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Abstract

We consider several variations of the problems of covering a set of barriers
(modeled as line segments) using sensors that can detect any intruder cross-
ing any of the barriers. Sensors are initially located in the plane and they can
relocate to the barriers. We assume that each sensor can detect any intruder
in a circular area of fixed range centered at the sensor. Given a set of barriers
and a set of sensors located in the plane, we study three problems: (i) the
feasibility of barrier coverage, (ii) the problem of minimizing the largest re-
location distance of a sensor (MinMax), and (iii) the problem of minimizing
the sum of relocation distances of sensors (MinSum). When sensors are per-
mitted to move to arbitrary positions on the barrier, the MinMax problem is
shown to be strongly NP-complete for sensors with arbitrary ranges. We also
study the case when sensors are restricted to use perpendicular movement to
one of the barriers. We show that when the barriers are parallel, both the
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MinMax and MinSum problems can be solved in polynomial time. In con-
trast, we show that even the feasibility problem is strongly NP-complete if
two perpendicular barriers are to be covered, even if the sensors are located
at integer positions, and have only two possible sensing ranges. On the other
hand, we give an O(n3/2) algorithm for a natural special case of this last
problem.

Keywords: Sensor network, mobile sensors, barrier coverage, algorithmic
complexity, NP-completeness.

1. Introduction

The protection of a region by sensors against intruders is an important
application of sensor networks that has been previously studied in several
papers. Each sensor is typically considered to be able to sense an intruder
in a circular region of fixed range around the sensor. Previous work on
region protection using sensors can be classified into two major classes. In
the first body of work, called area coverage, the monitoring of an entire
region is studied [13, 16], and the presence of an intruder can be detected
by a sensor anywhere in the region, either immediately after the appearance
of an intruder, or within a fixed time delay. In the second body of work,
called barrier coverage, a region is assumed to be protected by monitoring its
perimeter, called the barrier, [1, 3, 6, 7, 15], and an intruder is detected when
crossing the barrier. Clearly, the second approach is less expensive in terms
of the number of sensors required, and it is sufficient in many applications.

There are two different approaches to barrier coverage in the literature. In
the first approach, a barrier is considered to be a narrow strip of fixed width.
Sensors are dispersed randomly on the barrier, and the probability of barrier
coverage is studied based on the density of dispersal. Since random dispersal
may leave gaps in the coverage, some authors propose using several rounds
of random dispersal for complete barrier coverage [10, 20]. In the second
approach, several papers assume that sensors, once dispersed, are mobile, and
can be instructed to relocate from the initial position to a final position on the
barrier in order to achieve complete coverage [2, 6, 7, 9, 14, 17, 18]. Clearly,
when a sufficient number of sensors is used, this approach always guarantees
complete coverage of the barrier. In order to minimize energy consumption
by the mobile sensors, researchers have studied the problem of assigning final
positions to the sensors that minimize some aspect of the relocation cost. The
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variations studied so far include centralized algorithms for minimizing the
maximum relocation distance (MinMax) [6], the sum of relocation distances
(MinSum) [7], or minimizing the number of sensors that relocate (MinNum)
[17]; distributed algorithms for barrier coverage are considered in [9, 18].

Circular barriers are studied in [4, 19]. In [4], the authors considered
moving n sensors to the perimeter of a given circular barrier to form a reg-
ular n-gon and provided an algorithm for MinMax problem that runs in
O(n3.5 log n). In [19] the results of [4] for the MinMax problem are improved
and an O(n2.5 log n) algorithm is given. Also, the authors introduced an al-
gorithm that solves the MinSum problem when initial positions of sensors
are on the perimeter of the circular barrier and runs in O(n4) time.

Most of the previous work on linear barriers is set in the one-dimensional
setting: the barriers are assumed to be one or more line segments that are
part of a line L, and furthermore, the sensors are initially located on the same
line L. In [6] it was shown that there is an O(n2) algorithm for the MinMax
problem in the case when the sensor ranges are identical. The authors also
showed that the problem becomes NP-complete for sensors with arbitrary
ranges if there are two barriers on L. A polynomial time algorithm for the
MinMax problem is given in [5] for arbitrary sensor ranges for the case of a
single barrier, and an improved algorithm is given for the case when all sensor
ranges are identical. In [7], it was shown that the MinSum problem is NP-
complete when arbitrary sensor ranges are allowed, and an O(n2) algorithm
is given when all sensing ranges are the same. Similarly as in the MinSum
problem, the MinNum problem is NP-complete when arbitrary sensor ranges
are allowed, and an O(n2) algorithm is given when all sensing ranges are the
same [17].

In this paper we consider the algorithmic complexity of several natu-
ral generalizations of the barrier coverage problem with sensors of arbitrary
ranges. We generalize the work in [5, 6, 7, 17] in two significant ways. First,
we assume that the initial positions of sensors are arbitrary points in the two-
dimensional plane, not necessarily on the line containing the barrier. This
assumption is justified since in many situations, initial dispersal of sensors
on the line containing the barrier might not be possible. Second, we con-
sider multiple barriers that are parallel or perpendicular to each other. This
generalization is motivated by barrier coverage of the perimeter of an area.
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1.1. Preliminaries and Notation

Throughout the paper, we assume that we are given a set of sensors
S = {s1, s2, . . . , sn} located in the plane in positions p1, p2, . . . , pn, where
pi = (xi, yi) for some real values xi, yi. The sensing ranges of the sensors
are positive real values r1, r2, . . . , rn, respectively. A sensor si can detect any
intruder in the closed circular area around pi of radius ri. We assume that
sensor si is mobile and thus can relocate itself from its initial location pi to
another specified location p′i. A barrier b is a closed line segment in the plane.
Given a set of barriers B ={b1, b2, . . . , bk}, and a set of sensors S of sensing
ranges r1, r2, . . . , rn with

∑n
i=1 2ri ≥

∑k
i=1 |bi|, initially located at positions

p1, p2, . . . , pn in the plane, the barrier coverage problem is to determine for
each i with 1 ≤ i ≤ n, the final position of sensor si on one of the barriers
denoted by p′i, so that all barriers are collectively covered by the sensing
ranges of the sensors. We call such an assignment of final positions a covering
assignment. Figure 1 shows an example of a barrier coverage problem and a
possible covering assignment. Motivated by reducing the energy consumption
of sensors, we are interested in optimizing some measure of the movement of
sensors involved to achieve coverage, in particular MinMax and MinSum. We
use standard cost measures such as Euclidean or rectilinear distance. The
distance between the initial position p and a final position p′ of a sensor is
denoted by d(p, p′).

p′4p′2

p′3
p′1

(a)

p1b1

b2 p3

p2

p4

b1

b2

(b)

Figure 1: (a) A given barrier coverage problem for two barriers (b) a possible covering
assignment

We are interested in the algorithmic complexity of three problems:

Feasibility problem: Given a set of sensors S located in the plane at po-
sitions p1, p2, . . . , pn, and a set of barriers B, determine if there exists
a valid covering assignment, i.e. determine whether there exist final
node positions p′1, p

′
2, . . . , p

′
n on the barriers such that all barriers in B

are covered.
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MinMax problem: Given a set of sensors S located in the plane at po-
sitions p1, p2, . . . , pn, and a set of barriers B, find final node positions
p′1, p

′
2, . . . , p

′
n on the barriers so that all barriers in B are covered and

max1≤i≤n{d(pi, p′i)} is minimized.

MinSum problem: Given a set of sensors S located in the plane at po-
sitions p1, p2, . . . , pn, and a set of barriers B, find final node positions
p′1, p

′
2, . . . , p

′
n on the barriers so that all barriers in B are covered, and∑n

i=1 d(pi, p
′
i) is minimized.

1.2. Our Results

Throughout the paper, we consider the barrier coverage problem with
sensors of arbitrary ranges, initially located at arbitrary locations in the
plane. In Section 2, we assume that sensors can move to arbitrary positions
on any of the barriers. While feasibility is trivial in the case of one barrier,
it is straightforward to show that it is NP-complete for even two barriers.
The NP-completeness of the MinSum problem for one barrier follows trivially
from the result in [7]. In this paper, we show that the MinMax problem is
strongly NP-complete even for a single barrier. We show that this holds
both when the cost measure is Euclidean distance and when it is rectilinear
distance.

In light of these hardness results, in the rest of the paper, we consider
a more restricted but natural movement of sensors. We assume that once
a sensor has been ordered to relocate to a particular barrier, it moves to
the closest point on a line containing a barrier. We call this perpendicular
movement. Note that it is possible for a sensor that is not located on the
barrier to cover part of the barrier. However, we require final positions of
sensors to be on the line containing the barrier. Section 3.1 considers the
case of one barrier and perpendicular movement, while Section 3.2 considers
the case of perpendicular movement and multiple parallel barriers. We show
that all three of our problems are solvable in polynomial time for any fixed
number of barriers. Finally, in Section 4, we consider the case of perpen-
dicular movement and two barriers perpendicular to each other. We show
that even the feasibility problem is strongly NP-complete in this case. The
NP-completeness result holds even in the case when the given positions of
the sensors have integer values and the sensing ranges of sensors are lim-
ited to two different integer sensing ranges. In contrast, we give an O(n1.5)
algorithm for finding a covering assignment for a natural restriction of the
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problem that includes the case when all sensors are located in integer posi-
tions and the sensing ranges of all sensors are of diameter 1. Our results are
summarized in Table 1 below.

Barriers Movement Feasibility MinMax MinSum
one Arbitrary O(n) NPC NPC [7]
two Arbitrary NPC NPC NPC
one Perpendicular O(n) O(n log n) O(n2)

k parallel Perpendicular O(kn) O(knk+1) O(knk+1)
2 perpendicular Perpendicular NPC NPC NPC

Table 1: Summary of our results.

2. Arbitrary Final Positions

In this section, we assume that sensors are allowed to relocate to any final
positions on the barrier(s). We consider first the case of a single barrier b.
Without loss of generality, we assume that b is located on the x-axis between
(0, 0) and (L, 0) for some L. The feasibility of barrier coverage in this case is
simply a matter of checking whether Σn

i=12ri ≥ L. For the MinSum problem,
it was shown in [7] that even if the initial positions of sensors are on the
line containing the barrier, the problem is NP-complete; therefore the more
general version of the problem studied here is clearly NP-complete. Recently,
it was shown in [5] that if the initial positions of sensors are on the line
containing the barrier, the MinMax problem is solvable in polynomial time.
We proceed to study the complexity of the MinMax problem when initial
positions of sensors can be anywhere on the plane, and the final positions
can be anywhere on the barrier. See Figure 2 for an example of the initial
placement of sensors.

Theorem 1. Let S = {s1, s2, . . . , sn} be a set of sensors of ranges r1, r2, . . . , rn
initially located in the plane at positions p1, p2, . . . , pn and

∑n
i=1 2ri ≥ L. Let

the barrier b be a line segment between (0, 0) and (L, 0). Given an integer
k, the problem of determining if there is a covering assignment such that
the maximum relocation distance (Euclidean/rectilinear) of the sensors is at
most k is strongly NP-complete.
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Figure 2: (a) A given barrier coverage problem for a single barrier (b) a possible covering
assignment

Proof. The problem is trivially in NP; we give here a reduction from the 3-
partition problem [11]. We are given a multiset A = {a1 ≥ a2 ≥ · · · ≥ a3m}
of 3m positive integers such that B/4 < ai < B/2 for 1 ≤ i ≤ 3m and∑3m

i=1 ai = mB for some B. The problem is to decide whether A can be
partitioned into m triples T1, T2, . . . , Tm such that the sum of the numbers
in each triple is equal to B. We create an instance of the barrier coverage
problem as follows: Let L = mB + m − 1, the barrier b be a line segment
from (0, 0) to (L, 0), and let k = L. For every i with 1 ≤ i ≤ 3m, we create
a sensor si of range ai/2 and place it at (−ai/2, 0). In addition, place m− 1
sensors s3m+1, s3m+2, . . . , s4m−1 of range 1/2 at positions (B + 1/2, k), (2B +
3/2, k), (3B + 5/2, k), . . . , ((m − 1)B + (2m − 3)/2, k). See Figure 3 for an
example. Since L =

∑4m−1
i=1 2ri, all sensors must move to the barrier in any

covering assignment. Observe that the distance from any of the m−1 sensors
located above the barrier to the barrier is k, and when all of them move this
distance, there are gaps of length B between these sensors on the barrier.

If there is a partition of S into m triples T1, T2, . . . , Tm, the sum of each
triple being B, then there is a solution to the movement of the sensors such
that the three sensors corresponding to triple Ti are moved to fill the ith gap
in the barrier b. The maximal move of the three sensors corresponding to Ti

into ith gap is at most L, and the maximum of the moves of all sensors is k
in this case. If such a partition does not exist, then any covering assignment
for the barrier b corresponds to moving at least one of the sensors above
the x-axis by k + 1 (rectilinear distance), and by

√
k2 + 1 > k (Euclidean

distance).
It remains to show that the transformation from the 3-partition problem

to the sensor movement problem is polynomial. Since 3-partition is strongly
NP-complete [11], we may assume that the values a1, a2, . . . , a3m are bounded
by a polynomial c(3m)j for some constants c and j. The 3-partition prob-
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lem can be represented using O(m logm) bits. Therefore, B ≤ c1m
j and

k ≤ c2m
j+1 for some constants c1 and c2. Our reduction uses n = 4m − 1

sensors. In the corresponding barrier coverage problem we need O(n log n)
bits for the positions and sizes of sensors s1, s2, . . . , sn and we need O(n log n)
bits to represent the position and size of each sensor of size 1. Thus we
need O(n log n) bits to represent the corresponding barrier coverage prob-
lem, which shows that the transformation is polynomial.

By adding one additional sensor at distance > k above the barrier, we
can create an instance of the problem where

∑4m−1
i=1 2ri > L, and the proof

remains exactly the same as that sensor cannot be involved in a covering
assignment that has maximum relocation distance k.

Finally, it is straightforward to see that any given covering assignment
can be verified in polynomial time, completing the proof of strong NP-
completeness.

L
. . .

0

B B B B. . .

k = L

s3m+1 s4m−1

p1 p2
p3ms1

s2

Figure 3: Reduction from 3-partition to the MinMax problem

It is easy to see that when there are two barriers to be covered, even
feasibility of coverage is NP-complete. This can be shown by reducing the
Partition problem [11] to an appropriate 2-barrier coverage problem, as in
[6]. It follows that k-barrier coverage is also NP-complete.

3. Perpendicular Movement: Parallel Barriers

In the previous section, we showed that if sensor movements are not
limited even the feasibility problem is NP-complete. In this section, we
assume that all sensors use only perpendicular movement to a barrier. The
motivation for considering this limited mobility comes from the fact that
in perpendicular movement each sensor if assigned to a barrier will move
minimum distance to reach it. In the case of several barriers, the barriers
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are parallel to each other. Figure 4 illustrates an example of such a problem.
Without loss of generality, we assume barriers b1, b2, . . . , bk, k ≥ 1 are parallel
to the x-axis. Thus, sensors may only move in a vertical direction. Let the
set of n sensors s1, s2, . . . , sn be initially located at positions p1, p2, . . . , pn
respectively, where pi = (xi, yi). We assume that the sensors are listed in the
order of the leftmost x-coordinates they can cover, i.e., x1 − r1 ≤ x2 − r2 ≤
· · · ≤ xn−rn. For simplicity we assume all points of interest (sensor locations,
left/right endpoints of sensor ranges and barriers) are distinct.

Since there are k barriers, there are up to k points on barriers with the
same x-coordinate. We therefore speak of sensors being candidates for x-
coordinates: a sensor s in position p = (x, y) with sensing range r is a can-
didate sensor for x-coordinate x′ if x− r ≤ x′ < x+ r. Alternatively we say
s potentially covers the x-coordinate x′. Notice that according to our defi-
nition, the sensor s potentially covers a half-open interval of x-coordinates;
this definition simplifies our algorithms. We first consider the simpler case
of k = 1.

3.1. One Barrier

Without loss of generality, let the barrier b = b1 be the line segment
between (0, 0) and (L, 0). Since the y-coordinate of all points on the barrier
are the same, we sometimes represent the barrier or a segment of the barrier
by an interval of x-coordinates. For technical reasons, we denote the segment
of the barrier between the points (i, 0) and (j, 0) by the half-open interval
[i, j).

We first show a necessary and sufficient condition on the sensors for the
barrier to be covered. We give a dynamic programming formulation for the
MinSum problem. We denote the set of sensors {si, si+1, . . . , sn} by Si. If the
barrier is an empty interval, then the cost is 0. If no sensor is a candidate for
the left endpoint of the barrier, or if the sensor set is empty while the barrier
is a non-empty interval, then clearly the problem is infeasible and the cost
is infinity. If not, observe that the optimal solution to the MinSum problem
either involves moving sensor s1 to the barrier or it doesn’t. In the first case,
the cost of the optimal solution is the sum of |y1|, the cost of moving the first
sensor to the barrier, and the optimal cost of the subproblem of covering the
interval [x1 + r1, L) with the remaining sensors S2 = S−{s1}. In the second
case, the optimal solution is the optimal cost of covering the original interval
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[0, L) with S2. The recursive formulation is given below:

cost(Si, a) =

⎧⎪⎪⎨
⎪⎪⎩

0 if L < a
∞ if xi − ri > a or (Si = ∅ and L > a)

min

{ |yi|+ cost(Si+1, xi + ri),
cost(Si+1, a)

otherwise

Observe that a subproblem is always defined by a set Si and a left endpoint to
the barrier which is given by the rightmost x-coordinate covered by a sensor.
Thus the number of possible subproblems is O(n2), and it takes constant time
to compute cost(Si, a) given the solutions to the sub-problems. Using either
a tabular method or memoization, the problem can be solved in quadratic
time. The same dynamic programming formulation works for minimizing
the maximum movement, except that in the case when the i-th sensor moves
to the barrier in the optimal solution, the cost is the maximum of |yi| and
cost(Si+1, xi + ri) instead of their sum. A better approach is to check the
feasibility of covering the barrier with the subset of sensors at distance at
most d from the barrier in O(n) time, and find the minimum value of d using
binary search on the set of distances of all sensors to the barrier. This yields
an O(n log n) algorithm for MinMax.

Theorem 2. Let s1, s2, . . . , sn be n sensors initially located in the plane
at positions p1, p2, . . . , pn respectively, and let b be a barrier between (0, 0)
and (L, 0). The MinSum problem using only perpendicular movement can be
solved in O(n2) time, and the MinMax problem can be solved in O(n log n)
time.

3.2. Multiple Parallel Barriers

In this section we study the case of k equi-length barriers parallel to x
axis with all left endpoints sharing same x-coordinate. For simplicity, we
explain the case of two barriers; the results generalize to k barriers as stated
in Theorem 3. Assume without loss of generality that the two barriers to be
covered are b1 between (0, 0) and (L, 0) and b2 between (P,W ) and (L,W ),
0 ≤ P . Note that we are proving a more general version of the problem
where barriers may have different starting points because it is used in the
recursive step of our proof. We assume that the sensing ranges of sensors
are smaller than half the distance W between the two barriers, and thus it
is impossible for a sensor to simultaneously cover two barriers. See Figure 4
for an example of such a problem.
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Figure 4: An example of a barrier coverage problem with two parallel barriers

Since there are two barriers, there are two points on barriers with the same
x-coordinate. We say an interval I = [a, b) of x-coordinates is k-coverable if
every x-coordinate in the interval has k candidate sensors; such an interval
of x-coordinates can exist on both barriers. We first show a necessary and
sufficient condition on the sensors for the two barriers to be covered. Clearly,
since the sensing range of every sensor is smaller than half of the distance
between the two barriers, the barrier coverage problem for the two parallel
barriers b1 and b2 above is solvable by a set of sensors S only if the interval
[0, P ) is 1-coverable, and [P, L) is 2-coverable by sensors in S. We proceed
to show that this is also a sufficient condition, and give an O(n) algorithm
for finding a covering assignment for two parallel barriers.

Lemma 1. Let s1, s2, . . . , sn be sensors located at positions p1, p2, . . . , pn re-
spectively where pi = (xi, yi) and x1−r1 ≤ x2−r2 ≤ · · · xn−rn. Let b1 between
(0, 0) and (L, 0) and b2 between (P,W ) and (L,W ), where 0 ≤ P < L, be two
parallel barriers to be covered. If interval [0, P ) is 1-coverable and [P, L) is 2-
coverable, then a covering assignment that uses only perpendicular movement
of the sensors can be obtained in O(n) time.

Proof. We give an algorithm to find such a covering assignment. We assign a
sensor from S to cover (0, 0) on b1. Clearly this is possible, since the interval
of x-coordinates [0, P ) is 1-coverable. Let s be the sensor that was used in
this assignment, of range r, and initially in position (x, y), so that its final
position is (x, 0) where x − r ≤ 0. We remove s from S and consider the
following cases:
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x+ r ≤ P : It is easy to see that the interval of x-coordinates [x + r, P ) is
1-coverable and [P, L) is 2-coverable.

P < x+ r < L: Then since [P, L) was initially 2-coverable, and s is the only
unavailable sensor among all candidate sensors for this interval, it fol-
lows that the interval of x-coordinates [P, x+r) is now 1-coverable and
[x+ r, L) is 2-coverable.

x+ r ≥ L: Then we have a single barrier left and the interval of x-coordinates
[x + r, L) is 1-coverable, so we can use the algorithm of the previous
section.

We now have a sub-problem of the same type as the original problem and
proceed to solve it recursively. Since at every step of the algorithm, one of
the sensors is assigned to cover one of the barriers in increasing order of the
values xi − ri, the algorithm takes O(n) time.

It is easy to see that the lemma can be generalized for k barriers to show
that the feasibility problem can be solved in O(kn) time. We proceed to
study the problem of minimizing the sum of movements required to perform
barrier coverage.

The dynamic programming formulation given in Section 3.1 can be gen-
eralized for the case of two barriers. The key difference is that in an optimal
solution, sensor si may be used to cover a part of barrier b1 or barrier b2 or
neither. Let xcost(Si, a1, a2) denote the cost of covering the interval [a1, L) of
the barrier b1 and the interval [a2, L) of the second barrier with the sensor set
Si = {si, si+1, . . . , sn}. The optimal cost is given by the formulation below:

xcost(Si, a1, a2) =

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cost(Si, a2) if L < a1
cost(Si, a1) if L < a2
∞ if xi − ri > min{a1, a2} or (Si = ∅ and L > min{a1, a2})

min

⎧⎨
⎩

|yi|+ xcost(Si+1, xi + ri, a2),
|W − yi|+ xcost(Si+1, a1, xi + ri),
xcost(Si+1, a1, a2)

otherwise

It is not hard to see that the formulation can be generalized to k barriers
with possibly different lengths; a sensor si may move to any of the k barriers
with the corresponding cost being added to the solution. Observe that a
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subproblem is now given by a set Si, and a left endpoint of each of the barriers
to be covered. The total number of subproblems is O(nk+1) and the time
needed to compute the cost of a problem given the costs of the subproblems
is O(k). Thus, the time needed to solve the problem is O(knk+1). Clearly a
very similar formulation as above can be used to solve the MinMax problem
in O(knk+1) time as well. We have proved the following theorem.

Theorem 3. Let s1, s2, . . . , sn be n sensors initially located in the plane at
positions p1, p2, . . . , pn respectively, where pi = (xi, yi) and x1−r1 ≤ x2−r2 ≤
· · · xn−rn. Both the MinSum problem and the MinMax problem for k parallel
barriers using only perpendicular movement can be solved in O(knk+1) time.

4. Perpendicular Movement: Two Perpendicular Barriers

In this section we consider the problem of covering two perpendicular
barriers. Once again, we assume that sensors can relocate to either of the
two barriers, using only perpendicular movement. Figure 5 illustrates an
example of such a problem. In contrast to the case of parallel barriers, we
show here that even the feasibility problem in this case is NP-complete. For
simplicity we assume that b1 is a segment on the x-axis between (0, 0), (L1, 0)
and b2 is a segment on the y-axis between (0, 0), (0, L2). Since the sensors
can only employ perpendicular movement, the only possible final positions
on the barriers for a sensor si in position pi = (xi, yi) are p′i = (0, yi) or
p′i = (xi, 0).

We first show that the feasibility problem for this case is NP-complete
by giving a reduction from the monotone 3-SAT problem [12]. Recall that a
Boolean 3-CNF formula f = c1∧c2∧...∧cm of m clauses is called monotone if
and only if every clause ci in f either contains only unnegated literals or only
negated literals. In order to obtain a reduction to a barrier coverage problem
with two perpendicular barriers, we first put a monotone 3-SAT formula in
a special form as given in the lemma below.

Lemma 2. Let f = f1 ∧ f2 be a monotone 3-CNF Boolean formula with
n clauses where f1 and f2 only contain unnegated and negated literals re-
spectively, and every literal appears in at most m clauses. Then f can be
transformed into a monotone formula f ′ = f ′

1 ∧ f ′
2 such that f ′

1 and f ′
2 have

only unnegated and negated literals respectively, and f ′ has the following prop-
erties:
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1. f and f ′ are equisatisfiable, i.e. f ′ is satisfiable if and only if f is
satisfiable.

2. All clauses are of size two or three.

3. Clauses of size two contain exactly one variable from f and one new
variable.

4. Clauses of size three contain only new variables.

5. Each new literal appears exactly once: either in a clause of size two or
in a clause of size three.

6. Each variable xi of f appears exactly in m clauses of f ′
1, and exactly

in m clauses of f ′
2.

7. f ′ contains at most 3mn clauses.

8. The clauses in f ′
1 (respectively f ′

2) can be ordered so that all clauses
containing the literal xi (xi) appear before clauses containing the literal
xj (respectively xj) for i < j, and all clauses of size three are placed
last.

Proof. Let f = f1∧f2 be a monotone 3-CNF Boolean formula, where f1 only
contains unnegated literals and f2 only contains negated literals. Assume the
clauses are numbered from 1 to n, and let m be the maximum number of
occurrences of any literal in f . For each unnegated literal xp that appears
in the clause numbered i, we introduce a new variable xp,i; suppose there
are k such variables where 1 ≤ k ≤ m. If k < m, we also introduce m − k
new variables yp,1, yp,2, . . . , yp,m−k. Similarly, for each negated literal xp that
appears in the clause numbered j in f2, we introduce a new variable xp,j;
suppose there are k such variables where 1 ≤ k ≤ m. If k < m, we also
introduce m− k new variables zp,1, zp,2, . . . , zp,m−k.

For each clause ci ∈ f1 of the form (xp ∨ xq ∨ xr), we put the collection of
clauses (xp∨xp,i), (xq∨xq,i), (xr∨xr,i) into f ′

1 and the clause (xp,i∨xq,i∨xr,i)
into f ′

2. Similarly for each clause cj ∈ f2 of the form (xp∨xq∨xr), we put the
collection of clauses (xp ∨ xp,j), (xq ∨ xq,j), (xr ∨ xr,j) into f ′

2 and the clause
(xp,j ∨ xq,j ∨ xr,j) into f ′

1.
For every literal xp ∈ f1 that occurs k < m times in f1, we add clauses

(xp ∨ yp,1) ∧ (xp ∨ yp,2) ∧ · · · (xp ∨ yp,m−k). Similarly, for every literal xp that
occurs k < m times in f2, we add clauses (xq ∨ zq,1) ∧ · · · ∧ (xq ∨ zq,m−k).
Finally, let f ′ = f ′

1 ∧ f ′
2. From the construction of f ′ it is easy to verify

that it has Properties 2 to 7 stated in the lemma. Property 8 follows from
Property 2, 3, and 4.

14



Now we show that f and f ′ are equisatisfiable. First assume f is satisfi-
able, and let A be a satisfying assignment for f . We show how to obtain a
satisfying assignment A′ for f ′. For every variable xp in f , A′ uses

(a) the same truth assignment for xp as in A,

(b) the opposite truth value for all new variables xp,i,

(c) the truth value true for every new variable of the type yp,i, and

(d) the truth value false for every new variable of the type zp,i.

To see that A′ satisfies f ′, observe that all clauses of size two in f ′
1 are of

the form (xp ∨ xp,i) or (xp ∨ yp,i) and are clearly satisfied. The only clauses
of size three in f ′

1 are of type (xp,i ∨ xq,i ∨ xr,i) and correspond to a clause
ci = (xp ∨ xq ∨ xr) in f2. Since A satisfies ci, one of xp, xq, xr must be
false. But then one of xp,i, xq,i, xr,i must be true in A′, and hence the clause
(xp,i ∨ xq,i ∨ xr,i) is satisfied. A similar argument can be made about the
clauses in f ′

2.
Next assume that f ′ is satisfiable, and let A′ be a satisfying assignment

for f ′. We claim that taking the assignment for the original variables xp in
A′ will also satisfy f . To see this, consider the clause ci = (xp∨xq∨xr) in f1.
In f ′

2 there is a corresponding clause (xp,i ∨ xq,i ∨ xr,i). Since A
′ satisfies this

clause, at least one of xp,i, xq,i, xr,i must be false. Suppose xp,i is false. To
satisfy the clause (xp ∨ xp,i) in f ′

1, the truth value of xp in A′ must be true.
Thus the clause ci = (xp ∨ xq ∨ xr) is satisfied in f1. A similar argument can
be made about the clauses in f2.

We give an example that illustrates the reduction and the ordering spec-
ified in Property 8.
Example 1: Consider 3-CNF formula

f = (x1∨x3∨x4)∧ (x2∨x3∨x4)∧(x1∨x2∨x3)∧(x1∨x2∨x4)∧(x2∨x3∨x4)

An equisatisfiable formula f ′ satisfying the properties of Lemma 2 is:

f ′ = (x1 ∨ x1,1) ∧ (x1 ∨ x1,3) ∧ (x1 ∨ y1,1) ∧ (x2 ∨ x2,2) ∧ (x2 ∨ x2,3)

∧ (x2 ∨ y2,1) ∧ (x3 ∨ x3,1) ∧ (x3 ∨ x3,2) ∧ (x3 ∨ x3,3) ∧ (x4 ∨ x4,1)

∧ (x4 ∨ x4,2) ∧ (x4 ∨ y4,1) ∧ (x1,4 ∨ x2,4 ∨ x4,4) ∧ (x2,5 ∨ x3,5 ∨ x4,5)

∧ (x1 ∨ x1,4) ∧ (x1 ∨ z1,1) ∧ (x1 ∨ z1,2) ∧ (x2 ∨ x2,4) ∧ (x2 ∨ x2,5) ∧ (x2 ∨ z2,1)

∧ (x3 ∨ x3,5) ∧ (x3 ∨ z3,1) ∧ (x3 ∨ z3,2) ∧ (x4 ∨ x4,4) ∧ (x4 ∨ x4,5) ∧ (x4 ∨ z4,1)

∧ (x1,1 ∨ x3,1 ∨ x4,1) ∧ (x2,2 ∨ x3,2 ∨ x4,2) ∧ (x1,3 ∨ x2,3 ∨ x3,3)
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Theorem 4. Let s1, s2, . . . , sn be n sensors of sensing ranges r1, r2, . . . , rn,
initially located in the plane at positions p1, p2, . . . , pn respectively, and let
b1 between (0, 0) and (L1, 0) and b2 between (0, 0) and (0, L2) be the two
perpendicular barriers to be covered. Then the problem of finding a covering
assignment using perpendicular movement for the two barriers is strongly
NP-complete.

Proof. It is easy to see that any given covering assignment can be verified
in polynomial time. Given a monotone 3-SAT formula f , we use the con-
struction described in Lemma 2 to obtain a formula f ′ = f ′

1 ∧ f ′
2 satisfying

the properties stated in Lemma 2 with clauses ordered as described in Prop-
erty 8. Let f1 have i1 clauses, and f2 have i2 clauses, and assume the clauses
in each are numbered from 1, . . . , i1 and 1, . . . , i2 respectively. We create
an instance P of the barrier coverage problem with two barriers b1, the line
segment between (0, 0) and (2i1, 0) and b2, the line segment between (0, 0),
and (0, 2i2).

For each variable xi of the original formula f we have a sensor si of
sensing range m located in position pi = ((2i − 1)m, (2i − 1)m), i.e., on
the diagonal. Each of the variables xi,j, yi,j, zi,j is represented by a sensor of
sensing range 1, denoted si,j, s

′
i,j, and s′′i,j respectively, and is placed in such a

manner that the sensors corresponding to variables associated with the same
si collectively cover the same parts of the two barriers as covered by sensor
si. Furthermore, sensors corresponding to variables that appear in the same
clause of size three cover exactly the same segment of a barrier. A sensor
corresponding to a new variable xi,j that occurs in the pth clause in f ′

1 and
in the qth clause in f ′

2 is placed in position (2p − 1, 2q − 1). Also a sensor
corresponding to variable yi,j which occurs in the �th clause in f ′

1 is placed in
position (2� − 1,−1) and sensor corresponding to variable zi,j which occurs
in the �th clause of f ′

2 is placed in position (−1, 2�− 1).
Figure 5 illustrates the instance of barrier coverage corresponding to the

monotone 3-SAT formula from Example 4 above. The sensor s1,3 correspond-
ing to the variable x1,3 appears in the second clause of f ′

1 and the fifteenth
clause of f ′

2, and hence is placed at position (3, 29). Similarly, the sensor s2,4
corresponding to the variable x2,4 appears in the thirteenth clause of f ′

1 and
the fourth clause of f ′

2, and hence is placed at position (25, 7).
It is easy to see that the reduction is polynomial, and the sensor sizes and

border length are linear in the length of the input to the barrier coverage
problem.
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Figure 5: Barrier coverage instance corresponding to Example 1

Observe that in this assignment of positions to sensors, there is a one-to-
one correspondence between the line segments of length 2 in b1 and b2 and
clauses in f ′

1 and f ′
2 respectively. In particular, the sensors that potentially

cover the line segment from (2i− 2, 0) to (2i, 0) on the barrier b1 correspond
to variables in clause i of f ′

1. Similarly, the sensors that potentially cover the
line segment from (0, 2i−2) to (0, 2i) on the barrier b2 correspond to variables
in clause i of f ′

2. Thus, by associating the vertical move of a sensor with an
assignment of true to the corresponding variable of f ′, and the horizontal
move of a sensor with an assignment of false to the corresponding variable
of f ′, f ′ is satisfiable if and only if for the corresponding instance P there
exists a covering assignment assuming perpendicular movement.

Since any instance of monotone 3-SAT problem can be transformed into
an instance of monotone SAT problem in which no literal occurs more than
three times, it follows from the proof that the problem is NP-complete even
when the sensors are in integer positions and the ranges of sensors are limited
to two different sizes 1 and m ≥ 3.

Corollary 5. Let s1, s2, . . . , sn be n sensors initially located in the plane
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at positions p1, p2, . . . , pn respectively, and let b1 between (0, 0) and (L1, 0)
and b2 between (0, 0) and (0, L2) be the two perpendicular barriers to be cov-
ered. Then the problem of finding a covering assignment using perpendicular
movement for the two barriers is strongly NP-complete even if the ranges of
sensors are limited to two different values.

It is also clear from the proof that the perpendicularity of the barriers is
not critical. The key issue is that the order of intervals covered by the sensors
in one barrier has no relationship to those covered in the other barrier. In
the case of parallel barriers, this property does not hold. The exact charac-
terization of barriers for which a polytime algorithm is possible remains an
open question.

We now turn our attention to restricted versions of barrier coverage of
two perpendicular barriers where a polytime algorithm is possible. For a
set of sensors S, and perpendicular barriers b1, b2, we call (S, b1, b2) a non-
overlapping arrangement if for any two sensors si, sj ∈ S, the intervals that
are potentially covered by s1 and s2 on the barrier b1 (and b2) are either the
same or disjoint. An example of a non-overlapping arrangement is shown in
Figure 6. This would be the case, for example, if all sensor ranges are of

(0, 0) (L1, 0)

(0, L2)

Figure 6: A non-overlapping arrangement of sensors. Each interval on the x-axis and
y-axis delineated by dotted lines is represented by a node in the corresponding bipartite
graph.

the same diameter equal to 1 and the sensors are in integer positions. We
show below that for a non-overlapping arrangement, the problem of finding
a covering assignment is polynomial.
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Theorem 6. Let S = {s1, s2, . . . , sn} be a set of n sensors initially located
in the plane at positions p1, p2, . . . , pn and let b1 and b2 be two perpendicular
barriers to be covered. If (S, b1, b2) form a non-overlapping arrangement, then
there exists an O(n1.5) algorithm that finds a covering assignment, using only
perpendicular movement or reports that none exists.

Proof. If there exists a segment of either of the barriers that is not covered by
any of the sensors, then clearly there is no covering assignment. Otherwise,
the problem of finding a covering assignment in this case can be reduced to
the problem of maximum matching in a bipartite graph. Create one node for
each sensor and one node for each segment of each barrier that is potentially
covered by a sensor. Since (S, b1, b2) is a non-overlapping arrangement, the
segments are disjoint and together they cover both barriers (see Figure 6).
We put an edge between a node representing a barrier segment and a node
representing a sensor if the sensor can cover the segment. Clearly, the prob-
lem of finding a covering assignment is equivalent to finding a matching in
which each node representing a segment of the barrier is matched with a node
representing a sensor. Since each node representing a sensor has degree two,
this can be done in time O(n1.5) using the Hopcroft-Karp algorithm.

5. Conclusions

It was previously shown that the MinMax barrier coverage problem when
the sensors are initially located on the line containing the barrier is solvable
in polynomial time [5]. In contrast, our results show that the same problem
becomes strongly NP-complete when sensors of arbitrary ranges are initially
located in the plane, and are allowed to move to any final positions on the
barrier. It remains open whether this problem is polynomial in the case when
there is a fixed number of possible sensor ranges. If sensors are restricted to
use perpendicular movement, the feasibility, MinMax, and MinSum problems
are all polytime solvable for the case of k parallel barriers. However, when the
barriers are not parallel, even the feasibility problem is strongly NP-complete,
even when sensor ranges are restricted to two distinct values. It would be
therefore interesting to study approximation algorithms for MinMax and
MinSum for this case. Characterizing the problems for which barrier coverage
is achievable in polytime remains an open question.
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