
Polygon Simplification by Minimizing Convex Corners

Yeganeh Bahooa, Stephane Durochera, J. Mark Keilb, Debajyoti Mondalb,
Saeed Mehrabic, Sahar Mehrpourd

aDepartment of Computer Science, University of Manitoba, Winnipeg, Canada.
bDepartment of Computer Science, University of Saskatchewan, Saskatoon, Canada.

cSchool of Computer Science, Carleton University, Ottawa, Canada.
dSchool of Computing, University of Utah, Utah, USA.

Abstract

Let P be a polygon with r > 0 reflex vertices and possibly with holes and islands
(i.e., components of the polygon inside holes). A subsuming polygon of P is a
polygon P ′ such that P ⊆ P ′, each connected component R of P is a subset of a
distinct connected component R′ of P ′, and the reflex corners of R coincide with
those of R′. A subsuming chain of P ′ is a minimal path on the boundary of P ′

whose two end edges coincide with two edges of P . Aichholzer et al. proved that
every polygon P has a subsuming polygon with O(r) vertices, and posed an open
problem to determine the computational complexity of computing subsuming
polygons with the minimum number of convex vertices.

In this paper, we prove that the problem of computing an optimal subsum-
ing polygon is NP-hard (but the complexity remains open for simple polygons;
i.e., polygons without holes). Our NP-hardness result holds even when the
subsuming chains are restricted to have constant length and lie on the arrange-
ment of lines determined by the edges of the input polygon. We show that this
restriction makes the problem polynomial-time solvable for simple polygons.

Keywords:
2010 MSC: 68Q25, 68U05

1. Introduction

Polygon simplification is well studied in computational geometry, with nu-
merous applications in cartographic visualization, computer graphics and data
compression [2, 3]. Techniques for simplifying polygons and polylines have ap-
peared in the literature in various forms. Common goals of these simplification

IA preliminary version of this paper appeared in proceedings of the 22nd International
Computing and Combinatorics Conference (COCOON 2016) [1].

Email addresses: bahoo@cs.umanitoba.ca (Yeganeh Bahoo),
durocher@cs.umanitoba.ca (Stephane Durocher), keil@cs.usask.ca (J. Mark Keil),
dmondal@cs.usask.ca (Debajyoti Mondal), saeed.mehrabi@carleton.ca (Saeed Mehrabi),
mehrpour@cs.utah.edu (Sahar Mehrpour)

Preprint submitted to Elsevier May 7, 2019

(a) (b) (c) (d)

Figure 1: (a) A polygon P , where the polygon is filled and the holes are empty regions. (b)
A subsuming polygon P ′, where P ′ is the union of the filled regions. A subsuming chain is
shown in bold; notice that the end edges of this chain overlap with two edges of P . (c) A
min-convex subsuming polygon P ′

min, where Ae(P ′
min) = Ae(P). (d) A polygon P such that

for any min-convex subsuming polygon P ′
min, Ae(P) 6= Ae(P ′

min).

algorithms include to preserve the shape of the polygon, to reduce the number
of vertices, to reduce the space requirements, and to remove noise (extraneous
bends) from the polygon boundary (e.g., [4, 5, 6]). In this paper we consider
a specific version of polygon simplification introduced by Aichholzer et al. [7],
which keeps reflex corners intact, but minimizes the number of convex corners.
Aichholzer et al. showed that such a simplification can help achieve faster solu-
tions for many geometric problems such as answering shortest path queries (as
shortest paths stay the same), computing Voronoi diagrams, and so on.

A simple polygon is a connected region without holes. Let P be a polygon
with r reflex vertices and possibly with holes and islands. An island is a simple
polygon that lies entirely inside a hole. A reflex corner of P consists of three
consecutive vertices u, v, w on the boundary of P such that the angle ∠uvw
inside P is more than 180◦. We refer the vertex v as a reflex vertex of P . The
vertices of P that are not reflex are called convex vertices. By a component
of P , we refer to a maximally connected region of P . A polygon P ′ subsumes
P if P ⊆ P ′, each component R′ of P ′ contains a distinct component R of P
(i.e., R ⊆ R′), and the reflex corners of R coincide with the reflex corners of R′.
A k-convex subsuming polygon P ′ contains at most k convex vertices. A min-
convex subsuming polygon is a subsuming polygon that minimizes the number
of convex vertices. Figure 1(a) illustrates a polygon P , and Figures 1(b) and
(c) illustrate a subsuming polygon and a min-convex subsuming polygon of P ,
respectively. A subsuming chain of P ′ is a minimal path (of length at least 2)
on the boundary of P ′ whose end edges overlap with a pair of edges of P ; see
Figure 1(b) for an example.

Aichholzer et al. [7] showed that for every polygon P with n vertices, r > 0
of which are reflex, one can compute in linear time a subsuming polygon P ′

with at most O(r) vertices. Note that although a subsuming polygon with O(r)
vertices always exists, no polynomial-time algorithm is known for computing a
min-convex subsuming polygon. Finding an optimal subsuming polygon seems
challenging since it does not always lie on the arrangement of lines Ae(P) (resp.,
Av(P)) determined by the edges (resp., pairs of vertices) of the input polygon.

2

Figure 1(c) illustrates an optimal polygon P ′min for the polygon P of Figure 1(a),
where Ae(P

′
min) = Ae(P). On the other hand, Figure 1(d) shows that a min-

convex subsuming polygon may not always lie on Ae(P) or Av(P). Note that
the input polygon of Figure 1(d) is a simple polygon, i.e., it does not contain
any hole. Hence determining min-convex subsuming polygons seems challenging
even for simple polygons. In fact, Aichholzer et al. [7] posed an open question
that asks to determine the complexity of computing min-convex subsuming
polygons, where the input is restricted to simple polygons.

1.1. Our Contribution

In this paper we show that the problem of computing a min-convex subsum-
ing polygon is NP-hard for polygons possibly with holes (Section 2). We noted
earlier that discretizing the solution space is a potential challenge, i.e., that the
optimal polygon may not always lie on the line arrangement determined by the
input polygon (Figure 1(d)). Interestingly, our NP-hardness result does not
seem to utilize this challenge, instead, the hardness holds even when we restrict
the subsuming chains to have constant length and to lie on Ae(P).

A question that naturally appears in this context is whether such restrictions
on subsuming chains can make the problem easier for nontrivial classes of poly-
gons. For example, consider an x-monotone polygon3 P , e.g., see Figure 2(a).
Then it is not difficult to see that there exists a min-convex polygon such that
each subsuming chain has constant length and lies on Ae(P). The argument is
simple except for the subsuming chains that covers the two ends of P , e.g., see
Figure 2(b). A simple proof is included in Section 3.

(a) (b)

Figure 2: (a) An x-monotone polygon P . The dashed lines illustrate the monotonicity. (b)
A min-convex subsuming polygon of P . The dashed lines illustrate the separation between
successive chains.

We then show that the question can be answered affirmatively for arbitrary
simple polygons, i.e., for any simple polygon P , one can compute in polynomial
time, a min-convex subsuming polygon Pmin under the restriction that the
subsuming chains are of constant length and lie on Ae(P).

3P is x-monotone if every vertical line intersects P at most twice.

3

1.2. Organization

The rest of the paper is organized as follows. Section 2 presents the NP-
hardness result for polygons with holes. Section 3 presents our observations
on monotone polygons. Section 4 describes the techniques for computing sub-
suming polygons for simple polygons. Finally, Section 5 concludes the paper
discussing directions to future research.

2. NP-hardness of Min-Convex Subsuming Polygon

In this section we prove that it is NP-hard to find a subsuming polygon with
minimum number of convex vertices. We denote the problem by Min-Convex-
Subsuming-Polygon. We reduce the NP-complete problem monotone planar
3-SAT [8], which is a variation of the 3-SAT problem as follows: Every clause
in a monotone planar 3-SAT consists of either three negated variables (nega-
tive clause) or three non-negated variables (positive clause). Furthermore, the
bipartite graph constructed from the variable-clause incidences, admits a pla-
nar drawing such that all the vertices corresponding to the variables lie along
a horizontal straight line l, and all the vertices corresponding to the positive
(respectively, negative) clauses lie above (respectively, below) l. The problem
remains NP-hard even when each variable appears in at most four clauses [9].

c2=(x1∨x2∨x3)
c1 = (x1 ∨ x3 ∨ x4)

c4 = (x̄1 ∨ x̄4)

x1 x2 x3 x4

(a) (b)

c1 = (x1 ∨ x3 ∨ x4)

c2=(x1 ∨ x2 ∨ x3)

c3=(x̄2 ∨ x̄3 ∨ x̄4)

c4 = (x̄1 ∨ x̄4)

a
b

c
d

a
b

c
d

e

(e)

(f)

(c)

(d)

lab

lab 3 3

c3=(x̄2∨x̄3∨x̄4)

Figure 3: (a) An instance I of monotone planar 3-SAT. (b) The orthogonal polygon Po

corresponding to I. (c)–(f) Illustration for the variable gadget.

4

The idea of the reduction is as follows. Given an instance of a monotone
planar 3-SAT I with variable set X and clause set C, we create a corresponding
instance PI of Min-Convex-Subsuming-Polygon. Let λ be the number of
convex vertices in PI . The reduction ensures that if there exists a satisfying
truth assignment of I, then PI can be subsumed by a polygon with at most
λ−|X||C|2−3|C| convex vertices, and vice versa.

Given an instance I of monotone planar 3-SAT, we first construct an orthog-
onal polygon Po with holes. We denote each clause and variable using a distinct
axis-aligned rectangle, which we refer to as the c-rectangle and v-rectangle, re-
spectively. Each edge connecting a clause and a variable is represented as a thin
vertical strip, which we call an edge tunnel. Figures 3(a) and (b) illustrate an
instance of monotone planar 3-SAT and the corresponding orthogonal polygon,
respectively. While adding the edge tunnels, we ensure for each v-rectangle that
the tunnels coming from the top lie to the left of all the tunnels coming from
the bottom. Figure 3(b) marks the top and bottom edge tunnels by upward
and downward rays, respectively. The v-rectangles, c-rectangles and the edge
tunnels may form one or more holes, as it is shown by diagonal line pattern in
Figure 3. We now transform Po to an instance PI of Min-Convex-Subsuming-
Polygon.

We first introduce a few notations. Let abcd be a convex quadrangle and let
lab be an infinite line that passes through a and b. Assume also that lbc and lad
intersect at some point e, and c, d, e all lie above lab, as shown in Figures 3(c)–
(d). Then, we call the quadrangle abcd a tip on lab, and the triangle cde a cap of
abcd. The tip abcd is called top-right tip if the slope of ad is positive; otherwise,
it is called a top-left tip. If the points c, d and e lie below lab, then we call
abcd a down-right tip (resp., down-left tip) if the slope of ad is negative (resp.,
positive).

2.1. Variable Gadget

We construct variable gadgets from the v-rectangles. We add some top-right
(and the same number of top-left) tips at the bottom side of the v-rectangle, as
show in Figure 3(e). There are three top-right and top-left tips in the figure.
For convenience we show only one top-left and one top-right tip in the schematic
representation, as shown in Figure 3(f). However, we assign weight to these tips
to denote how many tips there should be in the exact construction. We will
ensure a few more properties: (I) The caps do not intersect the boundary of
the v-rectangle, (II) no two top-left caps (or, top-right caps) intersect, and (III)
every top-left (resp., top-right) cap intersects all the top-right (resp., top-left)
caps.

Observe that each top-left tip contributes to two convex vertices such that
covering them with a cap reduces the number of convex vertices by 1. The
peak of the cap reaches very close to the top-left corner of the v-rectangle,
which will later interfere with the clause gadget. Specifically, this cap will
intersect any downward cap of the clause gadget coming through the top edge
tunnels. Similarly, each top-right tip contributes to two convex vertices, and

5

t1 t′1 t′2 t2 t′3 t′4 t3

(c)

(d) (e) (f)

(a) (b)

Figure 4: Illustration for the clause gadget.

the corresponding cap intersects any upward cap coming through the bottom
edge tunnels.

Note that the optimal subsuming polygon P cannot contain the caps from
both the top-left and top-right tips. We assign the tips with a weight of |C|2.
In the hardness proof this will ensure that either the caps of top-right tips or
the caps of top-left tips must exist in P , which will correspond to the true and
false configurations, respectively.

2.2. Clause Gadget

Recall that, by definition, each clause consists of three variables and so it
is incident to three edge tunnels. Figure 4(a) illustrates the transformation for
a c-rectangle. Here we describe the gadget for the positive clauses, and the
construction for negative clauses is symmetric. We add three downward tips
incident to the top side of the c-rectangle, along its three edge tunnels. Each
of these downward tip contributes to two convex vertices such that covering
the tip with a cap reduces the number of convex vertices by 1. Besides, the
corresponding caps reach almost to the bottom side of the v-rectangles, i.e.,
they would intersect the top-left caps of the v-rectangles. Let these tips be
t1, t2, t3 from left to right, and let γ1, γ2, γ3 be the corresponding caps.

We then add a down-left and a down-right tip at the top side of the c-
rectangle between ti and ti+1, where 1 ≤ i ≤ 2, as shown in Figure 4(a).
Let the tips be t′1, . . . , t

′
4 from left to right, and let the corresponding caps be

γ′1, . . . , γ
′
4. Note that the caps corresponding to t′j and t′j+1, where j ∈ {1, 3},

intersect each other. Therefore, at most two of these four caps can exist at the
same time in the solution polygon. Observe also that the caps corresponding
to t1, t2, t3 intersect the caps corresponding to {t′2}, {t′1, t′4}, {t′3}, respectively.
Consequently, any optimal solution polygon containing none of {γ1, γ2, γ3} has

6

at least 12 convex vertices along the top boundary of the c-rectangle, as shown
in Figure 4(b).

We now show that any optimal solution polygon P containing at least α >
0 caps from Γ = {γ1, γ2, γ3} have exactly 11 convex vertices along the top
boundary of the c-rectangle. We consider the following three cases:

Case 1 (α = 1): If γ1 (resp., γ3) is in P , then P must contain {γ′1, γ′3}
(resp., {γ′2, γ′4}). Figure 4(c) illustrates the case when P contains γ1. If γ2 is
in P , then P must contain {γ′2, γ′3}. In all the above scenarios the number of
convex vertices along the top boundary of the c-rectangle is 11.

Case 2 (α = 2): If P contains {γ1, γ3}, then either γ′1 or γ′4 must be in P .
Otherwise, P contains either {γ1, γ2} or {γ2, γ3}. If that P contains {γ1, γ2},
as in Figure 4(d), then γ′3 must lie in P . In the remaining case, γ′2 must lie
in P . Therefore, also in this case the number of convex vertices along the top
boundary of the c-rectangle is 11.

Case 3 (α = 3): In this scenario P cannot contain any of γ′1, . . . , γ
′
4. There-

fore, as shown in Figure 4(e), the number of convex vertices along the top
boundary of the c-rectangle is 11.

As a consequence we obtain the following lemma.

Lemma 1. If a clause is satisfied, then any optimal subsuming polygon reduces
exactly three convex vertex from the corresponding c-rectangle.

2.3. Reduction

Although we have already described the variable and clause gadgets, the op-
timal subsuming polygon still may come up with some unexpected optimization
that interferes with the convex corner count in our hardness proof. Figure 5(left)
illustrates one such example. Therefore, we replace each convex corner that does
not correspond to the tips by a small polyline with alternating convex and reflex
corners, as shown Figure 5(right). By construction, it is now straightforward to
observe the following fact.

Remark 1. Let x be a reflex vertex of PI , and let x′ be the first reflex vertex
after x while walking clockwise on the boundary of PI starting at x. Then, the
number of convex vertices that can appear between x and x′ is at most two.
Furthermore, if there are two convex vertices, then either they correspond to a
tip, or an axis-parallel dent of the form u or t (up to rotation).

We now prove the NP-hardness of computing an optimal subsuming polygon.

Theorem 2. Finding an optimal subsuming polygon is NP-hard.

Proof. Let I = (X,C) be an instance of monotone planar 3-SAT and let PI be
the corresponding instance of Min-Convex-Subsuming-Polygon. Let λ be
the number of convex vertices in PI . We now show that I admits a satisfying
truth assignment if and only if PI can be subsumed by a polygon having at
most λ− |X||C|2 − 3|C| convex vertices.

7

Figure 5: Refinement of PI .

First assume that I admits a satisfying truth assignment. For each vari-
able x, we choose either the top-right caps or the top-left caps depending on
whether x is assigned true or false. Consequently, we save at least |X||C|2
convex vertices. Consider any clause c ∈ C. Since c is satisfied, one or more
of its variables are assigned true. Therefore, for each positive (resp., negative)
clause, we can have one or more downward (resp., upward) caps that enter into
the v-rectangles. By Lemma 1, we can save at least three convex vertices from
each c-rectangle. Therefore, we can find a subsuming polygon with at most
λ− |X||C|2 − 3|C| convex vertices.

Assume now that some polygon P with at most λ − |X||C|2 − 3|C| convex
vertices can subsume PI . We now find a satisfying truth assignment for I. By
Remark 1 we can restrict our attention only to c- and v-rectangles. Note that the
maximum number of convex vertices that can be reduced from the c-rectangles
is at most 3|C|. Therefore, P must reduce at least |C|2 convex vertices from each
v-rectangle. Recall that in each v-rectangle, either the top-right or the top-left
caps can be chosen in the solution, but not both. Therefore, the v-rectangles
cannot help reducing more than |X||C|2 convex vertices. If P contains the top-
right caps of the v-rectangle, then we set the corresponding variable to true,
otherwise, we set it to false. Since P has at most λ − |X||C|2 − 3|C| convex
vertices, and each c-rectangle can help to reduce at most 3 convex vertices
(Lemma 1), P must have at least one cap from γ1, γ2, γ3 at each c-rectangle.
Therefore, each clause must be satisfied. Recall that the downward (resp.,
upward) caps coming from edge tunnels are designed carefully to have conflict
with the top-left (resp., top-right) caps of v-variables. Since top-left and top-
right caps of v-variables are conflicting, the truth assignment of each variable is
consistent in all the clauses that contains it. �

It is straightforward from the construction of PI that no optimal subsuming
polygon P that subsumes PI can have a subsuming chain of length larger than
2, and there always exists an optimal solution that lies on Ae(PI). Hence,
Theorem 2 holds even under the restriction that the subsuming chains must
be of constant length and lie on Ae(PI). In Sections 3 and 4, we will show
that these restrictions make the problem polynomial-time solvable for simple
polygons.

8

3. Monotone Polygons

In this section, we give a straightforward algorithm to compute a min-convex
subsuming polygon of x-monotone polygons. In fact, we prove a stronger claim
that every x-monotone polygon P admits a min-convex subsuming polygon such
that the subsuming chains are of constant length and lie on Ae(P).

Let upper(P) and lower(P) denote the upper and lower chains of P , re-
spectively. Moreover, let u1 (resp., um) be the leftmost (resp., rightmost)
vertex of P ; notice that the vertices u1 and um are both convex (as P is x-
monotone) and are shared between upper(P) and lower(P). Let u2, . . . , um−1
(resp., l2, . . . , lm′−1) be the set of reflex vertices of P that lie on upper(P)
(resp., on lower(P)); we let l1 = u1 and lm′ = um. For a reflex vertex ui, where
2 ≤ i < m, let `−(ui) (resp., `+(ui)) denote the line determined by the edge of
P whose right endpoint (resp., left endpoint) is ui. Similarly, define the lines
`−(li) and `+(li) for all 2 ≤ i < m′. For u1 and um, only `+(u1) and `−(um)
are defined. We next describe the algorithm.

First, consider upper(P). Initially, let the simplified polygon P ′ be P . For
each reflex vertex ui on upper(P), where 2 ≤ i < m − 1, consider the vertical
slab defined by the two vertical lines through ui and ui+1. If there is no convex
vertex of upper(P) in this slab, then the edge uiui+1 must be an edge of any
feasible solution. So, such an edge stays in P ′. Otherwise, `+(ui) and `−(ui+1)
intersect each other at some point p outside and above P or on P . Then, we
remove the chain of convex vertices between ui and ui+1 and add the two edges
uip and ui+1p to P ′; hence, reducing the number of convex vertices of upper(P)
between ui and ui+1 to one. Next, we consider lower(P) and apply the same
process to every two each vertex li on lower(P), where 2 ≤ i < m′ − 1.

It remains to show how to deal with the convex vertices that appear before
the leftmost reflex vertex or after the rightmost reflex vertex on each chain. We
show that these convex vertices can be reduced to at most two convex vertices,
depending on the slopes of the edges incident to such reflex vertices. In the
following, as the second part of the algorithm, we discuss the details for convex
vertices that appear before the leftmost reflex vertices; the convex vertices on
the other end of the polygon can be handled similarly.

Consider u1 (i.e., the leftmost vertex of P) and let π be the chain on the
boundary of P that connects u2 to l2 in counter-clockwise order (i.e., it contains
u1). To reduce the number of convex vertices on π, it is sufficient to check if
`−(u2) and `−(l2) intersect at some point p whose x-coordinate is less than
that of both u2 and l2. For instance, if the slope of `−(u2) is positive and the
slope of `−(l2) is negative, then `−(u2) and `−(l2) intersect at such point p; see
Figure 6(a). In this case, we can replace π with two edges u2p and l2p; hence,
reducing the number of convex vertices on π to one. Therefore, we can simplify
π as follows: if `−(u2) and `−(l2) intersect at such point p, then we replace π
with two edges u2p and l2p (hence, reducing the number of convex vertices on
π to one). Otherwise, if no such point p exists (e.g., when the slope of `−(u2) is
negative, but the slope of `−(l2) is positive), then both `−(u2) and `−(l2) must
intersect the line passing through at least one of the edges incident to u1. See

9

(c)

u2

l2

p

u2

(b)(a)

l2

u1

u2

l2
u1u1

Figure 6: How to reduce the convex vertices around the leftmost vertex u1 of P .

Figure 6(b-c). So, we can replace π with three edges and reducing the convex
vertices on π to two. We perform a similar process on the path π corresponding
to the rightmost convex vertex of P and its “closest” reflex vertices from each
chain on the other end of P . Let P ∗ be the resulting simplified polygon.

To see the monotonicity of P ∗, we note that in each slab considered in
the first part of the algorithm, at most two new edges are introduced that lie
inside the slab. Therefore, the edges from different slabs are disjoint. Moreover,
the edges introduced in the second part of the algorithm (i.e., when dealing
with the leftmost and rightmost convex vertices u1 and um) do not violate the
monotonicity of P ∗.

For every two consecutive reflex vertices, P ∗ has exactly one convex vertex
(resp., has no convex vertex) between them if P had at least one (resp., had
none) between them. Since there must be at least one convex vertex between
every two reflex vertices that had at least one convex vertex between them, any
simplified polygon must have at least as many convex vertices as P ∗ between
every two consecutive reflex vertices. Moreover, one can easily verify that P ∗

has the minimum number of convex vertices generated in the second part of the
algorithm. Therefore, P ∗ is optimal and we hence have the following result.

Theorem 3. Given a monotone polygon P with n vertices, a subsuming polygon
of P with the minimum number of convex vertices can be computed in O(n log n)
time.

4. Computing Subsuming Polygons

In this section, we show that for any simple polygon P , a min-convex sub-
suming polygon Pmin can be computed in polynomial time under the restriction
that the subsuming chains are of constant length and lie on Ae(P). We first
present definitions and preliminary results on outerstring graphs, which will be
an important tool for computing subsuming polygons.

4.1. Independent Set in Outerstring Graphs

A graph G is a string graph if it is an intersection graph of a set of simple
curves in the plane, i.e., each vertex of G is a mapped to a curve (string), and
two vertices are adjacent in G if and only if the corresponding curves intersect.

10

G is an outerstring graph if the underlying curves lie interior to a simple cycle
C, where each curve intersects C at one of its endpoints. Figure 7(a) illustrates
an outerstring graph and the corresponding arrangement of curves. Later in our
algorithm, the polygon will correspond to the cycle of an outerstring graph, and
some polygonal chains attached to the boundary of the polygon will correspond
to the strings of that outerstring graph.

A set of strings is called independent if no two strings in the set intersect,
the corresponding vertices in G are called an independent set of vertices. Let G
be a weighted outerstring graph with a set T of weighted strings. A maximum
weight independent set MWIS(T) (resp., MWIS(G)) is a set of independent strings
T ⊆ T (resp., vertices) that maximizes the sum of the weights of the strings in
T . By |MWIS(G)| we denote the weight of MWIS(G).

Let Γ(G) be the arrangement of curves that corresponds to G; e.g., see
Figure 7(a). Let R be a geometric representation of Γ(G), where C is represented
as a simple polygon P , and each curve is represented as a simple polygonal chain
inside P such that one of its endpoints coincides with a distinct vertex of P .
Keil et al. [10] showed that given a geometric representation R of G, one can
compute a maximum weight independent set of G in O(s3) time, where s is the
number of line segments in R.

Theorem 4 (Keil et al. [10]). Let G be a weighted outerstring graph. Given
a geometric representation R of G, there exists a dynamic programming algo-
rithm that computes a maximum weight independent set of G in O(s3) time,
where s is the number of straight line segments in R.

Figure 7(b) illustrates a geometric representation R of some G, where each
string is represented with at most 4 segments. Keil et al. [10] observed that
any maximum weight independent set of strings can be triangulated to create a
triangulation Pt of P , and such a triangulation can be used to design a dynamic
programming algorithm to compute a maximum weight independent set. See
Figure 7(c) for an example of such a triangulation. We next describe very briefly
how the triangulation of a maximum independent set can be used.

Let T be the strings in R. Then, the problem of finding MWIS(T) can be
solved by dividing the problem into subproblems each of which described using
only two vertices of R. We illustrate how the subproblems are computed using
Figure 7(d). Let P (v1, v2) be the problem of finding MWIS(Tv1,v2), where Tv1,v2

consists of the strings that lie wholly to the left of v1v2. The authors consider
three types of subproblems depending on whether v1 and v2 are the vertices
of P or the vertices of some strings that lie inside P . The authors show in
each of these three cases that a third vertex w (either a vertex of P or a vertex
of some string) can be chosen in such a way that P (v1, v2) can be computed
from the solutions to the subproblems P (v1, w) and P (w, v2). For example, in
Figure 7(d), w is a vertex on some string d inside P (v1, v2) and so P (v1, v2)
can be computed using the corresponing subproblems as shown in Figure 7(e).
Note that if v1 and v2 are polygon vertices, then there cannot be more than one
triangle on the border of P (v1, v2) adjacent to the segment v1v2. Otherwise, the

11

a

b
c

d d
e

a

b

c

d
e

a

b

c

wb = 3

wb = 7

we = 2
wd = 3

wc = 5

v1
v2

e

w

v2
v1

w

dd

(b)

(c) (d) (e)

(a)

a

b

c

de

Figure 7: (a) Illustration for G and Γ(G). (b) A geometric representation R of G. (c) A
triangulated polygon obtained from an independent set of G. (d)–(e) Dynamic programming
to find maximum weight independent set.

strings that contain v1 and v2 would define the boundary of the subproblem.
Therefore, these two vertices suffice, even if there are more triangles in the
boundary of P (v1, v2) incident to the corresponding strings.

Keil et al. [10] showed that there are only a few different cases depending
on whether the vertices describing the subproblems belong to the polygon or to
the strings. We will use this idea of computing MWIS(T) to compute subsuming
polygons.

4.2. Subsuming Polygons via Outerstring Graphs

Let P = (v0, v1, . . . , vn−1) be a simple polygon with n vertices, r > 0 of which
are reflex vertices. A convex chain of P is a path Cij = (vi, vi+1, . . . , vj−1, vj)
of strictly convex vertices, where the indices are considered modulo n.

Let P ′ = (w0, w1, . . . , wm−1) be a subsuming polygon of P , where Ae(P
′) =

Ae(P), and the subsuming chains are of length at most t. Here, by “length”, we
mean the number of edges (not the Euclidean length). Let C ′qr = (wq, . . . , wr)
be a subsuming chain of P ′. Then, by the definition of a subsuming chain,
there exist edges (vi, vi+1) and (vj−1, vj) in P that coincide with the edges
(wq, wq+1) and (wr−1, wr). We call the vertex vi the left support of C ′qr. Since
Ae(P

′) = Ae(P), the chain C ′qr must lie on Ae(P). Moreover, since P ′ is a
min-convex subsuming polygon, the number of vertices in C ′qr would be at most
the number of vertices in Cij .

We claim that the number of paths in Ae(P) from vi to vj is at most nt,
where t = O(1) is an upper bound on the length of the subsuming chains. Thus

12

any subsuming chain can have at most (t − 1) line segments. Since there are
only O(n) straight lines in the arrangement Ae(P), there can be at most nj

paths of j edges, where 1 ≤ j ≤ t − 1. Consequently, the number of candidate
chains that can subsume Cij is O(nt).

Lemma 5. Given a simple polygon P with n vertices, every convex chain C of
P has at most O(nt) candidate subsuming chains in Ae(P), each of length at
most t.

vj

vj

(b)

(d)

a d

cb

vj

e′

vj

z1
z2
z3

z4

z5

z7

z9

z10

z11

z12
z13

z14

z15

z8

vj−2

z1
z2
z3

z4

z5

z7

z9

z10

z11

z12
z13

z14

z15

z8

vj

vj−3
vj+1

(a)

(c)

e′

Figure 8: (a) Illustration for the polygon P (in bold), Ae(P) (in gray), and Q (in dashed
lines). (b) Chains of vj . (c) Attaching the strings to Q. (d) Dynamic programming inside the
gray region.

In the following, we construct an outerstring graph using these candidate
subsuming chains. We first compute a simple polygon Q interior to P such
that for each edge e in P , there exists a corresponding edge e′ in Q which is
parallel to e and the perpendicular distance between e and e′ is ε, as shown
in dashed line in Figure 8(a). We choose ε sufficiently small4 such that for

4Choose ε = δ/3, where δ is the distance between the closest visible pair of boundary
points.

13

each component w of P , Q contains exactly one component inside w. We now
construct the strings. Let vj be a convex corner of P . Let Sj be the set of
candidate subsuming chains such that each chain contains (vj , vj+1) as the last
edge while traversing the chain starting at its left support. For example, the
subsuming chains that correspond to vj are (vj−2, z1, vj+1), (vj−3, z13, z2, vj+1),
(vj−3, z14, z3, vj+1), (vj−3, z11, z4, vj+1), (vj−3, z15, z5, vj+1), (vj−3, z8, z5, vj+1),
(vj−3, z7, vj+1), as shown in Figure 8(b). For each of these chains, we create a
unique endpoint on the edge e′ of Q, where e′ corresponds to the edge vjvj+1

in P , as shown in Figure 8(c). We then attach these chains to Q by adding a
segment from vj to its unique endpoint on Q.

We attach the chains for all the convex vertices of P to Q. Later we will use
these chains as the strings of an outerstring graph. We then assign each chain a
weight, which is the number of convex vertices of P it can reduce. For example
in Figure 8(b), the weight of the chain (vj−3, z8, z5, vj+1) is one.

Although the strings are outside of the simple cycle, it is straightforward to
construct a representation with all the strings inside a simple cycle Q: Consider
placing a dummy vertex at the intersection points of the arrangement, and
then find a straight-line embedding of the resulting planar graph such that the
boundary of Q corresponds to the outer face of the embedding. Consequently,
Q and its associated strings correspond to an outerstring graph representation
R. Let G be the underlying outerstring graph. We now claim that any MWIS(G)
corresponds to a min-convex subsuming polygon of P .

Lemma 6. Let P be a simple polygon, where there exists a min-convex sub-
suming polygon that lies on Ae(P), and let G be the corresponding outerstring
graph. Any maximum weight independent set of G yields a min-convex subsum-
ing polygon of P .

Proof. Let T be a set of strings that correspond to a maximum weight inde-
pendent set of G. Since T is an independent set, the corresponding subsuming
chains do not create edge crossings. Moreover, since each subsuming chain is
weighted by the number of convex corners it can remove, the subsuming chains
corresponding to T can remove |MWIS(G)| convex corners in total.

Assume now that there exists a min-convex subsuming polygon that can
remove at least k convex corners. The corresponding subsuming chains would
correspond to an independent set T ′ of strings inG. Since each string is weighted
by the number of convex corners the corresponding subsuming chain can remove,
the weight of T ′ would be at least k. �

4.3. Time Complexity

To construct G, we first placed a dummy vertex at the intersection points
of the chains, and then computed a straight-line embedding of the resulting
planar graph such that all the vertices of Q are on the outerface. Therefore, the
geometric representation used at most nt edges to represent each string. Since
each convex vertex of P is associated with at most O(nt) strings, there are at
most n×O(nt) strings in G. Consequently, the total number of segments used

14

in the geometric representation is O(tn2+t). A subtle point here is that the
strings in our representation may partially overlap, and more than three strings
may intersect at one point. Removing such degeneracy does not increase the
asymptotic size of the representation. Finally, by Theorem 4, one can compute
the optimal subsuming polygon in O(t3n6+3t) time.

The complexity can be improved further as follows. Let abcd be a rectangle
that contains all the intersection points of Ae(P). Then, every optimal solution
can be extended to a triangulation of the closed region between abcd and Q.
Figure 8(d) illustrates this region in gray. We can now apply dynamic program-
ming similar to Section 4.1 to compute the maximum weight independent string
set, where each subproblem finds a maximum weight set inside some subpoly-
gon. Each such subpolygon can be described using two points v1, v2, each lying
either on Q or on some string, and a subset of {a, b, c, d} that helps enclosing
the subpolygon.

Since there are n×O(nt) strings, each containing at most t points, the num-
ber of vertices that correspond to the strings is O(tn1+t). We will refer these
as the string vertices. Note that the number of total vertices in the geometric
representation is also O(tn1+t). If the subproblem is bounded by two string
vertices, or one string vertex and one polygon vertex, then similar to Keil et
al. [10], we can use a pair of vertices to describe a subproblem. However, some-
times we need more information to describe a subproblem, e.g., assume that
the subproblem is bounded from one side by the point a and some vertex v
(corresponding to a string), and from the other side by the point d and some
vertex v′ (corresponding to a string). For these problems, we need a subset of
{a, b, c, d} to describe the problem boundary. Therefore, we define our dynamic
programing table to be D[x, y, z], where x and y corresponds to the string or
polygon vertices, and z corresponds to the constant size additional description
of the boundary (whenever needed). Thus the size of the dynamic programming
table is O(tn1+t) × O(tn1+t) × O(1). Since there are at most O(tn1+t) string
vertices, there can be at most O(tn1+t) candidate triangles v1v2w (e.g., Figure 7
(e)). Consequently, we can fill an entry of the table in O(tn1+t) time. Hence
the dynamic program takes at most O(t3n3+3t) time in total.

Theorem 7. Given a simple polygon P with n vertices, one can compute in
polynomial time, a min-convex subsuming polygon under the restriction that the
subsuming chains must be of constant length and lie on Ae(P).

4.4. Generalizations

We can further generalize the results for any given line arrangements. How-
ever, such a generalization may increase the time complexity. For example, con-
sider the case when the given line arrangement is Av(P), which is determined
by the pairs of vertices of P . Since we now have O(n2) lines in the arrangement
Av(P), the time complexity increases to O(t3(n2)3+3t), i.e., O(t3n6+6t).

15

Figure 9: Illustration for the case when the optimal subsuming polygon contains a subsuming
chain of length Ω(n). The subsuming chain is shown in bold.

5. Conclusion

In this paper, we developed a polynomial-time algorithm that can compute
optimal subsuming polygons for a given simple polygon in restricted settings.
On the other hand, if the polygon contains holes, then we showed that the
problem of computing an optimal subsuming polygon is NP-hard. Therefore,
the question of whether the problem is polynomial-time solvable for simple poly-
gons [7], remains open. Note that islands are crucial in our hardness proof. The
complexity of the problem for polygons with holes (but without any island) is
also open. Since the optimization in one hole is independent of the optimization
in the other holes of the polygon, resolving the complexity for polygon with holes
would readily give important insight about the complexity for simple polygons.

Our algorithm can find an optimal solution if the optimal subsuming polygon
lies on some prescribed arrangement of lines, e.g., Ae(P) or Av(P). The run-
ning time of our algorithm depends on the length of the subsuming chains, i.e.,
the running time is polynomial if the subsuming chains are of constant length.
However, there exist polygons whose optimal subsuming polygons contain sub-
suming chains of length Ω(n). Figure 9 illustrates such an example optimal
solution that is lying on Ae(P). An interesting research direction would be to
examine whether there exists a good approximation algorithm for the general
problem.

Recently, Lubiw et al. [11] showed that the problem of drawing a graph inside
a polygonal region is hard for the existential theory of the reals. The subsuming
polygon problem can also be viewed as a constrained graph drawing problem
whereas the subsuming chains are modeled by edges that need to be drawn
outside the polygon, possibly with bends. The goal is to find a crossing-free
drawing of these edges that minimizes the total number of bends. It would be
interesting to examine whether the problem is ∃R-hard in such a graph drawing
model.

Acknowledgement. We thank anonymous reviewers for their feedback on im-
proving the presentation of the paper. The research of Stephane Durocher
and Debajyoti Mondal is supported in part by Natural Sciences and Engineer-
ing Research Council of Canada (NSERC). Saeed Mehrabi is supported by a

16

Carleton-Fields postdoctoral fellowship.

References

[1] Y. Bahoo, S. Durocher, J. M. Keil, S. Mehrabi, S. Mehrpour, D. Mon-
dal, Polygon simplification by minimizing convex corners, in: T. N. Dinh,
M. T. Thai (Eds.), Proceedings of the 22nd International Conference on
Computing and Combinatorics (COCOON), Vol. 9797 of LNCS, Springer,
2016, pp. 547–559.

[2] W. A. Mackaness, A. Ruas, L. T. Sarjakoski, Generalisation of Geographic
Information: Cartographic Modelling and Applications, Elsevier, 2011.

[3] H. Ratschek, J. Rokne, Geometric Computations with Interval and New
Robust Methods: Applications in Computer Graphics, GIS and Computa-
tional Geometry, Horwood Publishing, 2003.

[4] L. Arge, L. Deleuran, T. Mølhave, M. Revsbæk, J. Truelsen, Simplifying
massive contour maps, in: Proc. ESA, Vol. 7501 of LNCS, Springer, 2012,
pp. 96–107.

[5] D. H. Douglas, T. K. Peucker, Algorithm for the reduction of the num-
ber of points required to represent a line or its caricature, The Canadian
Cartographer 10 (2) (1973) 112–122.

[6] L. J. Guibas, J. Hershberger, J. S. B. Mitchell, J. Snoeyink, Approximating
polygons and subdivisions with minimum link paths, International Journal
of Computational Geometry & Applications 3 (4) (1993) 383–415.

[7] O. Aichholzer, T. Hackl, M. Korman, A. Pilz, B. Vogtenhuber, Geodesic-
preserving polygon simplification, International Journal of Computational
Geometry & Applications 24 (4) (2014) 307–324.

[8] M. de Berg, A. Khosravi, Optimal binary space partitions for segments in
the plane, International Journal of Computational Geometry & Applica-
tions 22 (3) (2012) 187–206.

[9] A. Darmann, J. Döcker, B. Dorn, On planar variants of the monotone
satisfiability problem with bounded variable appearances, https://arxiv.
org/abs/1604.05588 (2016).

[10] J. M. Keil, J. S. B. Mitchell, D. Pradhan, M. Vatshelle, An algorithm
for the maximum weight independent set problem on outerstring graphs,
Computational Geometry 60 (2017) 19–25.

[11] A. Lubiw, T. Miltzow, D. Mondal, The complexity of drawing a graph in
a polygonal region, CoRR abs/1802.06699.

17

