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Abstract

Let P be an orthogonal polygon with n vertices. A partition of P into rectangles

is called conforming if it results from cutting P along a set of interior-disjoint

line segments, each having both endpoints on the boundary of P . The stabbing

number of a partition of P into rectangles is the maximum number of rectangles

stabbed by any orthogonal line segment inside P . In this paper, we consider

the problem of finding a conforming partition of P with minimum stabbing

number. We first give an O(n log n)-time algorithm to solve the problem when

P is a histogram. For an arbitrary orthogonal polygon (even with holes), we

give an integer programming formulation of the problem and show that a simple

rounding results in a 2-approximation algorithm for the problem. Finally, we

show that the problem is NP-hard if P is allowed to have holes.
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1. Introduction

The problem of partitioning a polygonal shape into simpler components is

a well-studied problem in computational geometry, with many applications in

other areas of research including VLSI layout design [3, 4], chip manufactur-

ing [5], geoinformatics [6], image processing [7], and pattern recognition [8, 9].5

Previous related research in this area was focused on “convexity”; that is, par-

titioning polygons into convex regions so as to minimize the number of convex

components [10, 11, 12, 13, 14]. Another optimality criterion studied in the lit-

erature is to minimize the total length of partition segments [15, 16, 17, 18, 19].

Another line of research focused on restricting the shape of the input polygon,10

among which orthogonal polygons were frequently studied as natural polygonal

shapes. For instance, in their seminal paper, Lingas et al. [15] showed that min-

imizing the total length of partition segments on a simple orthogonal polygon is

polynomial-time solvable, while the problem becomes NP-hard if the polygon is

allowed to have holes [15]. Moreover, Gonzalez and Zheng [20, 21] studied the15

approximability of the same problem exclusively on orthogonal polygons with

additional constraint that the partition segments must pass through a given set

of points in the polygon (see also [22]).

Preliminaries and Definitions. A polygon P is orthogonal if all of its edges are

either vertical or horizontal. A rectangular partition of an orthogonal polygon P20

is a set of interior-disjoint rectangles whose union is P . Let R be a rectangular

partition of an orthogonal polygon P . Given a line segment ` inside P , we say

that ` stabs a rectangle of R if ` passes through the interior of the rectangle.

The orthogonal stabbing number of R is the maximum number of rectangles of R

stabbed by any orthogonal line segment inside P . We define the vertical (resp.,25

horizontal) stabbing number of R as the maximum number of rectangles stabbed

by any vertical (resp., horizontal) line segment inside P . For the rest of this

paper, “stabbing” is assumed to be orthogonal stabbing, unless noted otherwise.

A rectangular partition of P is called conforming if it corresponds to the faces

of the arrangement of a set of line segments in P , such that each line segment30

2



has both endpoints on the boundary of P , and no two line segments intersect,

except possibly at their endpoints on the boundary of P . In this paper, we study

the Optimal Conforming Partition problem: given an orthogonal polygon, the

objective is to compute a conforming partition of the polygon whose stabbing

number is minimum over all such partitions of the polygon.35

Let R be a conforming partition of P . We refer to an edge of a rectangle of

R that is not a subset of an edge of P a partition edge. That is, the partition

edges of R correspond to the “cuts” that divide P into rectangles. A vertex u

of P is a reflex vertex if the angle at u interior to P is 3π/2. We denote the set

of reflex vertices of P by reflexV(P ). For each reflex vertex u ∈ reflexV(P ),40

we denote the maximal horizontal (resp., vertical) line segment contained in

the interior of P with one endpoint at u by Hu (resp., Vu) and refer to it as

the horizontal line segment (resp., vertical line segment) of u. Observe that for

every reflex vertex u of P , at least one of Hu and Vu must be present in R. The

following observation allows us to consider only a discrete subset of the set of45

all possible rectangular partitions of P to find an optimal conforming partition:

Observation 1. Any orthogonal polygon P has an optimal conforming parti-

tion in which every partition edge is either Hu or Vu for some u ∈ reflexV(P ).

Related Work. It is shown by de Berg and van Kreveld [23] that every n-vertex50

orthogonal polygon has a rectangular (not necessarily conforming) partition

with stabbing number O(log n). They show that this bound is asymptotically

tight, as the stabbing number of any rectangular partition of a staircase polygon

with n vertices is Ω(log n). Independently, de Berg and van Kreveld [23] and

Hershberger and Suri [24] gave polynomial-time algorithms that compute parti-55

tions with stabbing number O(log n). Recently, Abam et al. [25] considered the

problem of computing an optimal rectangular partition of a simple orthogonal

polygon; that is, a rectangular partition (not restricted to being conforming)

whose stabbing number is minimum over all such partitions of the polygon. By

finding an optimal partition for histograms in O(n7 log n log log n) time, they ob-60
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tained a 3-approximation algorithm for this problem. The complexity of finding

an optimal partition for an arbitrary orthogonal polygon remains open.

Minimizing the stabbing number of partitions of other inputs are also stud-

ied. For instance, de Berg et al. [26] studied the problem of partitioning a

given set of n points in Rd into sets of cardinality between n/2r and 2n/r for65

a given r, where each set is represented by its bounding box, such that the

stabbing number is minimized. Here, the stabbing number is defined as the

maximum number of bounding boxes intersected by any axis-parallel hyper-

plane. They showed that the problem is NP-hard in R2. They also gave an

exact O(n4dr+3/2 log2 n)-time algorithm in Rd as well as an O(n3/2 log2 n)-time70

2-approximation algorithm in R2 when r is constant. Fekete et al. [27] proved

that the problem of finding a perfect matching with minimum stabbing number

for a given point set is NP-hard, where the stabbing number of a matching is the

maximum number of edges of the matching intersected by any axis-parallel line.

They also showed that the problems of finding a spanning tree or a triangulation75

of a given point set with minimum stabbing number are NP-hard.

Our Results. This paper examines the problem of finding an optimal conforming

partition of an orthogonal polygon. First, we give an O(n log n)-time algorithm

for computing an optimal partition when the input polygon is a histogram with n

vertices (Section 2). Next, we give a polynomial-time 2-approximation algorithm80

for the problem on arbitrary orthogonal polygons, even with holes (Section 3).

Finally, we show the NP-hardness of the optimal conforming partition problem

on orthogonal polygons with holes in Section 4. To the authors’ knowledge,

this is the first complexity result related to determining the minimum stabbing

number of a rectangular partition of an orthogonal polygon. We conclude the85

paper with a discussion on open problems in Section 5.

2. Histograms

In this section, we give an O(n log n)-time algorithm for the optimal con-

forming problem on a histogram with n vertices. A histogram (polygon) H is
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(a) (b)

Figure 1: A vertical histogram H. (a) An optimal rectangular partition of H with stabbing

number 2. (b) Any conforming partition of H has stabbing number at least 3.

a simple orthogonal polygon that has one edge e that can see every point in90

P . More formally, H is a vertical (resp., horizontal) histogram if it is mono-

tone with respect to some horizontal (resp., vertical) edge e on the boundary

of P [28, 29]; i.e., e spans the width (resp., height) of P . We call e the base of

H. For the rest of this section, we assume that H is a vertical histogram with

n vertices.95

We note that Abam et al. [25] gave a polynomial-time algorithm for com-

puting an optimal rectangular partition of a histogram; their algorithm may not

necessarily produce a conforming partition. Figure 1 shows a histogram whose

optimal rectangular partition has stabbing number 2, while any conforming

partition of this histogram has stabbing number at least 3.100

Let H− denote the set of horizontal edges of H. Recall by Observation 1 that

every conforming partition of H must include at least one of the edges Hu or Vu

for every reflex vertex u in H. The algorithm begins with an initial partition of

H, consisting of all horizontal partition edges, that will be modified to produce

an optimal conforming partition of H by greedily replacing horizontal edges105

with vertical edges. The initial partition of H is obtained by adding the edge

Hu for each reflex vertex u.

Observation 2. For any conforming partition of any vertical histogram H and

any reflex vertex u in H, the vertical partition edge Vu may be included at u if

and only if no horizontal partition edge is included directly below u (otherwise110

it would intersect Vu).
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Constructing a Tree. Observation 2 suggests a hierarchical tree structure that

determines a partial order in which each horizontal partition edge can be re-

moved and replaced by a vertical partition edge, provided it does not intersect

any horizontal partition edge below it. Thus, we construct a forest (initially a115

single tree denoted T0) associated with the partition; the algorithm proceeds to

update the forest and, in doing so, modifies the associated partition as horizon-

tal partition edges are replaced by vertical ones. Define a tree node for each

edge in H− ∪ S, where S = {Hu | u ∈ reflexV(H)}. Add an edge between two

vertices u and v if some vertical line segment intersects both edges associated120

with u and v, but no other edge of H− ∪ S. When the polygon H is a his-

togram, the resulting graph, T0, is a tree. See the example in Figure 2(a). We

now describe how to construct T0 in O(n log n) time. Note that the set S need

not be known before construction.

Each edge in H− is adjacent to two vertical edges on the boundary of H,125

which we call its left and right neighbours, respectively. Sort the edges of

H− lexicographically, first by y-coordinates and then by x-coordinates. The

algorithm sweeps a horizontal line ` across H from bottom to top. Initially, `

coincides with the base of H; root the tree T0 at a node u that corresponds to

the base of H. The construction refers to a separate balanced search tree [28]130

that archives the set of vertical edges of H on or below the sweepline, indexed

by x-coordinates. Initially, only the leftmost and rightmost vertical edges of H

are in the search tree, i.e., the base’s neighbours. The construction of the tree

T0 proceeds recursively on u as follows.

Suppose the next edges of H− encountered by the sweepline ` are e1, . . . , ek,135

each of which has equal y-coordinate. Add the respective left and right neigh-

bours of e1, . . . , ek to the search tree. Let l1 and r1 denote the x-coordinates of

the respective left and right endpoints of edge e1. Add a node representing e1

to T0 as a child of u. Check whether the left neighbour of e1 (indexed by l1)

lies below `. If not, then find the predecessor of l1 in the search tree and let x∗140

denote its x-coordinate. Let u′ denote the line segment on line ` with respective

endpoints at the x-coordinates x∗ and l1. Check whether there is a node in T0
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(a)

q′q

(b) (c)

p′

p

Figure 2: (a) A histogram H and the tree T0 that corresponds to the initial partition of H.

(b) The edge associated with node p is removed from the partition and is replaced by two

vertical edges anchored at the reflex vertices q and q′. The white vertices denote the roots of

the three new resulting trees. (c) The algorithm terminates after one more iteration, giving

an optimal conforming partition of H (with stabbing number 5) along with the corresponding

forest.

representing u′; if not, then, add a node representing u′ to T0 as a child of u.

Recursively construct the subtree of u′. Apply an analogous procedure to the

right neighbour of e1 (indexed by r1). Repeat for each edge ei ∈ {e2, . . . , ek}.145

Upon completion, the tree T0 is constructed storing a representation of the ini-

tial horizontal partition (see Figure 2(a)). Finally, each tree node stores its

height and links to its children in order of x-coordinates; the tree can be up-

dated accordingly after construction. The running time for constructing T0 is

bounded by sorting O(n) edges and a sequence of O(n) searches and insertion150

on the search tree, resulting in O(n log n) time to construct T0.

Algorithm. We now describe a greedy algorithm to construct an optimal con-

forming partition of H using T0. Observe that the horizontal stabbing number of

the initial partition is initially one, whereas its vertical stabbing number corre-

sponds to the height of T0. The algorithm stores the forest’s trees in a priority155
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queue indexed by height. While the vertical stabbing number of H remains

greater than its horizontal stabbing number, split the tree of maximum height,

say T . To do this, remove the horizontal partition edge stored in a tree node p,

where p is a child of the root of T on a longest root-to-leaf path in T . The choice

of T and p is not necessarily unique; it suffices to select any tallest tree T and160

any longest path in T . Observe that p has at least one and possibly two reflex

vertices as endpoints, denoted a and b. Remove the horizontal partition edge

associated with p and add a vertical partition edge (Va or Vb) for each neighbour

of p that lies above p on the boundary of H. The tree T is then divided into

up to three new trees: a) the subtrees of the root of T to the left of p, b) the165

subtree rooted at p, and c) the subtrees of the root of T to the right of p. The

root of each new tree corresponds to the base edge of H. See Figure 2(b). The

following observation is straightforward:

Observation 3. The horizontal stabbing number of the partition associated

with the forest corresponds to the number of trees in the forest, whereas its170

vertical stabbing number corresponds to the height of the tallest tree in the

forest.

Once the height of the tallest tree becomes less than or equal to the number

of trees in the forest, we return either the current partition or the previous

partition, whichever has lower stabbing number. The number of steps is O(n),175

where each step requires O(log n) time to determine the tree with maximum

height using the priority queue.

The algorithm’s correctness follows from Observations 2 and 3, and the fact

that reducing the vertical stabbing number requires reducing the height of the

tallest tree, which is exactly how the algorithm proceeds, decreasing the height180

of a tallest tree by one on each step. Therefore, we have the following theorem:

Theorem 1. Given a histogram H, an optimal conforming partition of H can

be found in O(n log n) time, where n is the number of vertices of H.
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3. 2-Approximation Algorithm185

In this section, we give a 2-approximation algorithm for the optimal con-

forming partition problem. To this end, we formulate the problem as a k-sum

integer linear program and show that a simple rounding of the relaxed program

leads to a 2-approximation algorithm for this problem; we remark that our al-

gorithm works even on orthogonal polygons with holes. We first review k-sum190

linear programs.

k-Sum Linear Program. Given an integer k ≥ 1, a k-Sum Linear Program

(KLP) [30] consists of an m × n matrix A, an m-vector b, an n-vector X =

(x1, x2, . . . , xn), and an n-vector C = (c1, c2, . . . , cn) for which the objective is

to

minimize max
S⊆N :|S|=k

∑
j∈S

cjxj (1)

subject to AX ≥ b

X ≥ 0,

where N = {1, 2, . . . , n}. Observe that when k = n, the KLP is equivalent to a

classical linear program.

u

fε(u) `−u

v
w

`|u

ε

Figure 3: The maximal line segments

`−u and `
|
u that pass through the point

fε(u) are shown in red and blue, re-

spectively. In this example, uΣ− =

1 + uv + vv + wv and uΣ| = 1 + uh.

Let P be an orthogonal polygon. We de-

fine two binary variables uh and uv for every

reflex vertex u ∈ reflexV(P ) that correspond

to Hu and Vu, respectively. Each variable’s

value (1 = present, 0 = absent) determines

whether its associated partition edge is in-

cluded in the partition. If two reflex vertices

align, then they share a common variable. For

each reflex vertex u in reflexV(P ), let `−u and

`
|
u be respective maximal horizontal and ver-

tical line segments that pass through fε(u)

and are completely contained in P , where fε(u) denotes an ε translation of the
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vertex u along the bisector of the interior angle determined by the boundary

of P locally at u, for some ε less than the minimum distance between any two

vertices of P . This perturbation ensures that `−u and `
|
u lie in the interior of P ,

as in the definition of stabbing number. See Figure 3. Let S−u (resp., S
|
u) be the

set of reflex vertices in reflexV(P ), like v, such that Vv (resp., Hv) intersects

`−u (resp., `
|
u). For each reflex vertex u ∈ reflexV(P ), let

uΣ− = 1 +
∑
p∈S−u

pv, and uΣ| = 1 +
∑
p∈S|u

ph.

Thus, uΣ− and uΣ| denote the number of rectangles stabbed by `−u and `
|
u, re-

spectively, and their maximum values among all reflex vertices u in P correspond

to the respective horizontal and vertical stabbing numbers of P . Consequently,

the stabbing number of the partition of P determined by the binary variables is

max
u∈reflexV(P )

{max{uΣ− , uΣ|}}. (2)

A partition divides the polygon into convex regions (more specifically, rect-

angles) if and only if at least one partition edge is rooted at every reflex vertex.

Thus, a conforming partition of P corresponds to an assignment of truth values

to the set of binary variables such that (i) no two edges of the partition cross,

and (ii) for every reflex vertex u, at least one of Vu and Hu is present in the par-

tition. Therefore, the optimal conforming partition problem can be formulated

as a k-sum integer linear program as follows:

minimize (2) (3)

subject to uh + uv ≥ 1, ∀u ∈ reflexV(P ),

vh + uv ≤ 1, if Hv intersects Vu and u 6= v,

uh, uv ∈ {0, 1}, ∀u ∈ reflexV(P ).

To obtain an integer linear program, we introduce an additional variable y. The
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following integer linear program is equivalent to the above KLP:

minimize y (4)

subject to y − uΣ− ≥ 0 ∀u ∈ reflexV(P ),

y − uΣ| ≥ 0 ∀u ∈ reflexV(P ),

uh + uv ≥ 1, ∀u ∈ reflexV(P ),

− vh − uv ≥ −1, if Hv intersects Vu and u 6= v,

uh, uv ∈ {0, 1}, ∀u ∈ reflexV(P ). (5)

Since the number of sums in (2) is O(n2), the size of the above integer

linear program is polynomial in n. By replacing (5) with uh, uv ≥ 0,∀u ∈195

reflexV(P ), we obtain the final linear program; we call the resulting linear

program conformingLP. 2

Let s∗ be a solution to conformingLP. We round s∗ to a feasible solution

for our problem as follows. For each vertex u ∈ reflexV(P ), let

uh =

0, if s∗(uh) ≤ 1/2,

1, if s∗(uh) > 1/2,

and uv =

0, if s∗(uv) < 1/2,

1, if s∗(uv) ≥ 1/2.

(6)

We first show that, for every reflex vertex u, at least one of Vu and Hu is

present in the partition.

Lemma 2. For each vertex u ∈ reflexV(P ), at least one of uh and uv is equal200

to 1 after rounding a solution of conformingLP.

Proof. We give a proof by contradiction. Suppose that after rounding a so-

lution of conformingLP, uh = uv = 0 for some u ∈ reflexV(P ). Since uh = 0

by (6) we have s∗(uh) ≤ 1/2 and, similarly, since uv = 0 we have s∗(uv) < 1/2.

Therefore, s∗(uh) + s∗(uv) < 1, which contradicts the constraint uh + uv ≥ 1 of205

conformingLP. �

2We observe that the constraints uh, uv ≤ 1 are redundant since we can reduce any uh > 1

(resp., uv > 1) to uh=1 (resp., uv=1) without increasing the value of the objective function

for any feasible solution.
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The next lemma proves that no two edges of the partition obtained by

conformingLP cross each other.

Lemma 3. Let u, v be two vertices in reflexV(P ). Then, if Hv intersects Vu,

then at most one of the variables vh and uv is 1 after rounding a solution of210

conformingLP.

Proof. We give a proof by contradiction. Suppose that for two vertices u, v ∈

reflexV(P ): (i) Hv intersects Vu, and, (ii) both vh and uv are 1 after rounding.

Since vh=1, we have s∗(vh) > 1/2 by (6). Similarly, s∗(uv) ≥ 1/2 by the

rounding. Therefore, s∗(vh) + s∗(uv) > 1, which contradicts the constraint215

vh + uv ≤ 1 (or equivalently −vh − uv ≥ −1) of conformingLP. �

By combining Lemmas 2 and 3, we get the following result:

Lemma 4. Let s∗ be a feasible solution to conformingLP. Then, the partition

determined by rounding s∗ is a conforming partition.

First, notice that the number of constraints of conformingLP is polynomial220

in |reflexV(P )|. Now, let u be a variable and consider s∗(u), the real value

of u after solving conformingLP. By (6), u = 1 if s∗(u) > 1/2 (in case of u

corresponding to a horizontal partition edge) or if s∗(u) ≥ 1/2 (in case of u

corresponding to a vertical partition edge); otherwise, u = 0. Since 0 ≤ s∗(u) ≤

1, we conclude that the integer value of each variable is at most twice its real225

value. Therefore, we have the following theorem.

Theorem 5. Let P be an orthogonal polygon possibly with holes. Then, there

exists a polynomial-time 2-approximation algorithm for the optimal conforming

partition problem on P .

Remark. A preliminary attempt at obtaining a 2-approximation might be to230

assign to each reflex vertex u its vertical partition edge, Vu (or, equivalently,

assigning the horizontal partition edge Hu to each u). This is not the case;

Figure 4 shows an orthogonal polygon for which the optimal conforming parti-

tion has stabbing number 4. However, the partition obtained by assigning Vu

12



(a) (b) (c)

Figure 4: A simple orthogonal polygon P for which (a) the optimal partition has stabbing

number 4 while (b) assigning Vu (or Hu) to every reflex vertex u of P results in a partition

with stabbing number at least 10. (c) A possible partition produced by our 2-approximation

algorithm with stabbing number 7.

(or Hu) consistently to every vertex u ∈ reflexV(P ) has stabbing number at235

least 10. In fact, the polygon in this example can be extended to show that this

heuristic does not provide any constant-factor approximation.

4. Hardness

In this section, we show that the optimal conforming partition problem is

NP-hard on orthogonal polygon with holes. We show the hardness by a re-240

duction from Planar Variable Restricted 3SAT (Planar VR3SAT, for

short).

An instance of the Planar 3SAT problem consists of a planar bipartite

graph GI = (V,E), called a variable-clause graph, corresponding to a Boolean

formula I in conjunctive normal form, where each clause contains three variables.245

The vertices in one partition of GI correspond to the variables in I while the

vertices in the other partition of GI correspond to the clauses of I. Each clause

vertex is connected by an edge to the variable vertices it contains. Knuth and

Raghunathan [31] showed that such a graph can be drawn on a grid with all

variable vertices on a horizontal line and the clause vertices connected in a comb-250

shape form above or below that line without any edge crossings. The Planar

VR3SAT problem is a constrained version of Planar 3SAT in which each

variable can appear in at most three clauses (and the corresponding variable-

13



clause graph is planar). Efrat et al. [32] showed that Planar VR3SAT is

NP-hard.255

C2

C1

X1

X2

X3

X4

Figure 5: An instance of the Pla-

nar VR3SAT problem in the

comb-shape form of Knuth and

Raghunathan [31]. Crosses on the

edges indicate negations; for ex-

ample, C1 = (x1 ∨ x3 ∨ x4).

Reduction Overview. Let I = {C1, C2, . . . , Ck}

be an instance of Planar VR3SAT with k

clauses and n variables, X1, X2, . . . , Xn. We

construct a polygon P with holes such that

P has a conforming partition with stabbing260

number at most 5c if and only if I is sat-

isfiable, where we determine the value of c

later. Given I, we first construct the variable-

clause graph of I in the non-crossing comb-

shape form of Knuth and Raghunathan [31].265

Without loss of generality, we assume that the

variable vertices lie on a vertical line and the

clause vertices are connected from left or right

of that line; see Figure 5 for an illustration.

Then, we replace each variable vertex Xi with270

a polygonal variable gadget to which three connecting corridors are attached

from its left. The corridors are then connected to the clause gadgets whose

associated clauses contain that variable. Each variable gadget has a special

reflex vertex v such that choosing Vv or Hv in a conforming partition imposes

constraints on how the rest of the variable gadget and its associated clause gad-275

gets are partitioned. By having a sufficient number of reflex vertices in clause

gadgets, we can force exactly one of the resulting partitions to have stabbing

number at most 5c. In the following, we first describe the details of the gadgets

used in the reduction and then prove the correctness.

Variable Gadgets. Figure 6 shows an example of a variable gadget. We denote280

the variable gadget corresponds to variable Xi by vGadget(Xi). Moreover, we

denote the two literals of a variable Xi by xi and xi. Each variable gadget has

three corridors, namely the top, middle and bottom corridors. Each corridor of

14



normal staircaserectangle-negation hole

x̄

x̄

x

reverse staircase

walls

u

v

variable hole

triangle-negation hole

t-shape hole

u

Figure 6: An example of a variable gadget X linked by three respective corridors to its

occurrences (x, x and x) in clauses. Each pair of dashed triangular and rectangular holes

form a negation gadget that negates the truth value of X in the associated clause linked by

the adjacent corridor. Each staircase consists of c reflex vertices.

vGadget(Xi) is connected to one of the clauses that contains Xi. Let Cj be

a clause that contains Xi. We denote the corridor connecting vGadget(Xi) to285

Cj by corridor(Xi, Cj). That is, corridor(Xi, Cj) indicates the presence of a

literal of Xi (i.e., xi or x̄i) in the clause Cj . There are two holes in the beginning

of every corridor(Xi, Cj): a rectangular hole, called variable hole, and a t-

shaped hole that has two staircases on its boundary, each consisting of c reflex

vertices (each staircase is shown as a single diagonal edge in Figure 6), where the290

value of c is determined later. To avoid confusion, we call the upper staircase of

each t-shaped hole a normal staircase and its lower staircase a reverse staircase.

As Figure 6 shows, each variable gadget has also a normal staircase and a

reverse staircase on its boundary. See Figure 7(Left) (resp., Figure 7(Right))

for an illustration of a normal staircase (resp., reverse staircase).295

We separate the upper part of each variable gadget from the rest with two

holes and a part of the boundary of vGadget(Xi), called walls. See Figure 6.
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Figure 7: Details of a normal staircase (left), and a reverse staircase (right). Each of these

staircases has n reflex vertices.

There is a gap between the two right walls such that Vu (u is the topmost reflex

vertex of the lowest normal staircase of vGadget(Xi)) passes through this gap

and enters into the upper part of P . Note that the vertical lines through all300

other vertices on this staircase intersect one of the walls.

Negation Gadget. If x̄i ∈ Cj ; i.e., the negation literal of Xi appears in the

clause Cj , then we locate a pair of holes inside corridor(Xi, Cj) that together

serve as a negation gadget. The dashed rectangle and triangle within the bot-

tom corridor of the variable gadget shown in Figure 6 together form a negation305

gadget; we call these as rectangle-negation hole and triangle-negation hole, re-

spectively. The rectangle-negation hole is located below the variable hole inside

corridor(Xi, Cj). The triangle-negation hole is located on the left and above

the variable hole. By rescaling these two negation holes, we can ensure that no

horizontal or vertical line segment inside vGadget(Xi) can intersect both the310

triangle-negation and the variable holes or both the triangle-negation and the

rectangle-negation holes at the same time. Note that the two upper vertices of

the rectangle-negation hole have the same y-coordinate as the lowest reflex ver-

tex of the normal staircase inside corridor(Xi, Cj). Moreover, Hw is blocked

by the variable hole for every reflex vertex w on this normal staircase except315

for the lowest one; see the magnified illustrations in Figure 6. Finally, the x-

coordinate of the left side of the rectangle-negation hole is less than that of the

left side of the variable hole inside corridor(Xi, Cj).

Each triangle-negation gadget is a reverse staircase consisting of 4c reflex

16



clause

bend

clause
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Figure 8: An illustration of a left-clause gadget (left), and a right-clause gadget (right).

vertices. Finally, recall the vertex v, the rightmost reflex vertex of vGadget(Xi)320

(see Figure 6); we call this vertex the decision vertex of vGadget(Xi).

Clause Gadgets. In the variable-clause graph, each variable vertex has degree

at most three. Moreover, in the comb-shaped drawing of the variable-clause

graph, edges might be incident to a variable vertex from both left and right

of that vertex. Consider a clause vertex that lies on the left of the variable325

vertices; Figure 8(left) shows the clause gadget for such a clause. We call such

clause gadget a left-clause gadget. Note that Figure 8 shows only a part of a

left-clause gadget. To describe the complete gadget, we extend the top and

bottom open parts of the gadget upwards and downwards until we connect the

three corridors that come from the variables contained in this clause. Then, we330

close these open parts by a horizontal line segment in the top and bottom parts

of the clause gadget. By the comb-shaped drawing of the variable-clause graph,

the three corridors connecting variables to a clause must all be connected from

left or right of the clause gadget.

In the opposite side of a corridor connected to a clause gadget, we locate a335

reverse staircase inside the clause gadget facing towards the corridor (see the

triangle in Figure 8(left)). Each reverse staircase inside a clause gadget has 2c

reflex vertices. Note that there is one such reverse staircase for each corridor

connected to the clause gadget, and each such reverse staircase is located in

a separate lacuna as shown in Figure 8. We create a bend in the middle of340

the corridor connecting a variable gadget to a left-clause gadget as shown in
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Figure 8(left). There are four separate reflex vertices on the corners of the bend.

These reflex vertices are created such that no vertical line segment inside the

corridor can pass through two of them at the same time. A right-clause gadget

is defined and constructed similar to that of a left-clause gadget. Figure 8(right)345

shows an example of a right-clause gadget. 3 Since we have to bend the corridor

connecting a variable gadget to a right-clause gadget, we do not create any

additional bend inside the corridor. There are two separate reflex vertices on

the corners of the bend inside a right-clause gadget such that no vertical line

segment can pass through both of them at the same time (see Figure 8(right)).350

Let P be the resulting polygon.

By re-scaling and making the gadgets and corridors small enough, we can

ensure the construction of P and that the corridors will never intersect the

gadgets or bends. See Figure 9 for polygon P corresponding to the instance of

the Planar VR3SAT shown in Figure 5. Finally, c is greater than the number355

of reflex vertices of P that are neither on a staircase nor on a hole of P . More

precisely, c is greater than the number of reflex vertices of P ′, a simple polygon

obtained from P by removing the all holes and the staircases of P . We are now

ready to prove the following lemma.

Lemma 6. P has a conforming partition with stabbing number at most 5c if360

and only if I is satisfiable.

Proof. (⇐) Suppose that I is satisfiable. We give a conforming partition of

P that has stabbing number at most 5c. For each variable Xi: if Xi is true,

then we add Vv to the partition, where v is the decision vertex of vGadget(Xi).

Otherwise, if Xi is false, then we add Hv to the partition, where v is the decision365

vertex of vGadget(Xi). In the following, we show that any orthogonal line

segment inside vGadget(Xi) or inside a clause gadget connecting to vGadget(Xi)

can intersect at most 5c rectangles induced by this partition.

3When it does not matter, we omit the left or right prefix when referring to a clause gadget.
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Case 1. If Xi is true, then Vv forces all reverse staircases of vGadget(Xi) to

be partitioned vertically except for the reverse staircase on the boundary of370

vGadget(Xi) (i.e., the topmost staircase of vGadget(Xi)). Thus, the normal

staircases that face towards these reverse staircases are also forced to be parti-

tioned vertically. Therefore, the vertical edge that passes through exactly one

of the vertices of the normal staircase located on the boundary of vGadget(Xi)

(i.e., Vu in Figure 6) passes through the two right walls of vGadget(Xi). This375

forces the topmost reverse staircase of vGadget(Xi) to be partitioned vertically,

which implies that all staircases of vGadget(Xi) must be partitioned vertically.

It is easy to see that no vertical or horizontal line segment inside vGadget(Xi)

can stab the rectangles induced by partitioning more than four staircases at

the same time; hence, no more than 5c rectangles can be stabbed. Now, let K380

denote a corridor of vGadget(Xi).

• If there is no negation gadget inside K, then we add additional vertical

partition edges to partition K. The reflex vertices inside the bend of K

force the bend and, consequently, the reverse staircase of the clause gadget

facing towards K to be partitioned vertically. Therefore, any horizontal385

line segment through the corridor stabs at most 3c rectangles.

• If there is a negation gadget inside K, then we add Hu for every reflex ver-

tex of the triangle-negation and the rectangle-negation holes. This forces

the reflex vertices inside the bend of K and, therefore, the reverse staircase

of the clause gadget facing towards K to be partitioned horizontally.390

Note that since I is satisfiable and Xi is true, it is not possible for all

three reverse staircases inside this clause gadget to be partitioned horizontally.

Thus, any orthogonal line segment inside this clause gadget can stab at most 5c

rectangles. Moreover, since there exists a bend in K, no horizontal or vertical

line segment can stab all rectangles induced by partitioning a triangle-negation395

hole and a reverse staircase of this clause gadget simultaneously. Therefore, we

conclude that the stabbing number of the conforming partition of vGadget(Xi)

is at most 5c.
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Case 2. If Xi is false, then we can use an analogous argument as in Case 1 to

show that all staircases of vGadget(Xi) must be partitioned horizontally. Then,400

it is easy to see that no orthogonal line segment inside vGadget(Xi) can stab the

rectangles induced by partitioning more than four staircases at the same time;

hence, no more than 5c rectangles can be stabbed. Now, consider a corridor K

of vGadget(Xi).

• If there is no negation gadget inside the corridor, then we add additional405

horizontal partition edges to partition the corridor. By an analogous ar-

gument as in the first part of Case 1, we can show that the entire corridor

and the reverse staircase of the clause gadget facing towards the corridor

must be partitioned horizontally. Since I is satisfiable, Xi is false and

there is no negation-gadget inside K, it is not possible for all the three410

reverse staircases inside this clause gadget to be partitioned horizontally.

Therefore, any vertical line segment through the clause gadget stabs at

most 5c rectangles.

• If there is a negation gadget inside K, then we add Vu for every reflex

vertex on the triangle-negation and the rectangle-negation holes. Note415

that this is possible as Hw is blocked by the left side of the variable hole,

for all (except the lowest) reflex vertices w of the normal staircase inside

corridor(Xi,K). By an analogous argument as in the second part of

Case 1, we can show that the entire corridor and, consequently, the reverse

staircase inside the clause gadget facing towards K must be partitioned420

vertically.

Therefore, the stabbing number of the partition of vGadget(Xi) and every clause

gadget connecting to vGadget(Xi) is at most 5c. This implies that the stabbing

number of the resulting partition of P is at most 5c.

(⇒) Suppose that we are given a conforming partition of P that has stabbing425

number at most 5c. We give a truth assignment for I as follows. For each

variable Xi, we set Xi to true (resp., to false) if and only if the partition

contains Vv (resp., contains Hv), where v is the decision vertex of vGadget(Xi).

20



Let C(Xi) ∈ {xi, x̄i} denote the literal of Xi that appears in a clause C. We

denote the value of a literal xi by val(xi). Suppose for a contradiction that this430

assignment does not result in a truth value for I. Thus, there exists a clause

C = (Xi, Xj , Xk) such that val(C(Xi)) = val(C(Xj)) = val(C(Xk)) = false.

In the following, we show that the reverse staircase in C that faces towards

corridor(Xi, C) must be partitioned horizontally. The argument for the corre-

sponding reverse staircases in C for corridor(Xj , C) and corridor(Xk, C) are435

analogous.

Case 1. If C(Xi) = xi, thenHv is present in vGadget(Xi) because val(C(Xi)) =

false. Therefore, all (normal and reverse) staircases inside vGadget(Xi) must

have been partitioned horizontally. Since C(Xi) = xi there is no negation

gadget in corridor(Xi, C). Thus, the lowest reflex vertex of the normal stair-440

case, which belongs to the t-shaped hole in the begin of corridor(Xi, C), is

forced to be an endpoint of a horizontal partition edge of the partition. This

horizontal partition edge passes through corridor(Xi, C) and forces the reflex

vertices inside the bend of corridor(Xi, C) to remain partitioned horizontally.

Therefore, the given conforming partition contains the horizontal partition edge445

of corridor(Xi, C) that goes through the interior of C and passes below the

reverse staircase of C that faces towards corridor(Xi, C); consequently, this

reverse staircase is partitioned horizontally.

Case 2. If C(Xi) = x̄i, then Vv is present in vGadget(Xi) because val(C(Xi)) =

false. Since Vv is present in vGadget(Xi), all (normal and reverse) stair-450

cases of vGadget(Xi) are partitioned vertically. Since C(Xi) = x̄i, there exists

a negation gadget (i.e., triangle-negation and rectangle-negation holes) inside

corridor(Xi, C). The triangle-negation hole inside corridor(Xi, C) must be

partitioned horizontally. Otherwise, there is a horizontal line segment inside

the corridor that stabs all the rectangles induced by partitioning the triangle-455

negation hole and the reverse staircase on the t-shaped hole that is located just

above corridor(Xi, C); in particular, consider the horizontal line segment that

passes through the space between the variable hole and the rectangle-negation
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hole of corridor(Xi, C). See Figure 10. This implies that the stabbing number

of the given conforming partition is greater than 5c, which is a contradiction.460

The horizontal rectangles induced by partitioning the triangle-negation hole

block the upper-left vertex of the rectangle-negation hole to be an endpoint

of a vertical partition edge. Therefore, the partition edge through this vertex

must be horizontal. Consequently, this horizontal partition edge forces the re-

flex vertices inside the bend of corridor(Xi, C) to be partitioned horizontally.465

Therefore, the reverse staircase in the clause gadget of C must be partitioned

horizontally.

We conclude that if val(C(Xi)) = false, then the reverse staircase inside

the clause gadget of C that faces towards corridor(Xi, C) is partitioned hor-

izontally. Since val(C(Xi)) = val(C(Xj)) = val(C(Xk)) = false, all the470

reverse staircases inside the clause gadget of C are partitioned horizontally.

Since each reverse staircase inside a clause gadget consists of 2c reflex vertices,

there exists a vertical line segment inside the clause gadget of C that stabs more

than 5c rectangles, which is a contradiction. This completes the second part of

the proof. �475

It is straightforward to see that the reduction and construction of P can

be done in polynomial time. Therefore, by Lemma 6, we have the following

theorem.

Theorem 7. The optimal conforming partition problem is NP-hard on orthog-

onal polygons with holes.480

5. Conclusion

In this paper, we studied the problem of computing a conforming partition

of an orthogonal polygon P with minimum stabbing number over all such par-

titions of P ; the stabbing number of a partition is defined as the maximum

number of rectangles stabbed by any orthogonal line segment inside P . We first485

gave an O(n log n)-time algorithm to solve the problem when P is a histogram
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with n vertices. We also gave a 2-approximation algorithm for the problem on

any orthogonal polygon P , even if P has holes. Finally, we showed that the

problem is NP-hard for orthogonal polygons with holes. We leave the following

questions about conforming partitions open for future work:490

1. What is the complexity of finding a conforming partition with minimum

stabbing number on simple orthogonal polygons; i.e., polygons without

holes?

2. Can a conforming partition with stabbing number at most c times the

minimum be found in polynomial time, for some constant c < 2?495

Another direction for future work is to study the problem of finding a gen-

eral (not necessarily conforming) partition with minimum stabbing number in

orthogonal polygons; i.e., the problem studied by Abam et al. [25]. The com-

plexity of the general problem remains open even on orthogonal polygons with

holes. Note that our reduction on polygons with holes does not work for gen-500

eral partitions. The best approximation algorithm for the general problem has

approximation factor 3 [25]. Can our LP-based 2-approximation algorithm be

generalized to get better approximation algorithms for the general problem?
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Figure 9: The complete polygon P corresponding to the instance of the Planar VR3SAT

shown in Figure 5.
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Figure 10: The line segment s stabs more than 5c rectangles.
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