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Abstract. The segment minimization problem consists of finding the smallest set
of integer matrices (segments) that sum to a given intensity matrix, such that each
summand has only one non-zero value (thesegment-value), and the non-zeroes
in each row are consecutive. This has direct applications inintensity-modulated
radiation therapy, an effective form of cancer treatment.

We study here the special case when the largest valueH in the intensity
matrix is small. We show that for an intensity matrix with onerow, this prob-
lem is fixed-parameter tractable (FPT) inH; our algorithm obtains a significant
asymptotic speedup over the previous best FPT algorithm. Wealso show how
to solve the full-matrix problem faster than all previouslyknown algorithms. Fi-
nally, we address a closely related problem that deals with minimizing the num-
ber of segments subject to a minimumbeam-on-time, defined as the sum of the
segment-values. Here, we obtain an almost-quadratic speedup.

1 Introduction

Intensity-modulated radiation therapy (IMRT) is an effective form of cancer treatment,
where radiation produced by a linear accelerator is delivered to the patient through a
multileaf collimator (MLC). The MLC is mounted on an arm thatcan revolve freely
around the patient so that he or she can be irradiated from several angles. We focus
on the so-calledstep-and-shootmode, where the radiation is delivered in a series of
steps. In each step, two banks of independent metal leaves inthe MLC are positioned
to obstruct certain portions of the radiation field, while leaving others exposed. Neither
the head of the MLC, nor its leaves move during irradiation. Atreatment plan specifies
the amount of radiation to be delivered along each angle.

For any given angle, the radiation field is discretized and decomposed intom � n
pixels, wherem is typically the number of pairs of leaves of the MLC. This determines? This work was supported by the “Actions de Recherche Concertées” (ARC) fund of the “Com-

munauté française de Belgique”, and the National Sciences and Engineering Research Coun-
cil of Canada (NSERC). C.E. acknowledges support from the “Fonds pour la Recherche dans
l’Industrie et l’Agriculture” (F.R.I.A.).
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Fig. 1.An example of a segmentation of an intensity matrix whereH = 4.

a decomposition of the radiation beam intom�n beamlets. The amount of radiation is
represented as anm�n intensity matrixA of non-negative integer values, whose entries
represent the amount of radiation to be delivered through the corresponding pixel.

The leaves of the MLC can be seen as partially covering rows ofA; for each rowi of A there are two leaves, one of which may slide inwards from the left to cover the
elements in columns1 to ` � 1 of that row, while the other may slide inwards from the
right to cover the elements in columnsr + 1 to n. Thus the entries ofA that are not
covered form an interval[`; r℄ := f`; `+ 1; : : : ; rg of consecutive columns. After each
step, the amount of radiation applied in that step (this can differ per step) is subtracted
from each entry ofA that has not been covered. The irradiation is completed whenall
entries ofA have reached0.

Setting leaf positions in each step requires time. Minimizing the number of steps
reduces treatment time, which increases patient comfort, and can result in increased
patient throughput, reduced machine wear, and overall reduced cost of the procedure.
Minimizing the number of steps for a given treatment plan is the primary objective of
this paper.

Formally, asegmentis am� n binary matrixS such that ones in each row ofS are
consecutive. Each segmentS has an associated non-negative integer weight which we
call thesegment-value, denoted byvS (S) or simply v(S) whenS is understood. We
call a segment at-segment if its value ist. A segmentationof A is a set of segments
whose weighted sum equalsA. So,S is a segmentation ofA if and only if we haveA =PS2S v(S)S. Figure 1 illustrates the segmentation of an intensity matrix.

The (minimum-cardinality) segmentation problemis, given an intensity matrixA,
to find a minimum cardinality segmentation ofA. We also consider the special case of a
matrixA with one row, which we call thesingle-row segmentation problem, in contrast
with the more generalfull-matrix segmentation problemwithm rows.

We also briefly examine a different, but closely relatedlex-minproblem: find a min-
imum cardinality segmentation among those with minimumbeam-on-time, defined as
the total value

PS2S v(S) of the segmentation.4 As the segmentation problem focuses
on the time incurred for establishing leaf positions, optimizing the beam-on-time also
has implications for making procedures more efficient by reducing the time spent ad-
ministering the treatment corresponding to the segments themselves.

Related Work: The segmentation problem is known to be NP-complete in the strong
sense, even for a single row [9, 2, 3], as well as APX-complete[4]. Bansalet al. [4]
provide a24=13-approximation algorithm for the single-row problem and give better
approximations for more constrained versions. Work by Collins et al. [10] shows that

4 The lex-min problem is also known as themin DT-min DCproblem where DT stands for
decomposition time(i.e., the beam-on-time) and DC stands for decomposition cardinality (i.e.,
the number of segments); however, we refer to this as the lex-min problem throughout.
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the single-columnversion of the problem is NP-complete and provides some non-trivial
lower bounds given certain constraints. Work by Luanet al. [16] gives two approxima-
tion algorithms for the fullm�n segmentation problem, and Biedlet al.[6] extend this
work to achieve better approximation factors.

A number of heuristics are known [3,18, 11, 14] as well as approaches for obtain-
ing optimal (exact) solutions [7, 1, 17]. Particularly relevant to our work is that of Cam-
bazardet al. [8] who show that the segmentation of a single row is fixed-parameter
tractable (FPT); specifically, they give an algorithm whichachieves an optimal segmen-
tation inO(p(H)2 n) time, whereH is the largest value inA andp(H) is the number
of partitions ofH.

Kalinowski [15] studies the lex-min problem and gives polynomial time algorithms
for the case whenH is a constant. In the single-row case, he gives anO(p(H)2 n) time
algorithm. The solution output by this first algorithm is also optimal for the minimum-
cardinality segmentation problem (this follows from knownresults, e.g. [4]). For gen-
eralm�n intensity matrices, he provides aO(2HpHmn2H+2) time algorithm. From
this second algorithm, one can derive an algorithm for the full m � n minimum seg-
mentation problem with time complexityO(2HH5=2mn2H+3) by guessing the beam-
on-timeT of a minimum cardinality segmentation and appending a row tothe intensity
matrix to increase its minimum beam-on-time toT ; it can be shown thatT 2 O(H2 n).
Our Contributions: We summarize our contributions below:

– For the single-row segmentation problem, we provide a faster exact algorithm. In
particular, our algorithm runs inO(p(H)H n) time, which is polynomial inn so
long asH 2 O(log2 n). In comparison to the result of Cambazardet al. [8], our
algorithms is faster by a factor of
(p(H)=H).

Significant challenges remain in solving the full-matrix problem and here we achieve
two important results:

– For generalH, we give an algorithm that yields an optimal solution to the full-
matrix segmentation problem inO(mnH=2(1��)(H)) time for an arbitrarily small
constant� > 0. In contrast, applying the variant of Kalinowski’s algorithm men-
tioned above yields a worst-case run-time of
(mn2H+3). Therefore, our result
improves the run-time by more than
(n3).

– ForH = 2, the full matrix problem can be solved optimally inO(mn) time in
contrast to theO(mn2) time implied by the previous result for generalH. This
result also has implications for the approximation algorithms in [6] where it can be
employed as a subroutine to improve results in practice.

Finally, we address the lex-min problem:

– For generalH, we give an algorithm that yields an optimal solution to the full-
matrix lex-min problem in timeO(mnH=2( 12�")H). In comparison to the previous
best result by Kalinowski [15], our algorithm improves the run-time by more than
(n2).

Therefore, our algorithms represent a significant asymptotic speed-up and the tech-
niques required to achieve these improvements is non-trivial. Due to space restrictions,
we omit some proofs and details; these can be found in [5].
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2 Single-row segmentation

In this section, we give an algorithm for the single-row segmentation problem that is
FPT inH, the largest value in the intensity matrixA. SinceA has only one row, we
represent it as a vectorA[1::n℄. Let�[j℄ := A[j℄ � A[j � 1℄ for j 2 [n + 1℄ (for the
purpose of such definitions, we will assume thatA[0℄ = A[n + 1℄ = 0.) We say that
there is amarkerbetween indexj � 1 andj if �[j℄ 6= 0, i.e., if the value inA changes.

Any segmentation of a row can bestandardizedas follows: (1) Every segmentS
begins(i.e., has its first non-zero entry) andends(i.e., has its last non-zero entry) adja-
cent to a marker. For if it doesn’t, then some other segment(s) must end whereS begins
(or vice versa), and by moving all these endpoints to the nearest marker, we retain a
segmentation without adding new segments. (2) Whenever a segment ends at a marker,
then no other segment of the same value begins at that marker.For otherwise the two
segments could be combined into one. Note that standardization of a segmentation can
only decrease the number oft-segments for allt; hence it can only improve the cardi-
nality of the segmentation and its beam-on time.

For the single-row problem, we can improve segments even further. Call a segmen-
tation ofA[1::n℄ compactif any two segments in it begin at different indices end end at
different indices. Similarly as above one can show:

Lemma 1. For any segmentationS of a single row, there exists a compact segmentationS0 with jS 0j � jSj.
Our algorithm uses a dynamic programming approach that computes an optimal

segmentation of any prefixA[1::j℄ ofA. We say that a segmentation ofA[1::j℄ isalmost-
compactif any two segments in it begin at different indices, and any two segments in
it either end at different indices or both end at indexj. We will only compute almost-
compact segmentations; this is sufficient by Lemma 1. We compute the segmentation
conditional on the values of the last segments in it.

Let S be a segmentation of vectorA[1::j℄; eachS 2 S is hence a vectorS[1::j℄.
Define thesignatureof S to be the multi-set obtained by taking the valuev(S) of each
segment ending inj. Note that the signature of a segmentation ofA[1::j℄ is apartition
of A[j℄, i.e., a multi-set of positive integers that sum toA[j℄ � H. We use operations
such as[;\, set-difference, subset, adding/deleting elements generalized to multi-sets
in the obvious way.

The key idea of our algorithm is to compute the best almost-compact segmentation
ofA[1::j℄ subject to a given signature. Thus define a functionf as follows:

Given an integerj and a partition� of A[j℄, let f(j; �) be the minimum number of
segments in an almost-compact segmentationS of A[1::j℄ that has signature�.

We will show thatf(j; �) can be computed recursively. To simplify computation we
will usef(0; �) as a base case; we assume thatA[0℄ = A[n+ 1℄ = 0. The only possible
partition of0 is the empty partition, and sof(0; ;) = 0 is our base case.

Given a partition� of A[j℄, let �j�1(�) be the set of those partitions ofA[j � 1℄
that can be obtained from� by deleting at most one element, and then adding at most
one element. The following recursive formula forf can be shown:

Lemma 2. For j � 1, f(j; �) = min 2�j�1 (�) ff(j � 1;  ) + jj��  jjg
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Theorem 1. The single-row segmentation problem can be solved inO(p(H)H � n)
time andO(n+ p(H)H) space, wherep(H) is the number of partitions ofH.

Proof. The idea is to computef(j; �) with Lemma 2 recursively with a dynamic pro-
gramming approach; the optimal value can then be found inf(n + 1; ;). To achieve
the time complexity, we need to store the partitions in a suitable data structure. The key
property here is that any partition� of A[j℄ � H hasO(pH) distinct integers in the
set[H℄ := f1; : : : ;Hg. Thus, we can describe a partition inO(pH) space. We store
partitions using a trie where each node usesO(H) space but allows access to the correct
child in constant time; a partition can then be located inO(pH) time.

So to computef(n + 1; ;), go throughj = 1; : : : ; n and through all partitions� ofA[j℄. For each distinct integert 2 �, compute the partition 2 �j�1(�) obtained by
deletingt and then adding one element so that is a partition ofA[j � 1℄. Look up 
(and the value off(j � 1;  ) stored with it) in the trie, addjj��  jj to it, and updatef(j; �) if the result is smaller than what we had before. Analyzing these loops, we see
that the runnning time isO(n � p(H) � pH � pH) as desired. ut

Note that the algorithm is fixed-parameter tractable with respect to parameterH. It

is known thatp(H) � e��p 2�H3 [12], so this algorithm is in fact polynomial as long
asH 2 O(log2 n). In the present form, it only returns the size of the smallestseg-
mentation, but standard dynamic programming techniques can be used to retrieve the
segmentation in the same run-time with anO(logn) space overhead.

3 Full-matrix segmentation

In this section, we give an algorithm that computes the optimal segmentation for a full
matrix, and which is polynomial as long asH is a constant.

3.1 Segmenting a row under constraints

The difficulty of full-matrix segmentation lies in that rowscannot be solved indepen-
dently of each other, since an optimal segmentation of a fullmatrix does not mean that
the induced segmentations of the rows are optimal. Considerfor example241 1 12 2 23 3 335 = 241 1 10 0 01 1 135+ 240 0 02 2 22 2 235
which is optimal, but the induced segmentation for the thirdrow is not optimal.

If S is a segmentation, then letmt(S) be the number oft-segments inS; note that
this defines a multi-set over[H℄ which we refer to as themulti-setM(S) defined by
segmentationS. We now want to compute whether a rowA[1::n℄ has a segmentationS such thatM(S) � � for some given multi-set�. We do this again with dynamic
programming, by further restricting the segmentation to the first j elements and by
restricting its signature. Thus define:

Given an integerj, a partition� of A[j℄, and a multiset� over [H℄, definef 0(j; �; �) to be1 if there exists a segmentationS of A[1::j℄ with signature�
and multi-setM(S) � �. Definef(j; �; �) to be0 otherwise.
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For example, considerA = [1 3 2 4℄, � = f1; 3g and � = f1; 1; 1; 2; 3g. Thenf 0(4; �; �) asks whether we can segmentA such that at index4 we use one1-segment
and one3-segment, and overall we use at most three1-segments, at most one2-segment,
and at most one3-segment. The answer in this case is yes ([1 3 2 4℄ = [1 1 0 0℄ +[0 2 2 0℄ + [0 0 0 1℄ + [0 0 0 3℄), sof 0(4; �; �) = 1. Note that we were allowed one
more1-segment than was actually used; this is acceptable since the multi-set of the
segmentation is allowed to be a subset of�.

We claim thatf 0(�; �; �) has a simple recursive formula. The base case is againj = 0
andf 0(0; ;; �) = 1 for all possible multi-sets�. For j � 1, we can computef 0(j; �; �)
from f 0(j � 1; �; �) as follows (details are in the full paper):

Lemma 3. For all j � 1,f 0(j; �; �) = max is a partition ofA[j � 1℄ f 0(j � 1;  ; � � (��  )): (1)

We will illustrate it with the above example ofA = [1 3 2 4℄, � = f1; 3g and� = f1; 1; 1; 2;3g. Let  = f2g and � 0 = f1; 1; 2g. Thenf 0(3;  ; � 0) = 1 since[1 3 2℄ = [1 1 0℄ + [0 2 2℄. Furthermore, we have� �  = f1; 3g and� � (� �  ) =f1; 1; 2g= � 0. Therefore, the formula says thatf 0(4; �; �) should be1, which indeed it
is.

We now turn to the run-time of actually computingf 0. In the above definition, we
have not imposed any bounds on�, other than that it is a multi-set over[H℄. But clearly
we can restrict the multi-sets considered. Assume for a moment that we know an opti-
mal segmentationS� of the full matrix. We call a multi-set� relevantif � � M(S�).
Clearly it suffices to computef 0 for all relevant multi-sets.

To find (a superset of) relevant multi-sets without knowingS�, we exploit thatM(S�) cannot contain too many segments of the same value. Recall that a marker
is a place where the values within a row change; let�i be the number of markers in rowi, and� = maxi �i. One can show the following:

Lemma 4. If all rows ofA have at most� markers, then there exists a minimum cardi-
nality segmentation that has at most�=2 segments of valuet for all t 2 [H℄.

Now letM be all those multi-sets over[H℄ where all multiplicities are at most�=2;
this contains all relevant multi-sets. We store these in anH-dimensional array with
indices in[0::�=2℄; this takesO((�=2)H) space, and allows lookup of a multi-set inO(H) time. We can then compute the valuesf 0(j; �; �) with Algorithm 1.

The run-time of this algorithm is analyzed as follows. Computing � 0 (given �, �
and ) can certainly be done inO(H) time. To look upf 0(j � 1;  ; � 0), we first look
up � in the array inO(H) time. With each multi-set� 2 M , we store all partitions ofA[j � 1℄ and ofA[j℄ (for the current value ofj), and with each of them, the values off 0(j�1;  ; �) andf 0(j;  ; �), respectively. Looking up or changing these values (given� and ) can then be done inO(pH) time by storing partitions in tries.

So lines 9-11 requireO(H) time. They are executedp(H) times from line 8,p(H)
times from line 6,jM j times from line 5, andn + 1 times from line 4; the run-time is
henceO(n(�=2 + 1)Hp(H)2H).
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Algorithm 1
1: LetM be all multi-sets where all multiplicities are at most�=2.
2: for all multi-sets� in M do
3: Initialize f 0(0; ;; �) = 1.
4: for j = 1; : : : ; n+ 1 do
5: for all multi-sets� in M do
6: for all partitions� ofA[j℄ do
7: Initialize f 0(j;�; �) = 0
8: for all partitions ofA[j � 1℄ do
9: Compute�0 = � � (��  )

10: if f 0(j � 1;  ; �0) = 1 then
11: Setf 0(j; �; �) = 1 andbreak
12: end if
13: end for
14: end for
15: end for
16: end for
17: end for

As for the space requirements, we need to store all relevant multi-sets, and with
each, all partitions ofA[j � 1℄ andA[j℄, which takesO(H) space per partition. So the
total space isO(p(H)H(�=2)H ).
Lemma 5. Consider one rowA[1::n℄. In O(n(�=2)Hp(H)2H) time andO(p(H)H(�=2)H) space we can compute anH-dimensional binary arrayF such that for anym1; : : : ;mH � �=2 we haveF(m1; : : : ;mH ) = 1 if and only if there exists a segmen-
tation ofA[1::n℄ that uses at mostmt segments of valuet for t 2 [H℄.
3.2 Full-matrix

To solve the full-matrix problem, compute for all rowsi the tableFi described in
Lemma 5. This takes timeO(mn(�=2)Hp(H)2H) total. The space isO(p(H)H(�=2)H )
per row, but once done with a rowi we only need to keep theO((�=2)H ) values for the
corresponding tableFi; therefore, in total, it isO(maxfm; p(H)Hg(�=2)H).

Now, in O(m(�=2)H ) time find the numbersm1; : : : ;mH for whichFi(m1; : : : ;mH) is 1 forall rowsi and for whichm1+ � � �+mH is minimized. Then by definition
we can find a segmentationSi for each rowi that has at mostmt segments of valuet
for t 2 [H℄. We can combine these segmentations in the natural way (see also [6]) to
obtain a segmentationS of A with at mostmt segments of valuet for t 2 [H℄. This
shows that an optimal segmentation has at mostm1+ � � �+mH segments, and since we
used the minimum possible such sum, no segmentation can be better than this bound.
Since the computation for this can be accomplished by scanning all (�=2)H multi-sets
acrossm rows, we have the following result:

Theorem 2. The full-matrixsegmentation problem can be solved inO(mn(�=2)Hp(H)2H) time andO(maxfm; p(H)Hg(�=2)H) space if each row has at most� markers.
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Note that one could view our result as FPT in parameter isH + �. However, nor-
mally � will be large. In particular, if a natural pre-processing step is applied that re-
moves from each row ofA any consecutive identical numbers (this does not affect the
size of the optimum solution), then� = n + 1. We therefore prefer to re-phrase our
theorem to express the worst-case run-time in terms ofm;n andH only. Note that� �n + 1 always, so the run-time becomesO(mnH+1p(H)2H=2H). Recall thatp(H) �e�p 2H3 � e2:6pH and, therefore,Hp(H)2 � He5:2pH = 2lg (H)+5:2pH lg (e) �28:6pH , implying thatp(H)2H=2H 2 O(2�(1��)H) for arbitrarily small� > 0 if H is
sufficiently large.

Corollary 1. The full-matrixsegmentation problem can be solved inO(mnH+1=2(1��)H)
time, where� > 0 is an arbitrarily small constant, andO(mnH ) space.

3.3 Further improvements of the complexity

We sketch a further improvement that removes a factor ofn from the running time.
Recall that the functionf 0(j; �; �) was defined to be1 if and only if there exists a
segmentationS of A[1::j℄ with signature� and multi-setM(S) � �. In its place,
we can instead define a functionf 00(j; �; �), which contains the minimum number of 1-
segments in a segmentationS ofA[1::j℄with signature� and multi-setM(S) � �+�1.
Here,�1 is the multi-set that hasm1(�1) =1 andmt(M1) = 0 for all t 6= 1. In other
words, the segmentation that definesf 00 is restricted in the number oft-segments only
for t > 1, and the restriction on1-segments is expressed in the return-value off 00. In
particular, the value off 00(j; �; �) is independent of the first multiplicityof�, and hence
must be computed only for those� withm1(�) = 0; there are only(�=2 + 1)H�1 such
multi-sets�.

It remains to argue thatf 00 can be computed efficiently, with a similar formula as forf 0. This is quite simple. To computef 00(j; �; �), try all possible partitions ofA[j�1℄,
compute� 0 = � � (� �  ), and let� 00 be � 0 with its first multiplicity changed to0.
Look up the valuef 00(j � 1;  ; � 00) and add to it the number of 1s in��  . This gives
one possible candidate for a segmentation; we find the best one by minimizing over all . We leave the formal proof of correctness to the reader.

We can hence computef 00(n+1; ;; �) for all (�=2)H�1 multi-sets� inO(n(�=2)H�1p(H)2H) time. Doing this for all rows, we can compute the maximum of the valuesf 00(n+ 1; ;; �) over all rows. The optimum segmentation can then be found by choos-
ing the one that minimizes this maximum plusjj�jj over all�. As before, this only adds
an extraO(m) factor to the run-time, which is henceO(mn(�=2)H�1p(H)2H), and
similarly as before this can be simplified toO(mnH=2(1�")H).
Theorem 3. The full-matrixsegmentation problem can be solved inO(mnH=2(1��)H)
time, for� > 0 an arbitrarily small constant, andO(mnH�1) space.

3.4 Solving the lex-min problem

Recall that the lex-min problem is that of finding a minimum cardinality segmentation
among those with minimumbeam-on-time, defined as the total value

PS2S v(S) of
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the segmentation. Here, we show how to apply our techniques to achieve a speed up
in solving this problem. To this end, we need the notion of thecomplexity of rowA[i℄
which is defined as:(A[i℄) := 12 n+1Xj=1 j�[i℄[j℄j= n+1Xj=1maxf0;�[i℄[j℄g= n+1Xj=1�minf0;�[i℄[j℄g;
where as before�[i℄[j℄ := A[i℄[j℄� A[i℄[j � 1℄ for j 2 [n+ 1℄.

Importantly, is was shown in [14] that the minimum beam-on time can be computed
efficiently; it is(A) := maxif(A[i℄)g. To solve the lex-min problem, we simply have
to change our focus regarding the setM of interesting multi-sets. Instead of the relevant
multi-sets as used earlier, we need all multi-sets� such that

PHt=1 t � mt(�) equals
the minimum beam-on time. LetM lex be the set of these multi-sets and their subsets.
While Lemma 4 no longer applies, we still obtain a useful bound on the sizeM lex ,
whose proof is in the full paper.

Lemma 6. If all rows ofA have at most� markers, then there exists a minimum car-
dinality segmentation among all those that have minimum beam-on time that has at
most� � 1 t-segments for allt 2 [H℄. Moreover, fort > H=2, there are at most�=2t-segments.

We can hence find and store a (super-set of)M lex by using all entries in anH-
dimensional array[0; �℄bH=2 � [0; �=2℄dH=2e, and there areO(�H=2H=2) such multi-
sets. We will computef 00(n+1; ;; �) for all such multi-sets�, and then pick a multi-set� for whichjj�jj+PHt=1mt(�) is minimized, and for which

PHt=1 tmt(�) equals(A).
This is then the multi-set used for a minimum segmentation among those with minimum
beam-on time; we can find the actual segmentation by re-tracing the computation off 00(n+ 1; ;; �).

By the same analysis used for the minimum cardinality segmentation problem, and
the improvement described in the previous Section 3.3, we have:

Theorem 4. The lex-min problem can be solved inO(mnH=2(12�")) time and withO(mnH�1) space.

Recall that Kalinowski’s algorithm in [15] has a time complexity of O(2HpH � m �n2H+2). So we obtain a significant improvement in the time complexity. Finally, we
note that it is intuitively reasonable that our algorithm can be applied to the lex-min
problem since the restriction on the space of feasible solutions that the beam-on time be
minimized can be captured by modifying appropriately the set of interesting multi-setsM lex .

4 The special case ofH = 2
ForH = 2 (i.e., a 0/1/2-matrix), the algorithm of Section 3.3 has run-timeO(mn2). As
we show in this section, however, yet another factor ofn can be shaved off by analyzing
the structure of the rows more carefully. In a nutshell, the functionf 00 of Section 3.3
can be computed from the structure of the row alone, without needing to go through
all possible signatures; we explain this now. Throughout Section 4, we assume that all
entries in the intensity matrix are 0, 1, or 2.
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4.1 Single row forH = 2
As before, letA[1::n℄ be a single row of the matrix. Consider a maximal interval[j0; j00℄
such thatA[j0::j00℄ has all its entries equal to2. We callA[j0::j00℄ a tower if A[j0 � 1℄
andA[j00+1℄ both equal0, asimple stepif one ofA[j0�1℄ andA[j00+1℄ equals1 and
the other0, and adouble stepotherwise. (As usual we assume thatA[0℄ = A[n+ 1℄ =0.) We uset, s andu to denote the number of towers, simple steps and double steps,
respectively. Figure 2 illustrates how interpretingA[i℄ = t ast blocks atop each other
gives rise to these descriptive names.

... ... ... ...

Fig. 2.Two kinds of simple steps, a tower, and a double-step.

Recall that(A[i℄) =Pn+1j=1 maxf�[i℄[j℄; 0g is the complexity of a rowi of a full
matrixA; we use(A) for the complexity of the single rowA under consideration.

Lemma 7. Defineg(d) as follows:g(d) :=8<: (A) � 2d if d < t,(A) � t� d if t � d � s + t,(A) � 2t� s if t+ s < d.

Then for anyd � 0, f 00(n+1; ;; f0; dg) = g(d). In other words, any segmentationS ofA with at mostd segments of value2 has at leastg(d) segments of value1. Moreover,
there exists a segmentation that has at mostd segments of value 2 and at mostg(d)
segments of value 1.

Proof. LetS be a segmentation ofA that uses at mostd segments of value 2. As before,
we assume thatS has been standardized, which can be done without increasingthe
number of 2-segments. Therefore, any tower, step or double-step ofA is either entirely
covered by a 2-segment, or it does not intersect any 2-segment.

Let s2; t2 andu2 be the number of steps, towers, and double-steps that are entirely
covered by a 2-segment. We claim the the number of 1-segmentsof S is (A)�s2�2t2,
and can prove this by induction ons2 + t2 + u2. If s2 + t2 + u2 = 0, thenS has only
1-segments, and sinceS is standardized, the number of 1-segments equals(A). If, say,t2 > 0, then letA0 be the vector obtained fromA by removing a tower that is covered by
a 2-segment (i.e., by replacing the 2s of that tower by 0s), and letS 0 be the segmentation
of A0 obtained fromS by removing the 2-segment that covers that tower. ThenA0 hast02 = t2 � 1 towers covered by 2-segments, and furthermore(A0) = (A) � 2. SinceS andS 0 have the same number of 1-segments, the claim easily followsby induction.
Similarly one proves the claim by induction ifs2 > 0 or u2 > 0.

Therefore the number of 1-segments inS is (A) � s2 � 2t2. We also know thats2 + t2 + u2 � d. So to get a lower bound on the number of 1-segments, we should
minimize(A) � s2 � 2t2, subject tos2 + t2 + u2 � d and the obvious0 � s2 � s,0 � t2 � t and0 � u2 � u. The bound now easily follows by distinguishing whetherd < t (the minimum is att2 = d, s2 = u2 = 0), or t � d < t+ s (minimum att2 = t,s2 = d� t, u2 = 0) or t+ s < d (minimum att2 = t, s2 = s, u2 = 0.)
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For the second claim, we obtain such a segmentation by usingminfd; tg 2-segments
for towers, thenminfd� t; sg 2-segments for stairs ifd � t, and cover everything else
by 1-segments. ut

The crucial idea forH = 2 is that sinceg(�) can be described explicitly with only
three linear equations that can easily be computed, we can save space and time by not
storingf 00(n + 1; ;; f0; dg) explicitly as an array of length�=2 + 1, and not spendingO(n � �=2) time to fill it.

4.2 Full matrix segmentation forH = 2
As in Section 3.3, to solve the full-matrix problem we need tofind the valued� that
minimizesd+maxiff 00i (n+1; ;; f0; dg)g=: D, wheref 00i (�) is functionf 00(�) = g(�)
for row i. We can hence find the optimal segmentation ofA as follows. Compute the
complexity and the number of towers and stairs in each row; this takesO(mn) time
total. Eachf 00i (�) is then the maximum of three lines defined by these numbers. Henced+ maxiff 00i (n + 1; ;; f0; dg)g is the maximum of3m lines. We hence can computeD (and with itd�) by taking the intersection of the upper half-spaces definedby the3m lines (this can be done inO(m) expected time easily, and inO(m) worst-case time
with a complicated algorithm [13]), and then finding the gridpoint with the smallesty-coordinate in it.

Once we foundd�, we can easily compute a segmentation of each row that has at
mostD � d� segments of value1 and at mostd� segments of value2 (see the proof of
Lemma 7) and combine them into a segmentation of the full matrix with the greedy-
algorithm; this can all be done inO(mn) time. Thus the overall run-time isO(mn).
Theorem 5. A minimum cardinality segmentation of an intensity matrix with values inf0; 1; 2g can be found inO(mn) time.

An immediate application of this result is that it can be combined with theO(logh)
approximation algorithm in [6]. While approximation guarantee remains unchanged,
this should result in improved solutions in practice while not substantially increasing
the running time.

One naturally asks whether this approach could be extended to higher values ofH.
This would be feasible if we could find (say forH = 3) a simpler expression for the
functionf 00(n + 1; ;; f0; d2; d3g), i.e. the minimum number of 1-segments given that
at mostd2 2-segments andd3-3-segments are used. It seems likely that this function
would be piecewise linear (just likeg(d) was), but it is not clear how many pieces there
are, and whether we can compute them easily from the structure of the row. Thus a
faster algorithm forH = 3 (or higher) remains to be found.

5 Conclusion

In this work, we developed several algorithms that provide drastic running time im-
provements for the minimum cardinality problem. At this point, a couple interesting
problems remain open. Does the full-matrix problem admit a FPT result ifm > 1 butm is small (i.e., a small number of rows)? Is the full-matrix problemW [1℄-hard inH?
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