
A Simple Linear-Space Data Structure for
Constant-Time Range Minimum QueryI

Stephane Durochera,1,∗, Robby Singha

aDepartment of Computer Science, University of Manitoba, Canada

Abstract

We revisit the range minimum query problem and present a new O(n)-space

data structure that supports range minimum queries in O(1) time. The goal

is to construct a static data structure that efficiently supports range minimum

queries on a given list A[0 : n− 1] of n items drawn from a totally ordered set.

Each range minimum query consists of an input pair of indices (i, j) for which

the minimum element of the subarray A[i : j] must be returned. Although

previous data structures exist whose asymptotic bounds match ours, our goal

is to introduce a new solution that is simple, intuitive, and practical without

increasing asymptotic costs for query time or space. We analyze our new data

structure theoretically and practically, the latter through an evaluation of its

performance relative to implementations of four of the top range minimum query

data structures.

Keywords: array range query, range minimum query, data structures, linear

space, constant time

IA preliminary version of this work appeared in the proceedings of the Conference on Space
Efficient Data Structures, Streams and Algorithms [1].

∗Corresponding author
Email addresses: durocher@cs.umanitoba.ca (Stephane Durocher),

singhr39@myumanitoba.ca (Robby Singh)
1Work of the author is supported in part by the Natural Sciences and Engineering Research

Council of Canada (NSERC).

Preprint submitted to Theoretical Computer Science June 25, 2018

1. Introduction

1.1. Motivation

Along with the mean, median, and mode of a multiset, the minimum (equiv-

alently, the maximum) is a fundamental statistic of data analysis for which effi-

cient computation is necessary. Given a list A[0 : n− 1] of n items drawn from

a totally ordered set, a range minimum query (RMQ) consists of an input pair

of indices (i, j) for which the minimum element of A[i : j] must be returned.

The objective is to preprocess A to construct a data structure that supports

efficient response to one or more subsequent range minimum queries, where the

corresponding input parameters (i, j) are provided at query time.

Although the complete set of possible queries can be precomputed and stored

using Θ(n2) space, practical data structures require less storage while still en-

abling efficient response time. For all i, if i = j, then a range query must report

A[i]. Consequently, any range query data structure for a list of n items requires

Ω(n) words of storage space in the worst case [2]. This leads to a natural ques-

tion: how quickly can an O(n)-space data structure answer a range minimum

query?

Previous O(n)-space data structures exist that provide O(1)-time RMQ (e.g.,

[3, 4, 5, 6, 7], see Section 2). These solutions typically require a transformation

or invoke a property that enables the volume of stored precomputed data to

be reduced while allowing constant-time access and RMQ computation. Each

such solution is a conceptual organization of the data into a compact table for

efficient reference; essentially, the algorithm reduces to a clever table lookup.

In this paper our objective is not to minimize the total number of bits occu-

pied by the data structure (our solution is not succinct) but rather to present a

simple and more intuitive method for organizing the precomputed data to sup-

port RMQ efficiently, i.e., an O(n)-space data structure that supports RMQ in

O(1) time. Our solution combines new ideas with techniques from various pre-

vious data structures: van Emde Boas trees [8], resizable arrays [9], range mode

query [10, 11], one-sided RMQ [3], and a linear-space data structure that sup-

2

ports RMQ in O(
√
n) time. The resulting RMQ data structure stores efficient

representations of the data to permit direct lookup without requiring the indi-

rect techniques employed by previous solutions (e.g., [3, 4, 5, 6, 12, 13, 14]) such

as transformation to a lowest common ancestor query, Cartesian trees, Eulerian

tours, or the Four Russians speedup. The data structure’s RMQ algorithm is

astonishingly simple: it can be implemented as a single if statement with four

branches, each of which returns the minimum of at most three values retrieved

from precomputed tables (see the pseudocode for Algorithm 2 in Section 3.3).

The RMQ problem is sometimes defined such that a query returns only

the index of the minimum element instead of the minimum element itself. In

particular, this is the case for succinct data structures that support O(1)-time

RMQ using only O(n) bits of space [7, 15, 16, 17] (see Section 2). In order to

return the actual minimum element, say A[i], in addition to its index i, any such

data structure must also store the values from the input array A, corresponding

to a lower bound of Ω(n log u) bits of space in the worst case when element

are drawn from a universe of size u or, equivalently, Ω(n) words of space (this

lower bound also applies to other array range query problems [2]). Therefore,

a range query data structure that uses o(n) words of space requires storing the

input array A separately, resulting in total space usage of Θ(n) words of space

in the worst case. In this paper we require that a RMQ return the minimum

element. Our RMQ data structure stores all values of A internally and matches

the optimal asymptotic bounds of O(n) words of space and O(1) query time.

1.2. Definitions and Model of Computation

We assume the RAM word model of computation with word size Θ(log u),

where elements are drawn from a universe U = {−u, . . . , u − 1} for some fixed

integer u ≥ n. Unless specified otherwise, memory requirements are expressed

in word-sized units. We assume the usual set of O(1)-time primitive opera-

tions: basic integer arithmetic (addition, subtraction, multiplication, division,

and modulo), bitwise logic, and bit shifts. We do not assume O(1)-time expo-

nentiation nor, consequently, radicals. When the base operand is a power of

3

two and the result is an integer, however, these operations can be computed

using bitwise left or right shifts. All arithmetic computations are on integers in

U , and integer division is assumed to return the floor of the quotient. Finally,

our data structure only requires finding the binary logarithm of integers in the

range {0, . . . , n}, i.e., the index of the most significant non-zero bit. The com-

plete set of values can be precomputed and stored in a table of size O(n) to

provide O(1)-time reference for the log and log log operations2 at query time,

regardless of whether logarithm computation is included in the RAM model’s

set of primitive operations.

A common technique used in array range searching data structures (e.g.,

[3, 10, 11]) is to partition the input array A[0 : n− 1] into a sequence of dn/be

blocks, each of size b (except possibly for the last block whose size is [(n −

1) mod b] + 1). A query range A[i : j] spans between 0 and dn/be complete

blocks. We refer to the sequence of complete blocks contained within A[i : j] as

the span, to the elements of A[i : j] that precede the span as the prefix, and to

the elements of A[i : j] that succeed the span as the suffix. See Figure 1. One

or more of the prefix, span, and suffix may be empty. When the span is empty,

the prefix and suffix can lie either in adjacent blocks, or in the same block; in

the latter case the prefix and suffix are equal (or one is empty).

We summarize the asymptotic resource requirements of a given RMQ data

structure by the ordered pair 〈s(n), t(n)〉, where s(n) denotes the storage space

it requires in words and t(n) denotes its worst-case RMQ time for an array of

size n. Our discussion focuses primarily on these two measures of efficiency;

other measures of interest include the preprocessing time and the update time.

Note that similar notation is sometimes used to pair precomputation time and

query time (e.g., [3, 6]).

2Throughout this manuscript, log a denotes the binary logarithm, log2 a.

4

2. Related Work

Multiple 〈ω(n), O(1)〉 solutions are known, including precomputing RMQs

for all query ranges in 〈O(n2), O(1)〉, and precomputing RMQs for all ranges

of length 2k for some k ∈ Z+ in 〈O(n log n), O(1)〉 (Sparse Table Algorithm)

[3, 6]. In the latter case, a query is decomposed into two (possibly overlap-

ping) precomputed queries. Similarly, 〈O(n), ω(1)〉 solutions exist, including

the 〈O(n), O(
√
n)〉 data structure described in Section 3.1.

Several 〈O(n), O(1)〉 RMQ data structures exist, many of which depend on

the equivalence between the range minimum query and lowest common ancestor

(LCA) problems. Harel and Tarjan [13] gave the first 〈O(n), O(1)〉 solution to

LCA. Their solution was simplified by Schieber and Vishkin [14]. Berkman and

Vishkin [5] showed how to solve the LCA problem in 〈O(n), O(1)〉 by transfor-

mation to RMQ using an Euler tour. This method was simplified by Bender and

Farach-Colton [3] to give an ingenious solution which we briefly describe below.

Comprehensive overviews of previous solutions are given by Davoodi [18] and

Fischer [19].

The array A[0 : n − 1] can be transformed into a Cartesian tree C(A) on n

nodes such that a RMQ on A[i : j] corresponds to the LCA of the respective

nodes associated with i and j in C(A). When each node in C(A) is labelled by its

depth, an Eulerian tour on C(A) (i.e., the depth-first traversal sequence on C(A))

gives an array B[0 : 2n−2] for which any two adjacent values differ by ±1. Thus,

a LCA query on C(A) corresponds to a ±1-RMQ on B. Array B is partitioned

into blocks of size (log n)/2. Separate data structures are constructed to answer

queries that are contained within a single block of B and those that span multiple

blocks, respectively. In the former case, the±1 property implies that the number

of unique blocks in B is O(
√
n); all O(

√
n log2 n) possible RMQs on blocks of B

are precomputed (the Four Russians technique [20]). In the latter case, a query

can be decomposed into a prefix, span, and suffix (see Section 1.2). RMQs on

the prefix and suffix are contained within respective single blocks, each of which

can be answered in O(1) time as in the former case. The span covers zero or

5

more blocks. The minimum of each block of B is precomputed and stored in

A′[0 : 2n/ log n − 1]. A RMQ on A′ (the minimum value in the span) can be

found in 〈O(n), O(1)〉 using the 〈O(n′ log n′), O(1)〉 sparse table data structure

[3, 6] mentioned above due to the shorter length of A′ (i.e., n′ = 2n/ log n).

Fischer and Heun [6] use similar ideas to give a 〈O(n), O(1)〉 solution to RMQ

that applies the Four Russians technique to any array (i.e., it does not require

the ±1 property) on blocks of length Θ(log n). Yuan and Atallah [21] examine

RMQ on multidimensional arrays and give a new one-dimensional 〈O(n), O(1)〉

solution that uses a hierarchical binary decomposition of A[0 : n− 1] into Θ(n)

canonical intervals, each of length 2k for some k ∈ {1, . . . , log n}, and precom-

puted queries within blocks of length Θ(log n) (similar to the Four Russians

technique).

When only the minimum’s index is required, Sadakane [17] gives a succinct

data structure requiring 4n + o(n) bits that supports O(1)-time RMQ. Fischer

and Heun [15, 16] and Davoodi et al. [7] reduce the space requirements to

2n + o(n) bits. Finally, the RMQ problem has been examined in the dynamic

setting [22, 18], in two and higher dimensions [23, 24, 25, 17, 26, 21], and on

trees and directed acyclic graphs [4, 22, 24].

3. A New 〈O(n), O(1)〉 RMQ Data Structure

The new data structure is described in steps, starting with a previous 〈O(n), O(
√
n)〉

data structure, extending it to 〈O(n log log n), O(log log n)〉 by applying the tech-

nique recursively, eliminating recursion to obtain 〈O(n log log n), O(1)〉, and fi-

nally reducing the space to 〈O(n), O(1)〉. To simplify the presentation, suppose

initially that the input array A has size n = 22
k

, for some k ∈ Z+; as described

in Section 3.5, removing this constraint and generalizing to an arbitrary n is

easily achieved without any asymptotic increase in time or space.

3.1. 〈O(n), O(
√
n)〉 Data Structure

The following 〈O(n), O(
√
n)〉 data structure is known in RMQ folklore (e.g.,

[27]) and has similar high-level structure to the ±1-RMQ algorithm of Bender

6

3 3 3 34 46 0 77 788 93 1

3 10 4

n

n

prefix span suffix

B

A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i j

0 1 2 3

Figure 1: A 〈O(n), O(
√
n)〉 data structure: the array A is partitioned into

√
n blocks of size

√
n. The range minimum of each block is precomputed and stored in array B. A range

minimum query A[2 : 14] is processed by finding the minimum of the respective minima of

the prefix A[2 : 3], the span A[4 : 11] (determined by examining array B), and the suffix

A[12 : 14]. In this example this corresponds to min{3, 0, 4} = 0.

and Farach-Colton [3, Section 4]. While suboptimal on its own, and often

overlooked in favour of more efficient solutions, this data structure forms the

basis for our new 〈O(n), O(1)〉 data structure.

The input array A[0 : n − 1] is partitioned into
√
n blocks of size

√
n. The

range minimum of each block is precomputed and stored in a table B[0 :
√
n−1].

See Figure 1. A query range spans between zero and
√
n complete blocks. The

minimum of the span is computed by iteratively examining the corresponding

values in B. Similarly, the respective minima of the prefix and suffix are com-

puted by iteratively examining their elements. The range minimum corresponds

to the minimum of these three values. Since the prefix, suffix, and array B each

contain at most
√
n elements, the worst-case query time is Θ(

√
n). The total

space required by the data structure is Θ(n). Precomputation requires only a

single pass over the input array in Θ(n) time. Updates (e.g., set A[i] ← x)

require Θ(
√
n) time in the worst case; whenever an array element equal to its

block’s minimum is increased, the block must be scanned to identify the new

minimum.

7

3.2. 〈O(n log log n), O(log log n)〉 Data Structure

One-sided range minimum queries (where one endpoint of the query range

coincides with one end of the array A) are trivially precomputed [3] and stored

in arrays C and C ′, each of size n, where for each i,

C[i] =

min{A[i], C[i− 1]} if i > 0,

A[0] if i = 0,

C ′[i] =

min{A[i], C ′[i + 1]} if i < n− 1,

A[n− 1] if i = n− 1.

(1)

Any subsequent one-sided RMQ on A[0 : j] or A[j : n − 1] can be answered in

O(1) time by referring to C[j] or C ′[j].

The 〈O(n), O(
√
n)〉 solution discussed in Section 3.1 includes three range

minimum queries on subproblems of size
√
n, of which at most one is two-sided.

In particular, if the span is non-empty, then the query on array B is two-sided,

and the queries on the prefix and suffix are one-sided. Similarly, if the query

range is contained in a single block, then there is a single two-sided query and

no one-sided queries. Finally, if the query range intersects exactly two blocks,

then there are two one-sided queries (one each for the prefix and suffix) and no

two-sided queries.

Thus, upon adding arrays C and C ′ to the data structure, at most one

of the three (or fewer) subproblems requires ω(1) time to identify its range

minimum. This search technique can be applied recursively on two-sided queries.

By limiting the number of recursive calls to at most one and by reducing the

problem size by an exponential factor of 1/2 at each step of the recursion, the

resulting query time is bounded by the following recurrence (similar to that

achieved by van Emde Boas trees [8]):

T (n) ≤

T (
√
n) + O(1) if n > 2,

O(1) if n ≤ 2

∈ O(log log n). (2)

8

Table 1: The xth level is a sequence of bx(n) blocks of size sx(n).

level x 0 1 2 . . . i . . . log logn− 2 log logn− 1 log logn

number of blocks bx(n) n/2 n/4 n/16 . . . n/22
i

. . . n3/4 √
n 1

block size sx(n) 2 4 16 . . . 22
i

. . . n1/4 √
n n

Each step invokes at most one recursive RMQ on a subarray of size
√
n.

Each recursive call is one of two types: i) a recursive call on array B (a two-

sided query to compute the range minimum of the span) or ii) a recursive call

on the entire query range (contained within a single block).

Recursion can be avoided entirely for determining the minimum of the span

(a recursive call of the first type). Since there are
√
n blocks,

(√
n+1
2

)
≤ n

distinct spans are possible. As is done in the range mode query data structure

of Krizanc et al. [11], the minimum of each span can be precomputed and stored

in a table D of size n. Any subsequent RMQ on a span can be answered in O(1)

time by reference to table D. Consequently, tables C, C ′, and D suffice, and

table B can be eliminated.

The result is a hierarchical data structure containing log log n+1 levels which

we number 0, . . . , log log n, where the xth level3 is a sequence of bx(n) = n/22
x

blocks of size sx(n) = n/bx(n) = 22
x

. See Table 1. Thus, level 0 is a sequence

of n/2 blocks of size 2, level 1 is a sequence of n/4 blocks of size 4, level 2 is

a sequence of n/16 blocks of size 16, and so on, until level log log n − 2 is a

sequence of n3/4 blocks of size n1/4, level log log n−1 is a sequence of
√
n blocks

of size
√
n, and level log log n is a single block of size n (i.e., the entire array A).

Generalizing (1), for each x ∈ {0, . . . , log log n} the new arrays Cx and C ′x

3Level log logn is included for completeness since we refer to the size of the parent of blocks

on level x, for each x ∈ {0, . . . , log logn − 1}. The only query that refers to level log logn

directly is the complete array: i = 0 and j = n − 1. The global minimum for this singular

case can be stored using O(1) space and updated in O(
√
n) time as described in Section 3.1.

9

are defined by

Cx[i] =

min{A[i], Cx[i− 1]} if i 6= 0 mod sx(n),

A[i] if i = 0 mod sx(n),

C ′x[i] =

min{A[i], C ′x[i + 1]} if (i + 1) 6= 0 mod sx(n),

A[i] if (i + 1) = 0 mod sx(n).

We refer to a sequence of blocks on level x that are contained in a common

block on level x + 1 as siblings and to the common block as their parent. Each

block on level x + 1 is a parent to sx+1(n)/sx(n) = sx(n) siblings on level

x. Thus, any query range contained in some block at level x + 1 covers at

most sx(n) siblings at level x, resulting in Θ(sx(n)2) = Θ(sx+1(n)) distinct

possible spans within a block at level x + 1 and Θ(sx+1(n) · bx+1(n)) = Θ(n)

total distinct possible spans at level x + 1, for any x ∈ {0, . . . , log log n − 1}.

These precomputed range minima are stored in table D, such that for every

x ∈ {0, . . . , log log n − 1}, every b ∈ {0, . . . , bx+1(n) − 1}, and every {i, j} ⊆

{0, . . . , sx(n)− 1}, Dx[b][i][j] stores the minimum of the span A[b · sx+1(n) + i ·

sx(n) : b · sx+1(n) + (j + 1)sx(n)− 1].

This gives the following recursive algorithm whose worst-case time is bounded

by (2):

Algorithm 1

RMQ(i, j)

1 if i = 0 and j = n− 1

2 return minA // global minimum

3 else

4 return RMQ(log log n− 1, i, j)

// start recursion at the top level

10

RMQ(x, i, j)

1 bi ← bi/sx(n)c // block indices

2 bj ← bj/sx(n)c

3 b← bi/sx+1(n)c // parent block

4 if x = 0 // base case

5 return min{A[i], A[j]} // range size ≤ 2

6 else if bi = bj

7 return RMQ(x− 1, i, j)

// two-sided recursive RMQ

8 else if bj − bi ≥ 2 // non-empty span

9 return min{C ′x[i], Cx[j], Dx[b][bi + 1][bj − 1]}

// 2 one-sided RMQs + precomputed span

10 else // empty span

11 return min{C ′x[i], Cx[j]} // 2 one-sided RMQs

The space required by array Dx for each level x < log log n is

O
(
sx(n)2 · bx+1(n)

)
= O (sx+1(n) · bx+1(n)) = O(n).

Since arrays Cx and C ′x also require O(n) space at each level, the total space

required is O(n) per level, resulting in O(n log log n) total space for the complete

data structure.

For each level x < log log n, precomputing arrays Cx, C ′x, and Dx is easily

achieved in O(n · sx(n)) = O(n ·22x) time per level, or O(n3/2) total time. Each

update requires O(sx(n)) time per level, or O(
√
n) total time per update. This

gives the following lemma:

Lemma 1. Given any n = 22
k

for some k ∈ Z+ and any array A[0 : n − 1],

Algorithm 1 supports range minimum queries on A in O(log log n) time using a

data structure of size O(n log log n).

3.3. 〈O(n log log n), O(1)〉 Data Structure

Each step of Algorithm 1 described in Section 3.2 invokes at most one recur-

sive call on a subarray whose size decreases exponentially at each step. Specifi-

11

cally, the only case requiring ω(1) time occurs when the query range is contained

within a single block of the current level. In this case, no actual computation or

table lookup occurs locally; instead, the result of the recursive call is returned

directly (see Line 7 of Algorithm 1). As such, the recursion can be eliminated

by jumping directly to the level of the data structure at which the recursion

terminates, that is, the highest level for which the query range is not contained

in a single block. Any such query can be answered in O(1) time using a com-

bination of at most three references to arrays Cx, C ′x, and Dx (see Lines 9 and

11 of Algorithm 1). We refer to the corresponding level of the data structure as

the query level, whose index we denote by `.

More precisely, Algorithm 1 makes a recursive call whenever bi = bj , where

bi and bj denote the respective indices of the blocks containing i and j in the

current level (see Line 7 of Algorithm 1). Thus, we seek to identify the highest

level for which bi 6= bj . In fact, it suffices to identify the highest level ` ∈

{0, . . . , log log n−1} for which no query of size j− i+1 can be contained within

a single block. While the query could span the boundary of (at most) two

adjacent blocks at higher levels, it must span at least two blocks at all levels

less than or equal to `. In other words, the size of the query range is bounded

by

s`(n) <j − i + 1 ≤ s`+1(n)

⇔ 22
`

<j − i + 1 ≤ 22
`+1

⇔ log log(j − i + 1)− 1 ≤ ` < log log(j − i + 1)

⇒ ` = blog log(j − i)c.

As discussed in Section 1.2, since we only require finding binary logarithms

of positive integers up to n, these values can be precomputed and stored in a

table of size O(n). Consequently, the value ` can be computed in O(1) time

at query time, where each logarithm is found by a table lookup. Similarly, the

values sx(n) and bx(n) can be precomputed for all x ∈ {0, . . . , log log n}.

This gives the following simple algorithm whose worst-case running time is

12

constant (note the absence of loops and recursive calls):

Algorithm 2

RMQ(i, j)

1 `← blog log(j − i)c // level

2 bi ← bi/s`(n)c // block indices

3 bj ← bj/s`(n)c

4 b← bi/s`+1(n)c // parent block

5 if i = 0 and j = n− 1

6 return minA // global minimum

7 else if j − i < 2 // range size ≤ 2

8 return min{A[i], A[j]}

9 else if bj − bi ≥ 2 // non-empty span

10 return min{C ′`[i], C`[j], D`[b][bi + 1][bj − 1]}

// 2 one-sided RMQs + precomputed span

11 else // empty span

12 return min{C ′`[i], C`[j]} // 2 one-sided RMQs

Although the query algorithm differs from Algorithm 1, the data structure

remains unchanged except for the addition of precomputed values for loga-

rithms which require O(n) additional total space. As such, the space remains

O(n log log n) while the query time is reduced to O(1) in the worst case. Pre-

computation and update times remain O(n3/2) and O(
√
n), respectively. This

gives the following lemma:

Lemma 2. Given any n = 22
k

for some k ∈ Z+ and any array A[0 : n − 1],

Algorithm 2 supports range minimum queries on A in O(1) time using a data

structure of size O(n log log n).

3.4. 〈O(n), O(1)〉 Data Structure

The data structures described in Sections 3.2 and 3.3 store exact precom-

puted values in arrays Cx, C ′x, and Dx. That is, for each a and each x,

13

Cx[a] stores A[b] for some b (similarly for C ′x and Dx). If the array A is

accessible during a query, then it suffices to store the relative index b − a

instead of storing A[b]. Thus, Cx[a] stores b − a and the returned value is

A[Cx[a] + a] = A[(b− a) + a] = A[b]. Since the range minimum is contained in

the query range A[i : j] we get that {a, b} ⊆ {i, . . . , j} and, therefore,

|b− a| ≤ j − i + 1 ≤ s`+1(n).

Consequently, for each level x, log(sx+1(n)) = 2x+1 bits suffice to encode any

value stored in Cx, C ′x, or Dx. Therefore, for each level x, each table Cx, C ′x,

and Dx can be stored using O(n · 2x+1) bits. Observe that

log logn−1∑
x=0

n · 2x+1 < 2n log n. (3)

Consequently, the total space occupied by the tables Cx, C ′x, and Dx can be

compacted into O(n log n) bits or, equivalently, O(n) words of space. We now

describe how to store this compact representation to enable efficient access.

For each i ∈ {0, . . . , n − 1}, the values C0[i], . . . , Clog logn−1[i] can be stored in

two words by (3). Specifically, the first word stores Clog logn−1[i] and for each

x ∈ {0, . . . , log log n− 2}, bits 2x+1 − 1 through 2x+2 − 2 store the value Cx[i].

Thus, all values C0[i], . . . , Clog logn−2[i] are stored using

log logn−2∑
i=0

2x+1 = log n− 2 < log u

bits, i.e., a single word, where log u denotes the word size under the RAM model.

The value Cx[i] can be retrieved using a bitwise left shift followed by a right

shift or, alternatively, a bitwise logical AND with the corresponding sequence

of consecutive 1 bits (all O(log log n) bit sequences can be precomputed). An

analogous argument applies to the arrays C ′x and D, resulting in O(n) space for

the complete data structure.

To summarize, the query algorithm is unchanged from Algorithm 2 and the

corresponding query time remains constant, but the data structure’s required

space is reduced to O(n). Precomputation and update times remain O(n3/2)

and O(
√
n), respectively. This gives the following lemma:

14

Lemma 3. Given any n = 22
k

for some k ∈ Z+ and any array A[0 : n − 1],

Algorithm 2 supports range minimum queries on A in O(1) time using a data

structure of size O(n).

3.5. Generalizing to an Arbitrary Array Size n

To simplify the presentation in Sections 3.1 to 3.4 we assumed that the input

array had size n = 22
k

for some k ∈ Z+. As we show in this section, generalizing

the data structure to an arbitrary positive integer n while maintaining the same

asymptotic bounds on space and time is straightforward.

Let m denote the largest value no larger than n for which Lemma 3 applies.

That is,

m = 22
blog log nc

⇒ m ≤ n < m2

⇒ n/m <
√
n. (4)

Define a new array A′[0 : n′ − 1], where n′ = mdn/me, that corresponds to

the array A padded with dummy data4 to round up to the next multiple of m.

Thus,

∀i ∈ {0, . . . , n′ − 1}, A′[i] =

A[i] if i < n

+∞ if i ≥ n.

Since n′ = 0 mod m, partition array A′ into a sequence of blocks of size m. The

number of blocks in A′ is dn/me < d
√
ne.

By (4) and Lemma 3, for each block we can construct a data structure to

support RMQ on that block in O(1) time using O(m) space per block. Therefore,

the total space required by all blocks in A′ is O(dn/me ·m) = O(n). Construct

arrays C, C ′, and D as before on the top level of array A′ using the blocks of

size m. The arrays C and C ′ each require O(n′) = O(n) space. The array D

4For implementation, it suffices to store u− 1 (the largest value in the universe U) instead

of +∞ as the additional values.

15

requires O(dn/me2) ⊆ O(n) space by (4). Therefore, the total space required

by the complete data structure remains O(n).

Each query is performed as in Algorithm 2, except that references to C,

C ′, and D at the top level access the corresponding arrays (which are stored

separately from Cx, C ′x, and Dx for the lower levels). Therefore, the query time

is increased by a constant factor for the first step at the top level, and the total

query time remains O(1).

As discussed in Section 3.4, the number of bits required to store a value in

Cx, C ′x or Dx doubles from levels x to x + 1. Since 2n log n bits suffice to store

all data for levels ` ≤ m, it follows that 4n log n bits suffice to store the complete

data structure, i.e., levels 0 through m + 1, including the new top level.

This gives the following theorem:

Theorem 4 (Main Result). Given any n ∈ Z+, and any array A[0 : n − 1],

Algorithm 2 supports range minimum queries on A in O(1) time using a data

structure of size O(n).

4. Simulation and Performance Evaluation

We implemented our RMQ data structure along with four other efficient

RMQ data structures, and ran a series of tests to compare the performance of

these data structures on input arrays ranging in size from 27 to 226 integers,

measuring range minimum query times, memory usage (total space required by

the data structure), and preprocessing times (time required to build the data

structure on the given input array). The four additional data structures selected

were those of Fischer and Heun [15], Bender and Farach-Colton [3], Sadakane

[17], and Ohlebusch and Gog [28]. All of these data structures are 〈O(n), O(1)〉;

that is, they can be stored using O(n) total space and support O(1)-time range

minimum queries in the worst case. The goal of this experiment was to evaluate

and compare the constants in these respective linear and constant costs for each

data structure. For simplicity, we refer to each RMQ data structures by its first

author. See Section 2 for a discussion of these data structures.

16

4

Query Times

Figure 3. Query Times for the RMQ Data Structures.

In Figure 3, we chose the y-axis to be the log of the nanoseconds as we expected the query times to
remain constant. Despite all the data structures promising an O(1) growth time query time, the results
show a clear linear or exponential growth for all of them. This is likely due to the overhead in handling
the datasets for the testing environment.

Similar to Figure 2, the array sizes [27, 210) show the most deviation from the best-fit line. This illustrates
the overhead introduced by these data structures for small array sizes and how a naive approach would
be more practical for smaller ranges.

15

16

17

18

19

20

21

22

23

24

25

6 8 10 12 14 16 18 20 22 24 26 28

Q
ue

ry
 T

im
es

 (l
og

 o
f n

an
os

ec
on

ds
)

Array Size (log)

Query Time

Durocher

Bender

Fischer

Sadakane

Ohlebusch

Durocher

Bender

Fischer

Sadakane

Ohlebusch

Figure 2: Average query times plotted as the log of time in nanoseconds, as a function of the

input array size

In the remainder of this section we describe the parameters of the simulation

and analyze its results. In brief, the two data structures with the fastest query

times were ours and Fischer’s, with Fischer providing faster query time for small

data (n ∈ {27, . . . , 218}) and ours providing faster query time for large data (n ∈

{219, . . . , 226}). Following our data structure and Fischer’s, in order of increasing

query times were Bender, Sadakane, and Ohlebusch. With respect to space,

the data structures that used the least space were Sadakane and Ohlebusch,

followed by Fischer, ours, and Bender. Except for small data (n ≤ 29), the

relative ordering of data structures in terms of space use remained effectively

identical throughout the tests. See Figures 2 through 4 for plots of average

query times, space, and preprocessing times as functions of the input size.

4.1. Simulation Parameters

Our tests were conducted on a laptop computer running Windows 10 with an

Intel Core i7-4720HQ CPU and 16GB of RAM. For each array size5, 2i, for all

5For n = 227, Bender’s data structure used approximately 80% of the available 16GB of

memory, resulting in significantly increased query times. To avoid biasing results, we tested

17

2

Test Results and Summary

Memory Usage

Figure 1. Memory Usage for the RMQ Data Structures.

Given that the array size doubles at each step, we chose the x-axis to be the base-2 logarithm of the
array size. We expected the memory usage to increase linearly with array size, so we chose the y-axis to
be the logarithm of the memory usage (in bytes).

The results show our data structure uses the second most memory, behind only Bender’s. The Super
Cartesian Tree data structure was shown to use the least memory.

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

6 8 10 12 14 16 18 20 22 24 26 28

M
em

or
y

U
sa

ge
 (l

og
 o

f b
yt

es
)

Array Size (log)

Memory Usage

Bender

Durocher

Fischer

Sadakane

Ohlebusch

Bender

Durocher

Fischer

Sadakane

Ohlebusch

Figure 3: Memory use plotted as the log of space in bytes, as a function of the input array

size

3

Preprocessing Time

Figure 2. Preprocessing times for the RMQ Data Structures.

For preprocessing time, we plot the base-2 logarithm of the array size as the x-axis. Expecting a linear
relationship between preprocessing time and array size, we set the y-axis to be the base-2 logarithm of
the time (nanoseconds) for the data structures to construct itself.

The results show our data structure to be in the middle in terms of time to finish preprocessing.

The least time taken at all array sizes was by Fischer’s data structure, and Bender’s took the most.

For array sizes [27, 210), the preprocessing time appears to deviate the most from the best-fit lines. This
is likely because the array sizes are too small to justify using these complex data structures over a
simpler/naive one.

15

17

19

21

23

25

27

29

31

33

35

37

39

6 8 10 12 14 16 18 20 22 24 26 28

Pr
ep

ro
ce

ss
in

g
Ti

m
e

(lo
g

of
 n

an
os

ec
on

ds
)

Array Size (log)

Preprocessing Time

Durocher

Bender

Fischer

Sadakane

Ohlebusch

Durocher

Bender

Fischer

Sadakane

Ohlebusch

Figure 4: Similar to memory use, preprocessing times are nearly linear, again with the excep-

tion of Fischer for small n.

18

i ∈ {7, 8, . . . , 26}, we performed nine6 trials. For each trial we created an array

of n integers, with each integer stored as a 32-bit word7 selected uniformly at

random from {0, . . . , 216 − 1}. The five data structures were constructed using

this same input array, and the preprocessing time for constructing each was

measured in nanoseconds. We recorded the memory used by each data structure

in bytes. For each trial we generated a sequence of 1000 pairs of random query

indices (i, j), where 0 ≤ i ≤ j ≤ n − 1; this same sequence of index pairs was

applied to each of the five data structures. Memory used by the data structures

was not freed until the end of the trial, with all five data structures existing in

memory simultaneously during the querying phase to avoid any bias related to

the amount of available RAM. For each data structure and each query index pair

(i, j), the RMQ query on (i, j) was performed 1000 times and the time required

measured in nanoseconds; this repetition was intended to reduce inaccuracies on

the measurement of query times due to the extremely quick queries times. The

time required for 1000 repetitions was recorded for each of the 1000 RMQs in

the sequence, and the average of these 1000 values was recorded for each data

structure. Nine trials were executed for each n to reduce any potential bias

that particular data sets might prove cumbersome for one or more of the data

structures being evaluated, with the median measurements of each of the nine

trials recorded for each data structure and each n.

All five data structure were implemented in C++. The implementations of

Sadakane and Ohlebusch were based on those in Gog’s Succinct Data Structure

Library [29], the implementation of Fischer was based on his own code [30], and

the implementation of Bender was based on that by Walsh [31].

all data structures on array sizes up to 226.
6An odd number of trials was selected to ensure unique median values.
7Although larger integers could have been used, the maximum value 216 − 1 = 65535

minimized the need to modify existing code used for some of the data structures.

19

4.2. Analysis

Query times, which are theoretically constant, should correspond to hori-

zontal plots; see Figure 2. Slightly increasing trends were measured, possibly

due to storing and accessing larger tables. The data structures with the fastest

query times were ours and Fischer, with Fischer providing faster query time for

small data (n ∈ {27, . . . , 218}) and ours providing faster query time for large

data (n ∈ {219, . . . , 226}). The relative differences in query times remained

mostly similar for all n, with query times for Bender approximately 2 times

slower than for ours and Fischer, and query times for Sadakana and Ohlebusch

approximately 8 and 32 slower than for ours and Fischer.

All of the data structures implemented use O(n) space, as confirmed by the

clear linear growth in space use, except for Fischer, whose space use increases

non-linearly when n < 212, likely due to the o(n) overhead cost whose effect

is more apparent for small n. See Figure 3. The data structures that used

the least space were Sadakane and Ohlebusch, followed by Fischer, ours, and

Bender. Except for small data (n ≤ 29), the relative ordering of data structures

in terms of space use remained effectively identical throughout the tests.

Finally, preprocessing times were nearly linear (with the exception of Fischer

for n ≥ 214, again likely due to overhead for small n), with Fischer measuring

the fastest preprocessing times, followed by Ohlebusch, with preprocessing time

approximately four times that of Fischer, followed by our data structure, with

preprocessing time approximately eight that of Fischer, followed by Sadakane

and Bender, with preprocessing times only marginally higher than ours. See

Figure 4.

Query time and space are the critical performance constraints in typical

RMQ applications. If query time is more important, then Fischer or our data

structure are good choices, whereas if space is more important, then Ohlebusch

and Sadakane are good choices. All of the data structures evaluated perform

within constant factors of each other in terms of query time, space use, and

preprocessing time. The choice of data structure may come down to ease of

implementation. In terms of simplicity to code, our data structure and Bender

20

are good choices, although this attribute is of course subjective.

5. Directions for Future Work

5.1. Succinctness

The data structure presented in this paper uses O(n) words of space. It is

not currently known whether its space can be reduced to O(n) bits if a RMQ

returns only the index of the minimum element. As suggested by Nicholson [32],

each array Cx and C ′x can be stored using binary rank and select data structures

in O(n) bits of space (e.g., [33]). That is, we can support references to Cx and

C ′x in constant time using O(n) bits of space per level or O(n log log n) total

bits. It is not known whether the remaining components of the data structure

can be compressed similarly, or whether the space can be reduced further to

O(n) bits.

5.2. Higher Dimensions

As shown by Demaine et al. [24], RMQ data structures based on Cartesian

trees cannot be generalized to two or higher dimensions. The data structure

presented in this paper does not involve Cartesian trees. Although it is possible

that some other constraint may preclude generalization to higher dimensions,

this remains to be examined.

5.3. Dynamic Data

As described, our data structure structure requires O(
√
n) time per update

(e.g., set A[i]← x) in the worst case. It is not known whether the data structure

can be modified to support efficient queries and updates without increasing

space.

Acknowledgements

The authors thank Joshua Hernandez who helped write code for some of

the data structures used in the experiments described in Section 4. Stephane

21

Durocher thanks Timothy Chan and Patrick Nicholson with whom this paper’s

results were discussed. Stephane Durocher also thanks the students of his senior

undergraduate class in advanced data structures at the University of Manitoba;

preparing lecture material on range searching in arrays inspired him to revisit

solutions to the range minimum query problem, leading to the results presented

here.

[1] S. Durocher, A simple linear-space data structure for constant-time range

minimum query, in: Proceedings of the Conference on Space Efficient Data

Structures, Streams and Algorithms, Vol. 8066 of LNCS, Springer, 2013,

pp. 48–60.

[2] P. Bose, E. Kranakis, P. Morin, Y. Tang, Approximate range mode and

range median queries, in: Proceedings of the International Symposium on

Theoretical Aspects of Computer Science (STACS), Vol. 3404 of Lecture

Notes in Computer Science, Springer, 2005, pp. 377–388.

[3] M. A. Bender, M. Farach-Colton, The LCA problem revisited, in: Proceed-

ings of the Latin American Theoretical Informatics Symposium (LATIN),

Vol. 1776 of Lecture Notes in Computer Science, Springer, 2000, pp. 88–94.

[4] M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, P. Sumazin,

Lowest common ancestors in trees and directed acyclic graphs, Journal of

Algorithms 57 (2) (2005) 75–94.

[5] O. Berkman, U. Vishkin, Recursive star-tree parallel data structures, SIAM

Journal on Computing 22 (2) (1993) 221–242.

[6] J. Fischer, V. Heun, Theoretical and practical improvements on the RMQ-

problem with applications to LCA and LCE, in: Proceedings of the Sym-

posium on Combinatorial Pattern Matching (CPM), Vol. 4009 of Lecture

Notes in Computer Science, Springer, 2006, pp. 36–48.

[7] P. Davoodi, R. Raman, S. S. Rao, Succinct representations of binary trees

for range minimum queries, in: Proceedings of the International Computing

22

and Combinatorics Conference (COCOON), Vol. 7434 of Lecture Notes in

Computer Science, Springer, 2012, pp. 396–407.

[8] P. v. Emde Boas, Preserving order in a forest in less than logarithmic time

and linear space, Information Processing Letters 6 (3) (1977) 80–82.

[9] A. Brodnik, S. Carlsson, E. D. Demaine, J. I. Munro, R. Sedgewick, Re-

sizable arrays in optimal time and space, in: Proceedings of the Workshop

on Algorithms and Data Structures (WADS), Vol. 1663 of Lecture Notes

in Computer Science, Springer, 1999, pp. 27–48.

[10] T. M. Chan, S. Durocher, K. G. Larsen, J. Morrison, B. T. Wilkinson,

Linear-space data structures for range mode query in arrays, in: Pro-

ceedings of the Symposium on Theoretical Aspects of Computer Science

(STACS), Vol. 14 of Leibniz International Proceedings in Informatics, 2012,

pp. 291–301.

[11] D. Krizanc, P. Morin, M. Smid, Range mode and range median queries on

lists and trees, Nordic Journal of Computing 12 (2005) 1–17.

[12] S. Alstrup, C. Gavoille, H. Kaplan, T. Rauhe, Nearest commmon ancestors:

a survey and a new algorithms for a distributed environment, Theory of

Computing Systems 37 (3) (2004) 441–456.

[13] D. Harel, R. E. Tarjan, Fast algorithms for finding nearest common ances-

tors, SIAM Journal on Computing 13 (2) (1984) 338–355.

[14] B. Schieber, U. Vishkin, On finding lowest common ancestors: Simpli-

fication and parallelization, SIAM Journal on Computing 17 (6) (1988)

1253–1262.

[15] J. Fischer, V. Heun, A new succinct representation of RMQ-information

and improvements in the enhanced suffix array, in: Proceedings of the In-

ternational Symposium on Combinatorics, Algorithms, Probabilistic and

Experimental Methodologies (ESCAPE), Vol. 4614 of Lecture Notes in

Computer Science, Springer, 2007, pp. 459–470.

23

[16] J. Fischer, V. Heun, Space-efficient preprocessing schemes for range mini-

mum queries on static arrays, SIAM Journal on Computing 40 (2) (2011)

465–492.

[17] K. Sadakane, Succinct data structures for flexible text retrieval systems,

Journal of Discrete Algorithms 5 (2007) 12–22.

[18] P. Davoodi, Data structures: Range queries and space efficiency, Ph.D.

thesis, Aarhus University (2011).

[19] J. Fischer, Optimal succinctness for range minimum queries, in: Proceed-

ings of the Latin American Theoretical Informatics Symposium (LATIN),

Vol. 6034 of Lecture Notes in Computer Science, Springer, 2010, pp. 158–

169.

[20] V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, I. A. Faradžev, On eco-

nomical construction of the transitive closure of a directed graph, Soviet

Mathematics—Doklady 11 (5) (1970) 1209–1210.

[21] H. Yuan, M. J. Atallah, Data structures for range minimum queries,

in: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms

(SODA), 2010, pp. 150–160.

[22] G. S. Brodal, P. Davoodi, S. S. Rao, Path minima queries in dynamic

weighted trees, in: Proceedings of the Workshop on Algorithms and Data

Structures (WADS), Vol. 6844 of Lecture Notes in Computer Science,

Springer, 2011, pp. 290–301.

[23] G. S. Brodal, P. Davoodi, S. S. Rao, On space efficient two dimensional

range minimum data structures, Algorithmica 63 (4) (2012) 815–830.

[24] E. Demaine, G. M. Landau, O. Weimann, On Cartesian trees and range

minimum queries, in: Proceedings of the International Colloquium on Au-

tomata, Languages, and Programming (ICALP), Vol. 5555 of Lecture Notes

in Computer Science, Springer, 2009, pp. 341–353.

24

[25] M. Golin, J. Iacono, D. Krizanc, R. Raman, S. S. Rao, Encoding 2D range

maximum queries, in: Proceedings of the International Symposium on Al-

gorithms and Computation (ISAAC), Vol. 7074 of Lecture Notes in Com-

puter Science, Springer, 2011, pp. 180–189.

[26] A. Amir, J. Fischer, M. Lewenstein, Two-dimensional range minimum

queries, in: Proceedings of the Symposium on Combinatorial Pattern

Matching (CPM), Vol. 4580 of Lecture Notes in Computer Science,

Springer, 2007, pp. 286–294.

[27] D. Pasailă, Range minimum query and lowest common ancestor,

http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAncestor.

[28] E. Ohlebusch, S. Gog, A compressed enhanced suffix array supporting fast

string matching, in: Proceedings of the String Processing and Information

Retrieval Symposium (SPIRE), Vol. 5721 of Lecture Notes in Computer

Science, Springer, 2009, pp. 51–62.

[29] S. Gog, Succinct data structure library, http://github.com/simongog/sdsl-

lite, retrieved August 2016.

[30] J. Fischer, http://www.bio.ifi.lmu.de/˜fischer, retrieved August 2016.

[31] L. Walsh, http://github.com/leifwalsh/rmq, retrieved August 2016.

[32] P. Nicholson, personal communication (2011).

[33] J. I. Munro, Tables, in: V. Chandru, V. Vinay (Eds.), Foundations of

Software Technology and Theoretical Computer Science (FSTTCS), Vol.

1180 of Lecture Notes in Computer Science, Springer, 1996, pp. 37–42.

25

