \leq (3n/4) \) bends that intersects \(\Gamma \) only at \(p_i \).

We now have the following theorem.

Theorem 3.2. Every \(n \)-vertex graph of thickness \(t \) admits a drawing on \(t \) planar layers with bend complexity \(2.25n + O(1) \).

Proof. Let \(G_1, \ldots, G_t \) be the planar subgraphs of the input graph \(G \), and let \(V = \{v_1, v_2, \ldots, v_n\} \) be the set of vertices of \(G \). Let \(S = \{p_0, p_1, \ldots, p_{n+1}\} \) be a set of \(n+2 \) points lying on a semicircular arc as defined in Lemma 3.1. Let \(P_i \) be spinal path of the monotone topological book embedding of \(G_i \), where \(1 \leq i \leq t \). We first compute an uphill drawing \(\Gamma_i \) of the path \(P_i \). We then draw the edges of \(G_i \) that do not belong to \(P_i \). Let \(e = (u, v) \) be such an edge, and without loss of generality assume that \(u \) appears to the left of \(v \) on the spine.

If \(e \) lies above (resp., below) the spine, then we draw two \(x \)-monotone polygonal chains; one from \(u \) to \(p_0 \) (resp., \(p_{n+1} \)), and the other from \(v \) to \(p_0 \) (resp., \(p_{n+1} \)). By Lemma 3.1, the polygonal chain \(u, \ldots, p_0, \ldots, v \) (resp., \(u, \ldots, p_{n+1}, \ldots, v \)) does not intersect \(\Gamma_i \) except at \(u \) and \(v \), and contains at most \(2 \cdot (3n/4) = 1.5n \) bends.

\(^1\)Every pair of consecutive bend-intervals contain such a point in between.
If e crosses the spine, then it crosses some edge (w, w') of P_i. Draw the edges (u, w) and (w, v) using the polylines $u, \ldots, p_0, \ldots, w$ and $w, \ldots, p_{n+1}, \ldots, v$, respectively.

The polylines u, \ldots, p_0 and p_{n+1}, \ldots, v are x-monotone, and have at most $3n/4$ bends each. The polyline $C = (p_0, \ldots, w, \ldots, p_{n+1})$ is also x-monotone and has at most $3n/4$ bends. Hence the number of bends is $2.25n$ in total. It is straightforward to avoid the degeneracy at w, by adding a constant number of more bends per edge.

Note that we still have some edge overlaps at p_0 and p_{n+1}. It is straightforward to remove these degeneracies by adding only a constant number of more bends per edge. □

3.2. A Construction for Small Values of t. In this section we give another construction to draw thickness-t graphs on t planar layers. We first show that every thickness-t graph, where $t \in \{3, 4\}$, can be drawn on t planar layers with bend complexity $O(\sqrt{n})$, and then show how to extend the technique for larger values of t.

3.2.1. Construction when $t = 3$. Let S be an ordered set of n points, where the ordering is by increasing x-coordinate. A (k, n)-group $S_{k, n}$ is a partition of S into k disjoint ordered subsets (S_1, \ldots, S_k), each containing contiguous points from S. Label the points of S using a permutation of p_1, p_2, \ldots, p_n such that for each set $S' \in S_{k, n}$, the indices of the points in S' are either increasing or decreasing. If the indices are increasing (resp., decreasing), then we refer S' as a rightward (resp., leftward) set. We will refer to such a labelling as a smart labelling of $S_{k, n}$. Figure 4 illustrates a $(5, 23)$-group and a smart labelling of the underlying point set $S_{5, 23}$.

Note that for any i, where $1 \leq i \leq n$, deletion of the points p_1, \ldots, p_i removes the points of the rightward (resp., leftward) sets from their left (resp., right). The necklace of $S_{k, n}$ is a path obtained from a smart labelling of $S_{k, n}$ by connecting the points p_i, p_{i+1}, where $1 \leq i \leq n - 1$. The following lemma constructs an uphill drawing of the necklace using $O(k)$ bends per edge.

Lemma 3.3. Let S be a set of n points ordered by increasing x-coordinate, and let $S_{k, n} = \{S_1, \ldots, S_k\}$ be a (k, n)-group of S. Label $S_{k, n}$ with a smart labelling. Then the necklace of $S_{k, n}$ admits an uphill drawing with $O(k)$ bends per edge.

Proof. We construct this uphill drawing incrementally in a similar way as in the proof of Lemma 3.1. Let D_j, where $1 \leq j \leq n$, be the drawing of the path p_1, \ldots, p_j. At each step of the construction, we maintain the invariant that D_j is an uphill drawing.

We first assign v_1 to p_1. Then for each i from 1 to $n - 1$, we draw the edge (p_i, p_{i+1}) using an x-monotone polyline L that lies above D_i and below the points p_j, where $j' > i + 1$. Figure 4 illustrates such a drawing of (p_i, p_{i+1}).
The crux of the construction is that one can draw such a polyline L using at most $O(k)$ bends. Assume that p_i and p_{i+1} belong to the sets $S_i \in S_{k,n}$ and $S_{i+1} \in S_{k,n}$, respectively. If S_i and S_{i+1} are identical, then p_i and p_{i+1} are consecutive, and hence it suffices to use at most $O(1)$ bends to draw L. On the other hand, if S_i and S_{i+1} are distinct, then there can be at most $k-2$ sets of $S_{k,n}$ between them. Let S_m be such a set. While passing through S_m, we need to keep the points that already belong to the path, below L, and the rest of the points above L. By the property of smart labelling, the points that belong to D_i are consecutive in S_m, and lie to the left or right side of S_m depending on whether S_m is rightward or leftward. Therefore, we need only $O(1)$ bends to pass through S_m. Since there are at most $k-2$ sets between S_i and S_{i+1}, $O(k)$ bends suffice to construct L.

We are now ready to describe the main construction. Let G be an n-vertex thickness-3 graph, and let G_1, G_2, G_3 be the planar subgraphs of G. Let P_1 be the spinal path of the monotone topological book embedding of G_i, where $1 \leq i \leq 3$. We first create a set of n points and assign them to the vertices of G. Later we route the edges of G.

Creating Vertex Locations: Assume without loss of generality that $P_1 = (v_1, \ldots, v_n)$. For each i from 1 to n, we place a point at (i, j) in the plane, where j is the position of v_i in P_2. Let the resulting point set be Q. Recall that by Erdős-Szekeres theorem, Q can be partitioned into disjoint monotone subsets Q_1, \ldots, Q_k, where $k \in O(\sqrt{n})$ [2, 14]. Figure 5(a) illustrates such a partition.

The sets Q_1, \ldots, Q_k are ordered by the x-coordinate, and the indices of the labels of the points at each set is in increasing order. Therefore, if we place the points of the ith set between the lines $x = 2(i-1)n$ and $x = (2i-1)n$, then the resulting point set Q' would be a (k, n)-group, labelled by a smart labelling. Note that we preserve the monotonicity property of each group. Finally, we adjust the y-coordinates of the points according to the position of the corresponding vertices in P_3. Let the resulting point set be $S_{k,n}$. Figure 5(b) illustrates the vertex locations, where $P_1 = (v_1, v_2, \ldots, v_n)$, $P_2 = (v_11, v_1, \ldots, v_3)$, and $P_3 = (v_6, v_{11}, \ldots, v_{10})$.

Edge Routing: It is straightforward to observe that the path P_1 is a necklace for the current labelling of the points of $S_{k,n}$. Therefore, by Lemma 3.3, we can construct an uphill drawing of P_1 on $S_{k,n}$. Observe that for every set $S' \in S_{k,n}$, the

![Diagram](image-url)
Then the drawing of the remaining edges of two points \(p, G\) corresponding points are monotone in \(S_{k,n}\). Since the height of the points of \(S_{k,n}\) are adjusted according to the vertex ordering on \(P_3\), connecting the points of \(S_{k,n}\) from top to bottom with straight line segments yields a \(y\)-monotone drawing of \(P_3\).

We now route the edges of \(G_i\) that do not belong to \(P_i\), where \(1 \leq i \leq 3\). Since \(P_3\) is drawn as a \(y\)-monotone polygonal path, we can use the technique of Erten and Kobourov [15] to draw the remaining edges of \(G_3\). To draw the edges of \(G_2\), we insert two points \(p_0\) and \(p_{n+1}\) to the left and right of all the points of \(S_{k,n}\), respectively. Then the drawing of the remaining edges of \(G_1\) and \(G_2\) is similar to the edge routing described in the proof of Theorem 3.2. That is, if the edge \(e = (u, v)\) lies above (resp., below) the spine, then we draw it using two \(x\)-monotone polygonal chains from \(p_0\) (resp., \(p_{n+1}\)). Otherwise, if \(e\) crosses the spine, then we draw three \(x\)-monotone polygonal chains, one from \(u\) to \(p_0\), another from \(p_0\) to \(p_{n+1}\), and the third one from \(v\) to \(p_{n+1}\). Since \(k \in O(\sqrt{n})\), the number of bends on \(e\) is \(O(\sqrt{n})\). Finally, we remove the degeneracies, which increases the bends per edge by a small constant.

3.2.2. Construction when \(t = 4\)

We now show that the technique for drawing thickness-3 graphs can be generalized to draw thickness-4 graphs with the same bend complexity.

Let \(G_1, \ldots, G_4\) be the planar subgraphs of \(G\), and let \(P_1, \ldots, P_4\) be the corresponding spinal paths. While constructing the vertex locations, we use a new \(y\)-coordinate assignment for the points of \(S_{k,n}\). Instead of placing the points according to the vertex ordering on the path \(P_3\), we create a particular order, by transposing the \(x\)- and \(y\)-axis, that would help to construct uphill drawings of \(P_3\) and \(P_4\) with bend complexity \(O(\sqrt{n})\). That is, we first create a \((k', n)\)-group \(S'_{k',n}\) using \(P_3\) and \(P_4\), where \(k' \in O(\sqrt{n})\), in a similar way that we created \(S_{k,n}\) using \(P_1\) and \(P_2\). We then adjust the \(y\)-coordinates of the points of \(S_{k,n}\) according to the order these points appear in \(S'_{k',n}\). Let \(S\) be the resulting point set, and let \(P_1, \ldots, P_4\) be the spinal paths of \(G_1, \ldots, G_4\), respectively. Figure 6(a) illustrates \(P_1\) and \(P_2\) in black and gray, respectively. Figure 6(b) illustrates \(P_3\) and \(P_4\) in black and gray, respectively. Figure 6(c) depicts the point set \(S\), and Figures 7–8 illustrate the drawings of the spinal paths.

The construction of \(G_1\) and \(G_2\) remains the same as described in the previous section. However, since \(P_3\) and \(P_4\) now admit uphill drawings on \(S\) with respect to \(y\)-axis, the drawings of \(G_3\) and \(G_4\) are now analogous to the construction of \(G_1\) and \(G_2\).

3.2.3. Construction when \(t > 4\)

De Bruijn [19] observed that the result of Erdős-Szekeres [14] can be generalized to higher dimensions. Given a sequence \(\rho\) of \(n\) tuples, each of size \(\kappa\), one can find a subsequence of at least \(n^{1/\lambda}\) tuples, where \(\lambda = 2^{\kappa}\), such that they are monotone (i.e., increasing or decreasing) in every dimension. This result is a repeated application of Erdős-Szekeres result [14] at each dimension. We now show how to partition \(\rho\) into few monotone sequences.

We use the partition algorithm of Bar-Yehuda and Sergio Fogel [2] that partitions a given sequence of \(n\) numbers into at most \(2\sqrt{n}\) monotone subsequences. It is straightforward to restrict the size of the subsequences to \(\sqrt{n}\), without increasing the number of subsequences, i.e., by repeatedly extracting a monotone sequence of length exactly \(\sqrt{n}\). Consequently, one can partition \(\rho\) into \(2\sqrt{n}\) subsequences, where each subse-
Fig. 6. (a) A point set, constructed from the paths P_i, where $i \in \{1, 2\}$, by placing each vertex v at $(\delta_1(v), \delta_2(v))$. Here $\delta_i(v)$ is the position of v on P_i. (b) A point set, constructed from the paths P_i, where $i \in \{3, 4\}$, by placing each vertex v at $(\delta_3(v), \delta_4(v))$. (c) The final point set, and the corresponding (k, n)-groups. The numbers denote the vertex positions on the corresponding spinal path. The arrows illustrate whether the corresponding sets are leftward or rightward.
Fig. 7. Drawings of P_1 and P_3 on the point set of Figure 6(c).

P_i, where $1 \leq i \leq t$ and $1 \leq j \leq n$. We now partition ρ into a set of $2^t \cdot n^{1-(1/\beta)}$ monotone subsequences, where $\beta = 2^t$.

For each of these monotone sequences, we create an ordered set of consecutive points along the x-axis, where the vertex v_j corresponds to the point p_j. It is now straightforward to observe that these sets correspond to a (k,n)-group $S_{k,n}$, where $k \leq 2^t \cdot n^{1-(1/\beta)}$. Furthermore, since each group corresponds to a monotone sequence of tuples, for each P_i, the positions of the corresponding vertices are either increasing or decreasing. Hence, every path P_i corresponds to a necklace for some smart labelling of $S_{k,n}$. Therefore, by Lemma 3.3, we can construct an uphill drawing of P_i on S. We now add the remaining edges of G_i following the construction described in Section 3.2.1. Since $k \leq 2^t \cdot n^{1-(1/\beta)}$, the number of bends is bounded by $O(2^t \cdot n^{1-(1/\beta)})$.

Observe that all the points in the above construction have the same y-coordinate. Therefore, we can improve the construction by distributing the load equally among the x-axis and y-axis as we did in Section 3.2.2. Specifically, we draw the graphs $G_1, \ldots, G_{\lceil t/2 \rceil}$ using the uphill drawings of their spinal paths with respect to the x-axis, and the remaining graphs using the uphill drawings of their spinal paths with re-
Fig. 8. Drawings of P_2 and P_4 on the point set of Figure 6(c).
linear arboricity of the input graphs. We show that the bandwidth of a graph can 410 be bounded in terms of its linear arboricity and the number of vertices, and then the 411 result follows from an application of Lemma 3.1.

The \textit{bandwidth} of an \(n\)-vertex graph \(G = (V, E)\) is the minimum integer \(b\) such 413 that the vertices can be labelled using distinct integers from 1 to \(n\) satisfying the 414 condition that for any edge \((u, v) \in E\), the absolute difference between the labels of 415 \(u\) and \(v\) is at most \(b\). The following lemma proves an upper bound on the bandwidth 416 of graphs.

\textbf{Lemma 4.1.} Given an \(n\)-vertex graph \(G = (V, E)\) with linear arboricity \(k\), the 417 bandwidth of \(G\) is at most \(\frac{3(k-1)n}{(4k-2)}\).

\textit{Proof.} Without loss of generality assume that \(G\) is a union of \(k\) spanning paths \(P_1, \ldots, P_k\). For any ordered sequence \(\sigma\), let \(\sigma(i)\) be the element at the \(i\)th position, and let \(|\sigma|\) be the number of elements in \(\sigma\). We now construct an ordered sequence \(\sigma = \sigma_1 \circ \sigma_2 \circ \ldots \circ \sigma_k \circ \sigma_{k+1}\) of the vertices in \(V\), as follows.

\(\sigma_1\): We initially place the first \(x\) vertices of \(P_1\) in the sequence, where the exact value of \(x\) is to be determined later.

\(\sigma_2\): We then place the vertices that are neighbors of \(\sigma_1\) in \(P_2\), in order, i.e., we first place the neighbors of \(\sigma_1(1)\), then the neighbors of \(\sigma_1(2)\) that have not been placed yet, and so on.

\(\sigma_i\): For each \(i = 3, \ldots, k\), we place the vertices that are neighbors of \(\sigma_1\) in \(P_i\) in order.

\(\sigma_{k+1}\): We next place the remaining vertices of \(P_1\) in order.

Figure 9(a) illustrates an example for three paths with \(x = 2\). Observe that \(|\sigma_1| \leq x\), and \(|\sigma_i| \leq 2x\), where \(1 < i \leq k\). We now compute an upper bound on the bandwidth of \(G\) using the vertex ordering of \(\sigma\).

For any \(i, j\), where \(1 \leq i < j \leq k + 1\), let \(\sigma_{i,j}\) be the sequence \(\sigma_i \circ \ldots \circ \sigma_j\). The edges of \(P_1\) that are in \(\sigma_1\) have bandwidth 1, and those that are in \(\sigma_1(x) \circ (\sigma \setminus \sigma_1)\) have bandwidth at most \((n-x)\), e.g., see Figure 9(b). Now let \((v, w)\) be an edge of \(G\) that does not belong to \(P_1\). We compute the bandwidth of \((v, w)\) considering the following cases.

\textbf{Case 1.} If none of \(v\) and \(w\) belongs to \(\sigma_1\), then the bandwidth of \((v, w)\) is at most \((n-x)\).

\textbf{Case 2.} If both \(v\) and \(w\) belong to \(\sigma_1\), then the bandwidth of \((v, w)\) is at most \(x\).

\textbf{Case 3.} If at most one of \(v\) and \(w\) belongs to \(\sigma_1\), then without loss of generality assume that \(v\) belongs to \(\sigma_1\). Since \((v, w)\) does not belong to \(P_1\), we may assume that \(w\) belongs to the path \(P_t\), where \(1 < t \leq k\). By the construction of \(\sigma\), \(w\) belongs to \(\sigma_t\), e.g., see Figure 9(b). Without loss of generality assume that \(w\) belongs to \(\sigma_r\), where \(1 < r \leq t\). Let \(v\) be the \(q\)th vertex in the sequence \(\sigma\). Then the position of \(w\) cannot be more than \(q + 2x \cdot (r-2) + 2q\), where the term \(2x \cdot (r-2)\) corresponds to length of \(\sigma_2 \circ \ldots \circ \sigma_{r-1}\). Therefore, the bandwidth of the edge \((v, w)\) is at most \(2x \cdot (r-2) + q \leq 2x(r-1) \leq 2x(t-1)\).

Observe that the bandwidth of the edges of \(P_1\) is upper bounded by \((n-x)\). The bandwidth of any edge that belongs to \(P_t\), where \(1 < t \leq k\) is at most \(2x(t-1)\). Consequently, the bandwidth of \(G\) is at most \(\max\{n-x, 2x(k-1)\} \leq \frac{(2k-2)n}{(4k-2)}\), where \(x = \frac{n}{(2k-1)}\).

The following theorem is immediate from the proof of Lemmas 3.1 and 4.1.

\textbf{Theorem 4.2.} Every \(n\)-vertex graph with linear arboricity \(k\) can be drawn on \(k\) planar layers with at most \(\frac{3(k-1)n}{(4k-2)} < 0.75n\) bends per edge.
5. Conclusions. In this paper we have developed algorithms to draw graphs on few planar layers and with low bend complexity. Although our algorithms do not construct drawings with integral coordinates, it is straightforward to see that these drawings can also be constructed on polynomial-size integer grids, where all vertices and bends have integral coordinates. We leave the task of finding compact grid drawings achieving the same upper bounds as a direction for future research.

We believe our upper bounds on bend complexity to be nearly tight, but we require more evidence to support this intuition. The only related lower bound is that of Pach and Wenger [21], who showed that given a planar graph G and a unique location to place each vertex of G, $\Omega(n)$ bends are sometimes necessary to construct a planar polyline drawing of G with the given vertex locations. Therefore, a challenging research direction would be to prove tight lower bounds on the bend complexity while drawing thickness-t graphs on t planar layers.

REFERENCES

