
On Graphs that are not PCGsI

Stephane Durocher1

Department of Computer Science, University of Manitoba, Canada

Debajyoti Mondal2

Department of Computer Science, University of Manitoba, Canada

Md. Saidur Rahman3

Graph Drawing & Information Visualization Laboratory,
Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

Abstract

Let T be an edge-weighted tree and let dmin, dmax be two nonnegative real
numbers. The pairwise compatibility graph (PCG) of T is a graph G such
that each vertex of G corresponds to a distinct leaf of T and two vertices are
adjacent inG if and only if the weighted distance between their corresponding
leaves in T is in the interval [dmin, dmax]. Similarly, a given graph G is a PCG
if there exist suitable T, dmin, dmax, such that G is a PCG of T . Yanhaona,
Bayzid and Rahman proved that there exists a graph with 15 vertices that is
not a PCG. On the other hand, Calamoneri, Frascaria and Sinaimeri proved
that every graph with at most seven vertices is a PCG. In this paper we

IA preliminary version of these results appeared in the Proceedings of the 7th Interna-
tional Workshop on Algorithms and Computation (WALCOM 2013) [9].

Email addresses: durocher@cs.umanitoba.ca (Stephane Durocher),
jyoti@cs.umanitoba.ca (Debajyoti Mondal), saidurrahman@cse.buet.ac.bd (Md.
Saidur Rahman)

1Work of the author is supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

2Work of the author is supported in part by a University of Manitoba Graduate Fel-
lowship.

3Work of the author is supported in part by the Ministry of Science and Information
& Communication Technology, Government of Bangladesh.

Preprint submitted to Theoretical Computer Science December 12, 2014

construct a graph of eight vertices that is not a PCG, which strengthens the
result of Yanhaona, Bayzid and Rahman, and implies optimality of the result
of Calamoneri, Frascaria and Sinaimeri. We then construct a planar graph
with sixteen vertices that is not a PCG. Finally, we prove a variant of the
PCG recognition problem to be NP-complete.

Keywords: pairwise compatibility graph, leaf powers, tree-based distance
metric

1. Introduction

Let T be an edge-weighted tree and let dmin, dmax be two nonnegative real
numbers. The pairwise compatibility graph (PCG) of T is a graph G such
that each vertex of G corresponds to a distinct leaf of T and two vertices are
adjacent inG if and only if the weighted distance between their corresponding
leaves in T is in the interval [dmin, dmax]. Similarly, a given graph G is a PCG
if there exist suitable T, dmin, dmax, such that G is a PCG of T . Figure 1(a)
illustrates an edge-weighted tree T , and Figure 1(b) shows the corresponding
PCG G, where dmin = 2 and dmax = 3.5. Figure 1(c) shows another edge-
weighted tree T ′ such that G is a PCG of T ′ when dmin = 1.5 and dmax = 2.

In 2003, Kearney et al. [11] introduced the concept of PCG and showed
how to use it to model evolutionary relationships among a set of organisms.
Moreover, they proved that the problem of finding a maximal clique can be
solved in polynomial time for pairwise compatibility graphs if one can find
their corresponding edge-weighted trees in polynomial time. They hoped to
show that every graph is a PCG, but later, Yanhaona et al. [17] constructed
a 15-vertex graph that is not a PCG.

Several researchers have attempted to characterize pairwise compatibility
graphs. Yanhaona et al. [18] proved that graphs having cycles as its max-
imal biconnected components are PCGs. Salma and Rahman [15] proved
that every triangle-free maximum-degree-three outerplanar graph is a PCG.
Calamoneri et al. [8] gave some sufficient conditions for a split matrogenic
graph to be a PCG, and examined the graph classes that arise from us-
ing the intervals [0, dmax] (LPG, also known as leaf powers) and [dmin,∞]
(mLPG) [1, 3, 13]. They proved that the intersection of these classes is not
empty, and neither of them is contained in the other. Several variants of
these graph classes, e.g., exact k-leaf powers, (k, l)-leaf powers and so on,
have been extensively studied in the literature [1, 2, 3, 10, 12].

2

da
e

0.5
2

1
0.2

2

a cb d e b c

(a) (b)

2.2 0.5

0.5

1

0.5

0.3
0.2

1.5 ed

ba

c

(c)

Figure 1: (a) An edge-weighted tree T . (b) A PCG G of T , where dmin = 2, dmax = 3.5.
(c) Another edge weighted tree T ′ such that G is a PCG of T ′ when dmin = 1.5, dmax = 2.

Finding a pairwise compatibility tree of a given graph appeared to be
difficult, even for graphs with few vertices. In 2003, Kearney et al. [11]
showed that every graph with at most five vertices is a PCG. Prior to the
results of this paper, the smallest graph known not to be a PCG was a 15-
vertex graph constructed by Yanhaona et al. [17]. This graph consists of a
bipartite graph with partite sets A and B, where |A| = 5 and |B| = 10,
and each subset of three vertices of A is adjacent to a distinct vertex of B.
Phillips [14] proved that every graph with at most five vertices is a PCG, and
later Calamoneri et al. [4] showed that every graph with at most seven vertices
is also a PCG. Some recent research examined the pairwise compatibility of
graphs with bounded Dilworth number [5, 6, 7].

In this paper we construct a graph of eight vertices that is not a PCG,
which strengthens the result of Yanhaona et al. [17], and implies optimality
of the result of Calamoneri et al. [4]. We then construct a planar graph with
twenty vertices that is not a PCG; this is the first planar graph known not
to be a PCG. Finally, we examine a generalized PCG recognition problem
that given a graph G and a subset S of edges of its complement graph, asks
to determine a PCG G′ = (T, dmin, dmax) that contains G as a subgraph, but
does not contain any edge of S. Observe that if S contains all the edges of
the complement graph, then it is the problem of deciding whether G is a
PCG. Thus the PCG recognition problem is a special case of the generalized
PCG recognition problem. We prove that the generalized PCG recognition
problem is NP-hard if we require maximum number of edges of S to have
weighted tree distance greater than dmax between their corresponding leaves.
We hope that this is a step towards understanding the complexity of the PCG
recognition problem, and conjecture both the PCG recognition problem and
its generalized version to be NP-hard.

The rest of the paper is organized as follows. In Section 2 we discuss
some technical background. In Section 3 we construct a graph G1 with nine

3

vertices that is not a PCG. The construction of G1 motivated us to study
the structural properties of G1 for obtaining a graph G2 of eight vertices by
deleting a vertex from G1 so that G2 is not a PCG. This would give a tight
result since every graph with at most seven vertices is a PCG. In Section 4
we thus analyze and compile the structural properties of G1, and prove that
the graph G2 obtained by deleting a vertex of degree three from G1 is not a
PCG. In Section 5 we use the building blocks and ideas of Sections 3 and 4
to construct a planar graph that is not a PCG. In Section 6 we prove the
NP-hardness result. Finally, Section 7 concludes the paper.

2. Preliminaries

In this section we introduce some definitions and review relevant results.
LetG = (V,E) be a graph with vertex set V and edge set E. The complement
graph G of G is the graph with vertex set V and edge set E, where E consists
of the edges that are determined by the non-adjacent pairs of vertices of G.
For a vertex v (respectively, a set of vertices S) in G, we use the notation
G\v (respectively, G\S) to denote the subgraph of G induced by the vertices
V \ {v} (respectively, V \ S). Let T be an edge-weighted tree. Let u and v
be two leaves of T . By Puv we denote the unique path between u and v in
T . By dT (u, v) we denote the weighted distance between u and v, i.e., the
sum of the weights of the edges on Puv. Let dmin, dmax be two nonnegative
real numbers. Then by PCG(T, dmin, dmax) we denote the PCG of T that
respects the interval [dmin, dmax]. By Tx1x2...xt we denote the subgraph of T
induced by the paths Pxixj

, where 1 ≤ i, j ≤ t. Figures 2(a)–(b) illustrate an
example of such a subgraph.

Lemma 1 (Yanhaona et al. [17]). Let T be an edge-weighted tree, and
let u, v and w be three leaves of T such that Puv is the longest path in Tuvw.
Let x be a leaf of T other than u, v and w. Then dT (w, x) ≤ dT (u, x), or
dT (w, x) ≤ dT (v, x).

Let G = PCG(T, dmin, dmax). Then by u′ we denote the vertex of G that
corresponds to the leaf u of T . The following lemma illustrates a relationship
between a PCG and its corresponding edge-weighted tree.

Lemma 2 (Yanhaona et al. [17]). Let G = PCG(T, dmin, dmax). Let a, b,
c, d, e be five leaves of T and a′, b′, c′, d′, e′ be the corresponding vertices of G,

4

a ci

k

u v

d

a c

d

b

ji j
0.5

a

12

eb

22

0.2

2.2

1

2
1

2

f

b c d e

(d)

b

(a) (b) (c)

0.5

a

0.2

Figure 2: (a) An edge-weighted tree T . (b) Tabe. Illustration for (c) H and (d) G1.

respectively. Let Pae and Pbd be the longest path in Tabcde and Tbcd, respec-
tively. Then any vertex x′ in G that is adjacent to a′, c′, e′ must be adjacent
to at least one vertex in {b′, d′}.

3. Not all 9-Vertex Graphs are PCGs

In this section we construct a graph G1 of nine vertices that is not a PCG.
Here we describe an outline of the construction.

We use three lemmas to construct G1. In Lemma 3 we prove that for a
cycle a′, b′, c′, d′ of four vertices, dT (a, c) and dT (b, d) cannot be both greater
than dmax. We then construct a graphH with six vertices a′, b′, c′, d′, i′, j′ such
that each pair of vertices inH are adjacent except the pairs (a′, c′), (b′, d′), (i′, d′),
(j′, b′), (i′, j′), as shown in Figure 2(c). Using Lemma 3 we prove in Lemma 4
that at least one of dT (a, c), dT (b, d), dT (i, d), dT (j, b), dT (i, j) must be greater
than dmax. In Lemma 5 we prove that any PCG that contains H as an in-
duced subgraph must satisfy the inequality dT (a, c) < dmin, where a′ and c′

are the only vertices of degree four in H. We add three vertices k′, u′, v′ to
H to construct G1, as shown in Figure 2(d). In Theorem 1 we show that
for every non-adjacent pair (x′, y′) in H, the graph G1 contains an induced
subgraph isomorphic to H that contains x′ and y′ as its degree four vertices.
By Lemma 5, dT (x, y) < dmin. Observe that this contradicts Lemma 4.
Consequently, G cannot be a PCG.

In the following lemma we prove that for a cycle a′, b′, c′, d′ of four vertices,
dT (a, c) and dT (b, d) cannot be both greater than dmax.

Lemma 3. Let C be the cycle a′, b′, c′, d′ of four vertices. If C=PCG(T, dmin,
dmax) for some tree T and values dmin and dmax, where the leaves a, b, c and d

5

s t

a

c d

b

s t
c

d

b

a
s t

(b)(a) (d)

x

y y

x

zzp

q p

q

(c)

Figure 3: (a)–(b) Possible topologies for T . Illustration for (c) Case 1, and (d) Case 2,
where each edge is labeled with its corresponding weight.

of T correspond to the vertices a′, b′, c′ and d′ of G, respectively, then dT (a, c)
and dT (b, d) cannot be both greater than dmax.

Proof. Without loss of generality we assume that T does not have any
vertices of degree two. Otherwise, it is straightforward to replace each vertex
of degree two and its adjacent edges with a single edge, where the weight
of the new edge is the sum of the weights of the two corresponding deleted
edges. Consequently, T can have one of the two topologies as depicted in
Figures 3(a)–(b). Since the topology of Figure 3(b) can be derived from the
topology of Figure 3(a) by setting the weight of edge (s, t) to zero, we only
examine the topology of Figure 3(a). Without loss of generality, we now
need to consider two cases depending on the position of the leaves in this
tree topology.

Case 1: Assume that T takes the form of Figure 3(c).

Suppose for a contradiction that both dT (a, c) and dT (b, d) are greater
than dmax. Then dT (a, c) + dT (b, d) = x + z + p + q + 2y > 2dmax. Since
a′ and d′ are adjacent, dmin ≤ x + y + q ≤ dmax. Again, since b′ and c′ are
adjacent, dmin ≤ p+ y+ z ≤ dmax. Consequently, x+ z+ p+ q+2y ≤ 2dmax,
which contradicts that dT (a, c) + dT (b, d) > 2dmax.

Case 2: Assume that T takes the form of Figure 3(d).

Suppose for a contradiction that both dT (a, c) and dT (b, d) are greater
than dmax, i.e., dT (a, c) = x + z > dmax and dT (b, d) = p + q > dmax.
Then either x > dmax/2 or z > dmax/2. Similarly, either p > dmax/2 or
q > dmax/2. Since dT (a, b) ≥ x + p, dT (b, c) ≥ z + p, dT (c, d) ≥ z + q and
dT (a, d) ≥ x + q, one of the four pairs among (a′, b′), (b′, c′), (c′, d′), (a′, d′)
must be non-adjacent in G. This contradicts that a′, b′, c′, d′ is a cycle. �

We now construct a graph H with six vertices a′, b′, c′, d′, i′, j′ such that
each pair of vertices in H are adjacent except the pairs (a′, c′), (b′, d′), (i′, d′),
(j′, b′), (i′, j′), as shown in Figure 2(c). The following lemma proves that at

6

least one of dT (a, c), dT (b, d), dT (i, d), dT (j, b), dT (i, j) must be greater than
dmax.

Lemma 4. Let H = PCG(T, dmin, dmax). Let a, b, c, d, i, j be the leaves of
T that correspond to the vertices a′, b′, c′, d′, i′, j′ of H. Then at least one of
dT (a, c), dT (b, d), dT (i, d), dT (j, b), dT (i, j) must be greater than dmax.

Proof. For each pair (x′, y′) ∈ {(a′, c′), (b′, d′), (i′, d′), (j′, b′), (i′, j′)}, x′ and
y′ are non-adjacent in H. Therefore, either dT (x, y) < dmin or dT (x, y) >
dmax.

If one of dT (a, c), dT (b, d), dT (i, d), dT (j, b) is greater than dmax, then the
lemma holds irrespective of whether dT (i, j) < dmin or dT (i, j) > dmax. We
thus assume that each of dT (a, c), dT (b, d), dT (i, d), dT (j, b) is less than dmin,
and then prove that dT (i, j) must be greater than dmax.

Suppose for a contradiction that dT (i, j) < dmin. Recall that we assumed
dT (j, b) < dmin. Consequently, since i

′ and b′ are adjacent in H, the path Pib

must be the longest path Tijb. By Lemma 1, dT (j, d) ≤ dT (i, d) or dT (j, d) ≤
dT (b, d). Since we assumed that dT (i, d) < dmin and dT (b, d) < dmin, the
inequality dT (j, d) < dmin holds. But this contradicts that j′, d′ are adjacent
in G. Therefore, dT (i, j) must be greater than dmax. �

In the following lemma we prove that any PCG that contains H as an
induced subgraph must satisfy the inequality dT (a, c) < dmin, where a′ and
c′ are the only vertices of degree four in H.

Lemma 5. Let G = PCG(T, dmin, dmax) be a graph that contains an induced
subgraph G′ isomorphic to H. Let a, b, c, d, i, j be the leaves of T that cor-
respond to the vertices a′, b′, c′, d′, i′, j′ of G′. Let a′ and c′ be the vertices of
degree four in G′. Then dT (a, c) must be less than dmin.

Proof. Since a′, c′ are non-adjacent inG′, either dT (a, c) < dmin or dT (a, c) >
dmax. Suppose for a contradiction that dT (a, c) > dmax.

Since the subgraph induced by a′, b′, c′, d′ is a cycle, by Lemma 3, dT (b
′, d′) <

dmin. Again, since the subgraph induced by a′, i′, c′, d′ is a cycle, by Lemma 3,
dT (i

′, d′) < dmin. Consequently, Pbi is the longest path in Tibd. Observe that
we assumed dT (a, c) > dmax. On the other hand, for each pair (x′, y′) ∈
{(a′, b′), (a′, d′), (a′, i′), (b′, d′), (b′, c′), (b′, i′), (c′, d′), (c′, i′), (d′, i′)}, dT (x, y) ≤
dmax. Therefore, Pac is the longest path in Tabcdi.

7

a ci

k

u v

d

j
a c

d

b

ji
a c

d

b

i b d

a

k v

b vdv

(e)

a

c

i u
v

(g)

a

ji

c

u

(f)

j

a

c

u

(a) (b)

b

(d)(c)

c

u

Figure 4: (a) H. (b) G1. (c)–(g) Five induced subgraphs of G, when (c) dT (a, c) > dmax,
(d) dT (b, d) > dmax, (e) dT (i, d) > dmax, (f) dT (j, b) > dmax, (g) dT (i, j) > dmax.

By Lemma 2, any vertex j′ in G′ that is adjacent to a′, c′, d′ must be
adjacent to i′ or b′. Although j′ is adjacent to a′, c′, d′ in G, neither i′ nor b′

is adjacent to j′, a contradiction. �

We now add three vertices k′, u′, v′ to H to construct G1, as shown in
Figures 4(a)–(b). In the following theorem we show that G1 is not a PCG.

Theorem 1. G1 is not a PCG.

Proof. For every non-adjacent pair (x′, y′) in H, the graph G1 contains an
induced subgraph isomorphic to H that contains x′ and y′ as its degree four
vertices, as shown in Figures 4(c)–(g). By Lemma 5, dT (x, y) < dmin. This
contradicts Lemma 4 that says there exists a non-adjacent pair (x′, y′) in H
such that dT (x, y) > dmax. Consequently, G cannot be a PCG. �

4. Not all 8-Vertex Graphs are PCGs

In this section we analyze the structure of the graph G1, and modify it
to obtain a graph of eight vertices that is not a PCG.

8

We refer the reader to Figure 4. Observe that G1 has only one vertex of
degree three, i.e., vertex k′. The proof of Theorem 1 refers to vertex k′ only
in the case when dT (a, c) > dmax, as shown in Figure 4(c). This observation
inspired us to examine whether the graph G1 \ k′ is a PCG or not. In this
section we denote the graph G1 \ k′, shown in Figure 5(a), by G2 and prove
that G2 is not a PCG. The following lemma will be useful to prove the main
result.

Lemma 6. Let G be a graph of four vertices a′, b′, c′, d′ and two edges (a′, b′)
and (c′d′). If G = PCG(T, dmin, dmax) for some tree T and values dmin and
dmax, where the leaves a, b, c and d of T correspond to the vertices a′, b′, c′ and
d′ of G, respectively, then at least one of dT (a, d), dT (b, d), dT (b, c), dT (a, c)
must be greater than dmax.

Proof. Since every pair of vertices among (a′, d′), (b′, d′), (b′, c′), (a′, c′) are
non-adjacent in G, each of dT (a, d), dT (b, d), dT (b, c), dT (a, c) is either greater
than dmax or less than dmin. Suppose for a contradiction that dT (a, d), dT (b, d),
dT (b, c), dT (a, c) are less than dmin.

Since a′ and b′ are adjacent and dT (a, c), dT (b, c) are less than dmin, Pab

must be the longest path in Tabc. By Lemma 1, dT (c, d) ≤ dT (a, d) or
dT (c, d) ≤ dT (b, d). By assumption, both dT (a, d) and dT (b, d) are less than
dmin. Therefore, dT (c, d) < dmin, which contradicts that c′ and d′ are adjacent
in G. �

We now use Lemma 6 to obtain the following lemma.

Lemma 7. Let G2 = PCG(T, dmin, dmax) and let a, b, c, d, i, j, u, v be the
leaves of T that correspond to the vertices a′, b′, c′, d′, i′, j′, u′, v′ of G2. Then
(a) at least one of dT (u, v), dT (a, v), dT (a, c), dT (u, c) must be greater than
dmax, and (b) at least one of dT (b, j), dT (b, d), dT (i, d), dT (i, j) must be greater
than dmax.

Proof. We only prove claim (a), i.e., one of dT (u, v), dT (a, v), dT (a, c) must
be greater than dmax, since the proof for claim (b) is similar.

Since every pair of vertices among (u′, v′), (a′, v′), (a′, c′) are non-adjacent
in G2, each of dT (u, v), dT (a, v), dT (a, c) is either greater than dmax or less
than dmin. Suppose for a contradiction that dT (u, v), dT (a, v), dT (a, c) are
less than dmin

9

a ciu v

d

j

b a b iu

v d jc

a b iu

v d jc

b

v j

(a) (b) (c) (d)

u

Figure 5: (a) G2. (b) Another drawing of G2. (c) Illustration for ((w′, x′), (y′, z′)),
where (w′, x′) and (y′, z′) are shown in dashed lines and dotted lines, respectively. (d)
((w′, x′), (y′, z′)) = ((u′, v′), (b′, j′)).

Since u′ and a′ are adjacent and dT (u, c), dT (a, c) are less than dmin, Pau

must be the longest path in Tacu. By Lemma 1, dT (c, v) ≤ dT (a, v) or
dT (c, v) ≤ dT (u, v). Recall that according to our assumption, dT (u, v), dT (a, v)
are less than dmin. Therefore, dT (c, v) < dmin, which contradicts that c′ and
v′ are adjacent in G2. �

Theorem 2. G2 is not a PCG.

Proof. Suppose for a contradiction that G2 = PCG(T, dmin, dmax), where
a, b, c, d, i, j, u, v are the leaves of T that correspond to the vertices a′, b′, c′, d′, i′,
j′, u′, v′ ofG2. Observe that for any ((w′, x′), (y′, z′)), where (w′, x′) ∈ {(u′, v′),
(a′, v′), (a′, c′), (u′, c′)} and (y′, z′) ∈ {(b′, j′), (b′, d′), (i′, d′), (i′, j′)}, the ver-
tices {w′, x′, y′, z′} induce a cycle C such that w′, x′ and y′, z′ are non-adjacent
in C. Figures 5(b)–(d) illustrate this scenario. By Lemma 7, for some
((w′, x′), (y′, z′)), both dT (w, x) and dT (y, z) are greater than dmax. This
contradicts Lemma 3 since the vertices {w′, x′, y′, z′} induce a cycle. �

5. Not all Planar Graphs are PCGs

In this section we prove that the planar graph Gp with twenty vertices,
shown in Figure 6(a), is not a PCG.

Theorem 3. Gp is not a PCG.

Proof. Suppose for a contradiction that Gp = PCG(T, dmin, dmax), where
a, b, . . . , s, t are the leaves of T that correspond to the vertices a′, b′, . . . , s′, t′

of Gp.

10

a b

c d

hg i k m
o p

q
s t

e

a b

c d

f hg i j k m
p

q t
e

snl
r

o
f lj n r

(b)(a)

Figure 6: (a) Gp. (b) Illustration for the proof of Theorem 3. The graphs isomorphic to H
are shown in bold lines (dT (b, c) > dmax), regular dashed lines (dT (a, c) > dmax), regular
dotted lines (dT (b, d) > dmax) and irregular dashed lines (dT (a, d) > dmax).

Since a′, b′, c′, d′ induce a graph with two edges (a′, b′) and (c′, d′), by
Lemma 6, one of dT (a, d), dT (b, d), dT (b, c), dT (a, c) must be greater than
dmax. For any pair (x′, y′) ∈ {(a′, d′), (b′, d′), (b′, c′), (a′, c′)}, there exists an
induced subgraph inGp that is isomorphic toH (i.e., the graph of Figure 4(c))
that contains x′ and y′ as its degree four vertices. By Lemma 5, dT (x, y) <
dmin, which contradicts that at least one of dT (a, d), dT (b, d), dT (b, c), dT (a, c)
must be greater than dmax. Consequently, Gp cannot be a PCG. �

Observe that Gp has twenty vertices. However, the proof of Theorem 3
holds even for the planar graph obtained from Gp by merging the pair of
vertices (e′, t′), (h′, i′), (l′,m′), (p′, q′) and then removing the resulting multi-
edges. Therefore, there exists a planar graph with sixteen vertices that is
not a PCG.

6. NP-hardness

In this section we examine a generalized PCG recognition problem that
given a graph G = (V,E) and a set S ⊆ E, asks to determine a PCG
G′ = (T, dmin, dmax) that contains G as a subgraph but does not contain any
edge of S, where E is the set of edges in the complement graph of G. Observe
that if S = E, then the problem asks to decide whether G is a PCG. We
prove that the generalized PCG recognition problem is NP-hard if we require
maximum number of edges of S to have weighted tree distance greater than
dmax between their corresponding leaves. A decision version of the problem
is as follows.

11

Problem : Max-Generalized-PCG-Recognition

Instance : A graph G, a subset S of the edges of its complement graph,
and a positive integer k.

Question : Is there a PCG G′ = PCG(T, dmin, dmax) such that G′ contains
G as a subgraph (not necessarily an induced subgraph), but does not contain
any edge of S; and at least k edges of S have distance greater than dmax

between their corresponding leaves in T?

We prove the NP-hardness of Max-Generalized-PCG-Recognition
by reduction form Monotone-One-In-Three-3-SAT [16].

Problem : Monotone-One-In-Three-3-SAT

Instance : A set U of variables and a collection C of clauses over U such
that each clause consists of exactly three non-negated literals.

Question : Is there a satisfying truth assignment for U such that each
clause in C contains exactly one true literal?

Given an instance I(U,C) of Monotone-One-In-Three-3-SAT, we
construct an instance I(G,S, k) of Max-Generalized-PCG-Recognition
such that I(U,C) has an affirmative answer if and only if I(G,S, k) has an
affirmative answer. The idea of the reduction is as follows. Given an edge-
weighted tree T with n leaves, dmin = 0 and dmax = +∞, the corresponding
PCG is a complete graph Kn of n vertices. Observe that as the interval
[dmin, dmax] begins to shrink, more and more edges of Kn disappear. Some
edges disappear due to the increase of dmin and some other edges disappear
due to the decrease of dmax. We use these two events to set the truth values
of the literals.

Let Gnot be the graph of Figure 7(a). The following lemma shows how to
use this graph as a NOT gate.

Lemma 8. Assume that Gnot = PCG(T, dmin, dmax), where a, b, . . . , q are
the leaves of T that correspond to the vertices a′, b′, . . . , q′ of Gnot. Then
dT (a, b) < dmin if and only if dT (c, d) > dmax.

12

Proof. By Lemma 6, one of dT (e, g), dT (e, h), dT (f, g), dT (f, h) must be
greater than dmax. Observe that for any pair (x, y) ∈ {(e′, g′), (e′, h′), (f ′, g′),
(f ′, h′)}, the vertices b′, x′, d′, y′ form an induced cycle. Therefore, by Lemma 3,
dT (b, d) < dmin. Similarly, we can prove that dT (a, q) < dmin and dT (c, q) <
dmin. Since a

′, c′, b′, q′, d′ induce a cycle of five vertices, one of dT (a, b), dT (c, d),
dT (a, q), dT (c, q), dT (b, d) is greater than dmax [8, Lemma 2]. Since dT (a, q),
dT (c, q), dT (b, d) are less than dmin, one of or both dT (a, b) and dT (c, d) are
greater than dmax.

Without loss of generality assume that dT (a, b) > dmax. Then by Lemma 1,
dT (c, d) ≤ dT (a, d) or dT (c, d) ≤ dT (b, d). Since dT (a, d) ≤ dmax and dT (b, d) <
dmin ≤ dmax, dT (c, d) must be less than dmin. Similarly, we can prove that if
dT (c, d) > dmax, then dT (a, b) < dmin. �

6.1. Properties of Gnot

The vertices a, b and c, d play the role of the input and output of a NOT
gate, respectively. Figure 7(b) illustrates a pairwise compatibility tree T ,
where Gnot = PCG(T, 7, 11) and dT (a, b) > dmax. Observe that once we
construct the tree Tabqcd, it becomes straightforward to add the trees Tefgh,
Tijkl and Tmnop. Therefore, in the rest of this section we only consider the
simplified representation for T , as shown in Figure 7(c). We can cascade
several NOT gates to duplicate or invert the input, as illustrated below.

Cascading of NOT gates. We can cascade NOT gates to duplicate
or invert the input. Figure 7(d) illustrates the cascading of NOT gates.
Figure 7(e) shows the simplified tree representations for three gates of Fig-
ure 7(d) assuming that the literal corresponding to a′, b′ is true. Observe
that if any input pair (respectively, output pair) x, y of the NOT gate is true
(respectively, false), then the corresponding unique path in the tree has the
weight sequence (4, 2, 2, 4) (respectively, (2, 2, 2)). Each time we cascade a
new gate, we maintain this invariant as follows. If the new tree T ′, i.e., the
tree corresponding to the new gate, and the existing tree T contain a com-
mon subgraph T ′′, then we add to T the edges and vertices of T ′ that does
not belong to T ′′. We denote this operation as a tree merging operation, i.e.,
merging of T ′ into T . Figure 7(f) illustrates the tree that corresponds to the
cascading of the NOT gates of Figure 7(d). The PCG G′ of the final tree T
contains all the edges that belong to the constituent Gnot graphs, and also
many redundant edges (e.g., the edges (a′, c′3), (c

′
2, c

′
3) and so on). However,

13

1

1
2

2

3

3

11 1

2
1 1 1

2

2

2

2 21 2

2 2 22

2 2
2

2

4
2 2

2

4

4 4 4 4
44

4 4

4 444

2

4
2 2

4

2

4

2

2

2

4

2

2
4 4

2 2

2

2

2
4 4

2 2

2

2

2
4 4

2 2

2

2

2
2

j k li f g h

nm

a

d

b

q
c

c

d

a

i l b

e

p mj k o nf

h
 g

q

c
d

d

c
c
d

c
d

a

d

b

q
c

a b

c

d

c d

q

c
dq c d

a b

a b

q

q c d

c

q

q

d

dc

e

(b)

po

(c)(a)

a
b

a
b

(d) (e) (f)

2

2

3
3

1

1

1
1 1

1

3

3 3
3

2

2

2

2

1
1

Figure 7: (a) Gnot, and its hypothetical representation. (b) Gnot = PCG(T, 7, 11). (c)
Simplified representation of T . (d)–(f) Illustration for the cascading of NOT gates.

since the PCG of every tree that we used to construct T is a Gnot, none of
these redundant edges can belong to a single Gnot.

In the reduction, all the edges of Gnot will belong to S. Every Gnot has
101 non-adjacent pairs, and by construction, in any pairwise compatibil-
ity tree T ′ of Gnot, all the distances dT ′(a, q), dT ′(c, q), dT ′(b, d) and one of
dT ′(a, b), dT ′(c, d) must be less than dmin. Therefore, at most 97 edges of
Gnot can have distance greater than dmax between their corresponding leaves
in T ′. Since the tree T , shown in Figure 7(b), determines 97 such edges, it
maximizes the number of edges of Gnot that have distance greater than dmax

between their corresponding leaves.

6.2. Literal and Clause Gadgets

Each literal gadget consists of a pair of non-adjacent vertices. Every edge
determined by these two vertices, belongs to S. We say that a literal (or, any
non-adjacent pair of vertices) (a′, b′) is true if and only if dT (a, b) > dmax;
otherwise, it is false.

Every clause gadget Gclause, as shown in Figure 8(a), corresponds to a
logic circuit L that is consistent if and only if at most one of its three inputs

14

tsr

tsr

tsr

tsr
1 1

1 1

1

11

1 1

1 1
2

4

2

2
2

4 4

2

2

2

4
2

2

4
2

4

2

2

2 2

2

2

2

42 2

2
4 2

4 42

2

4

2

2
2

2

24
2

b

q
2

a

9o

11o

10o

12o

(d)

e
f

e

dc

f

6o

8o

5o

7o
q

3

(e)

e f

a

d

b

c

(b)

o2o1 o3 o4 o5 o6 o7 o8 o9 o10 o11 o12

a b c d e f

3o 4o

2o

q
1

b

d

1oa

(a)

(c)

c

Figure 8: (a) A clause gadget Gclause. (b) Simplified representation of a pairwise com-
patibility tree T that determines the truth values of its literals. Here, (a′, b′), (c′, d′) and
(e′, f ′) correspond to the values true, false and false, respectively. (c)–(e) Subtrees of T
that correspond to a Gnot and its associated literal gadgets.

is true. The three pairs of vertices (a′, b′), (c′, d′), and (e′, f ′) of Gclause play
the role of the inputs. For each pair of inputs, e.g., ((a′, b′), (c′, d′)), Gclause

contains a Gnot such that the ports o′1, o
′
2 of Gnot form a cycle with a′, b′, and

the ports o′3, o
′
4 of Gnot form a cycle with c′, d′. In the following we show that

L is consistent if and only if at most one input is true.
Suppose for a contradiction that at least two of the three inputs, with-

out loss of generality (a′, b′) and (c′, d′), are true. Since (a′, b′) is true, by
Lemma 3, (o′1, o

′
2) must be false. Consequently, (o′3, o

′
4) must be true. Since

c′, o′3, d
′, o′4 induce a cycle, by Lemma 3, (c′, d′) must be false, a contradiction.

Assume now that at most one of the three inputs is true. In this case, we
show how to construct a pairwise compatibility tree such that the correspond-
ing PCG G′

clause contains Gclause as a subgraph. Without loss of generality
assume that (a′, b′) is true. (The construction when all the inputs are false
is similar.) Construct an edge-weighted tree T as illustrated in Figure 8(b).
Observe that dT (c, d)<dmin, dT (e, f)<dmin and dT (a, b)>dmax, which implies
that (c′, d′), (e′, f ′) are false and (a′, b′) is true. We call r, s, t the medial path
of T . Figures 8(c)–(e) illustrate how to add the subtrees (shown in thin lines)

15

that correspond to the instances of Gnot to T . These trees not only realize
the instances of Gnot, but also determine the cycles that are incident to the
inputs of the clause gadget.

6.3. Proof of Reduction

The following theorem uses the literal gadgets and clause gadgets to prove
the NP-hardness result.

Theorem 4. Max-Generalized-PCG-Recognition is NP-hard.

Proof. Let I(U,C) be an instance of Monotone-One-In-Three-3-SAT.
We construct a corresponding instance I(G,S, k) of Max-Generalized-
PCG-Recognition as follows. Assume that U consists of the literals
xi, . . . , xt and C consists of the clauses c1, c2, . . . , ct′ . For each clause cj, 1 ≤
j ≤ t′, we construct a copy of Gclause. If the same literal appears in more
than two clauses, then we create a copy of that literal by cascading of NOT
gates as illustrated in Figure 9(a). The resulting graph is the required graph
G, which is straightforward to construct in polynomial time. The set S con-
sists of the edges of Gnots and the edges that are determined by the literal
gadgets. Let N be the number of instances of Gnot in G. Since each Gnot

has 101 non-adjacent pairs, S has 101N + t edges. We set k = 97N + t′. In
the following we prove that I(U,C) has an affirmative answer if and only if
I(G,S, k) has an affirmative answer.

We first assume that I(U,C) has an affirmative answer, and then con-
struct a PCG G′ = (T, dmin, dmax) such that G′ contains G as a subgraph,
does not contain any edge of S, and at least k edges of S have distance
greater than dmax between their corresponding leaves in T . For each clause
cj, we construct an edge-weighted tree T (j) as described in the construction
of clause gadget. Then for each index j from 1 to t′−1, we merge the medial
path rj+1, sj+1, tj+1 of T (j + 1) with the medial path r, s, t of T (j), as illus-
trated in Figures 9(b)–(d). Specifically, we merge the vertices rj+1, sj+1, tj+1

with the vertices r, s, t, respectively, and then remove any resulting multi-
edges or duplicate vertices. Finally, we complete the subtrees corresponding
to the instances of Gnot that we used for duplicating the input values, as
illustrated in Figures 9(e)–(g).

Let the resulting tree be T . We prove that its corresponding PCG is the
required PCG G′. Since we start with the edge-weighted trees for the basic
gadgets, and the merging operations do not destroy any adjacency relation-
ship, G′ contains G as a subgraph. On the other hand, every redundant

16

sr t

sr t sr t

r s t

g

h

i j

h

ji

g

m
n

g

h

ji
qq

1 1
1 1

4
5

4 4

5

4
4

2

2

2 2

2

2

2
2 2

2

4 4
4

4

4

4

2
2 2 2

2
2 2 2 2

2

2

4

2
24

2
2

4

2
24

2 2
2

2

a b c d e f g h k l i j

n
b

d

e fab

d

e fa

b

d

e fa

q

22 2

dq
dq

22 2 22 2

m

(a)

(g)(f)(e)

(b) (c)

c
k l

(d)

1 1 1

k l
c

1 1

1 1
1 1

k lcc c k l

m
n

m
n

Figure 9: (a) The graph G that correspond to the instance I(U,C) = (x1 ∨ x2 ∨ x3) ∧
(x4 ∨ x2 ∨ x5), where x1, x2, x3, x4, x5 correspond to (a′, b′), (c′, d′), (e′, f ′), (g′, h′), (i′, j′),
respectively. (b)–(c) Compatibility trees for the clauses, where the literals except x1 and
x2 are false. (d) Merging the medial paths. (e)–(f) Compatibility trees for the instances of
Gnot that propagate the truth value from (c′, d′) to (k′, l′). (g) A compatibility tree of G′.
The edges with weights 1, 2 and 4 are shown in dotted, dashed and solid lines, respectively.

17

edge in G′ creates an adjacency between two different instances of Gnot, or
between two different literal gadgets, or between a Gnot and a literal gadget.
Since every edge in S is contained either in a single Gnot or in a single lit-
eral gadget, G′ does not contain any edge from S. We now need to verify
that at least k edges of S have distance greater than dmax between their
corresponding leaves in T . Recall that each Gnot has exactly 97 such edges.
Furthermore, every clause has exactly one true literal. Therefore, S has ex-
actly k = 97N + t′ edges that have distance greater than dmax between their
corresponding leaves in T .

We now assume that I(U,C) does not have any affirmative answer, and
then prove that in any PCG G′ that contains G as a subgraph, must have
less than k = 97N + t′ edges of S that have distance greater than dmax

between their corresponding leaves in T . Since each Gnot can have at most
97 such edges, at least t′ edges that contribute to k must come from the
literal gadgets. Since no two literal gadget that lie in the same clause can
simultaneously have distance greater than dmax between their corresponding
leaves in T , each clause must have at least one true literal. Therefore, we
can construct satisfying truth assignment for U such that each clause in C
contains exactly one true literal, which contradicts that I(U,C) does not
have any affirmative answer. �

7. Conclusion

We have constructed a nonplanar graph with eight vertices that is not
a PCG. The graph we construct is not split matrogenic, leaving open the
question of Calamoneri et al. [8] of whether every split matrogenic is a PCG.
See [8] for the definition of a split matrogenic graph.

We also construct a planar graph that is not a PCG, but the graph is
not outerplanar. Since every triangle-free outerplanar graph with degree at
most three is a PCG [15], an interesting question is whether there exists any
outerplanar graph that is not a PCG. Another important open problem that
remains is to determine the complexity of the (original, or generalized) PCG
recognition problem.

References

[1] Brandstädt, A., Hundt, C., Mancini, F., Wagner, P., 2010. Rooted di-
rected path graphs are leaf powers. Discrete Mathematics 310 (4), 897–
910.

18

[2] Brandstädt, A., Le, V. B., Rautenbach, D., 2010. Exact leaf powers.
Theoretical Computer Science 411 (31-33), 2968–2977.

[3] Brandstädt, A., Wagner, P., 2010. Characterising (k, l)-leaf powers. Dis-
crete Applied Mathematics 158 (2), 110–122.

[4] Calamoneri, T., Frascaria, D., Sinaimeri, B., 2013. All graphs with at
most seven vertices are pairwise compatibility graphs. The Computer
Journal 56 (7), 882–886, http://arxiv.org/abs/1202.4631.

[5] Calamoneri, T., Petreschi, R., 2014. On dilworth k graphs and their
pairwise compatibility. In: Proceedings of the 8th International Work-
shop on Algorithms and Computation (WALCOM). Vol. 8344 of LNCS.
Springer, pp. 213–224.

[6] Calamoneri, T., Petreschi, R., 2014. On pairwise compatibility graphs
having dilworth number k. Theoretical Computer Science 547, 82–89.

[7] Calamoneri, T., Petreschi, R., 2014. On pairwise compatibility graphs
having dilworth number two. Theoretical Compututer Science 524, 34–
40.

[8] Calamoneri, T., Petreschi, R., Sinaimeri, B., 2012. On relaxing the con-
straints in pairwise compatibility graphs. In: Proceedings of the 6th
International Workshop on Algorithms and Computation (WALCOM),
Bangladesh. Vol. 7157 of LNCS. Springer, pp. 124–135.

[9] Durocher, S., Mondal, D., Rahman, M. S., 2013. On graphs that are not
PCGs. In: Proceedings of the 7th International Workshop on Algorithms
and Computation (WALCOM). Vol. 7748 of LNCS. Springer, pp. 310–
321.

[10] Fellows, M. R., Meister, D., Rosamond, F. A., Sritharan, R., Telle, J. A.,
2008. Leaf powers and their properties: Using the trees. In: Proceedings
of the 19th International Symposium, on Algorithms and Computation
(ISAAC). Vol. 5369 of LNCS. Springer, pp. 402–413.

[11] Kearney, P. E., Munro, J. I., Phillips, D., 2003. Efficient generation of
uniform samples from phylogenetic trees. In: Proceedings of the 3rd
International Workshop on Algorithms in Bioinformatics (WABI), Bu-
dapest, Hungary. Vol. 2812 of LNCS. Springer, pp. 177–189.

19

[12] Kennedy, W. S., Lin, G., Yan, G., 2006. Strictly chordal graphs are leaf
powers. J. Discrete Algorithms 4 (4), 511–525.

[13] Nishimura, N., Ragde, P., Thilikos, D. M., 2002. On graph powers for
leaf-labeled trees. Journal of Algorithms 42 (1), 69–108.

[14] Phillips, D., 2002. Uniform sampling from phylogenetic trees. Master’s
thesis, University of Waterloo, Canada.

[15] Salma, S. A., Rahman, M. S., Hossain, M. I., 2013. Triangle-free out-
erplanar 3-graphs are pairwise compatibility graphs. Journal of Graph
Algorithms and Applications 17 (2), 81–102.

[16] Schaefer, T. J., 1978. The complexity of satisfiability problems. In: Proc.
of Symposium on Theory of Computing (STOC 1978). pp. 216–226.

[17] Yanhaona, M. N., Bayzid, M. S., Rahman, M. S., 2010. Discovering
pairwise compatibility graphs. Discrete Mathematics, Algorithms and
Applications 2 (4), 607–624.

[18] Yanhaona, M. N., Hossain, K. S. M. T., Rahman, M. S., 2009. Pair-
wise compatibility graphs. Journal of Applied Mathematics and Com-
puting (30), 479–503.

20

