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Abstract. We give an O(n log® n)-time linear-space algorithm that, given
a plane 3-tree G with n vertices and a set S of n points in the plane,
determines whether G has a point-set embedding on S (i.e., a planar
straight-line drawing of G where each vertex is mapped to a distinct
point of §), improving the O(n*/3*%)-time O(n*®)-space algorithm of
Moosa and Rahman. Given an arbitrary plane graph G and a point set
S, Di Giacomo and Liotta gave an algorithm to compute 2-bend point-
set embeddings of G on S using O(W?) area, where W is the length of
the longest edge of the bounding box of S. Their algorithm uses O(W?®)
area even when the input graphs are restricted to plane 3-trees. We in-
troduce new techniques for computing 2-bend point-set embeddings of
plane 3-trees that takes only O(WQ) area. We also give approximation
algorithms for point-set embeddings of plane 3-trees. Our results on 2-
bend point-set embeddings and approximate point-set embeddings hold
for partial plane 3-trees (e.g., series-parallel graphs and Halin graphs).

1 Introduction

A planar drawing of a graph G is an embedding (i.e., a mapping) of G onto the
Euclidean plane R?, where each vertex in G is assigned a unique point in R? and
each edge in G is a simple curve in R? joining the points corresponding to its
endvertices such that no two curves intersect except possibly at their endpoints.
A graph is planar if it has a planar drawing. A straight-line drawing of a planar
graph is a planar drawing, where each edge is drawn as a straight line segment.
The straight-line drawing style is popular since it naturally produces drawings
that are easier to read and to display on smaller screens [1,2]. To meet the
requirements of different practical applications, researchers have examined the
straight-line drawing problem under various constraints, e.g., when the vertices
are constrained to be placed on a set of pre-specified locations [3,4]. If the pre-
specified locations for placing the vertices of the input graph are points on the
Euclidean plane, then we call the problem a point-set embedding problem. Such
problems have applications in VLSI circuit layout, where different circuits need
to be mapped onto a fixed printed circuit board, simultaneous display of different

* Work of the author is supported in part by the Natural Sciences and Engineering Research Council
of Canada (NSERC).

t Work of the author is supported in part by a University of Manitoba Graduate Fellowship.



social and biological networks, and construction of a desired network among a
set of fixed locations. Formally, a point-set embedding of a plane graph G (i.e.,
a fixed combinatorial planar embedding of G) with n vertices on a set S of n
points is a straight-line drawing of G, where the vertices are placed on distinct
points of S.

Point-Set Embeddings. In 1994, Ikebe et al. [5] gave an O(n?)-time algorithm
to embed any tree with n vertices on any set of n points in general position, i.e.,
no three points are collinear. Later, Bose et al. [6] devised a divide and conquer
algorithm that runs in O(nlogn) time. In 1996, Castanieda and Urrutia [7] gave
an O(n?)-time algorithm to construct point-set embeddings of maximal outer-
planar graphs. Later, Bose [3] improved the running time of their algorithm to
O(nlog®n) using a dynamic convex hull data structure. In the same paper Bose
posed an open problem that asks to determine the time complexity of testing
the point-set embeddability for planar graphs. In 2006, Cabello [4] proved the
problem to be NP-complete for graphs that are 2-connected and 2-outerplanar.
The problem remains NP-complete for 3-connected planar graphs [8], even when
the treewidth is constant [9].

In the last few years researchers have examined the point-set embeddability
problem restricted to plane 3-trees (also known as stacked polytopes, Apollonian
networks, and maximal planar graphs with treewidth three) because of their
wide range of applications in many theoretical and applied fields [10]. Nishat et
al. [11] first gave an O(n?)-time algorithm for deciding point-set embeddability
of plane 3-trees, and proved an 2(n logn)-time lower bound. Later, Durocher et
al. [12] and Moosa and Rahman [13] independently improved the running time
to O(n/3+¢), for any ¢ > 0. Since 2(n*/3) is a lower bound on the worst-case
time complexity for solving various geometric problems [14], it may be natural to
accept the possibility that the O(n4/ 3+2)_time algorithm could be asymptotically
optimal. In fact, Moosa and Rahman mention that an o(n?/?)-time algorithm
seems unlikely using currently known techniques. However, in this paper we
prove that the £2(nlogn) lower bound is nearly tight, giving an O(nlog® n)-time
algorithm for deciding point-set embeddability of plane 3-trees.

Universal Point Set. Observe that a planar graph may not always admit point-
set embedding on a given point set. Attempts have been made at constructing
a set S of kK > n points such that every planar graph with n vertices admits
a point-set embedding on a subset of S [15,16]. Such a point set that supports
all planar graphs with n vertices is called a universal point set for n. A long
standing open question in graph drawing asks to design a set of O(n) points
that is universal for all planar graphs with n vertices [15]. Recently, Everett et
al. [16] have designed a 1-bend universal point set S, for planar graphs with n
vertices, i.e., every planar graph with n vertices admits a straight-line drawing
on S, such that each vertex is mapped to a distinct point and each edge is drawn
as a chain of at most two straight line segments.

The point-set embeddability problem seems to have close relation with the
universal point set problem. Castaneda and Urrutia [7] proved that any set of n
points in general position is universal for all outerplanar graphs with n vertices.



Later, Kaufmann and Wiese [17] proved that any set S of n points is 2-bend
universal for n (i.e., every planar graph with n vertices admits a straight-line
drawing on S such that each vertex is mapped to a distinct point and each edge
is drawn as a chain of at most three straight line segments). However, the area
required for the drawing could be exponential in W, where W is the length of
the side of the smallest axis-parallel square that encloses S. Di Giacomo and
Liotta [18, Theorem 7] showed that using the concept of monotone topological
book embeddingone can reduce the area requirement to O(W?3). Even when
restricted to simpler classes of graphs (e.g., series parallel graphs or plane 3-
trees), the technique of Di Giacomo and Liotta is the best known, which still
requires O(W?3) area. In this paper, we contribute a new technique that uses only
O(W?) area to compute 2-bend point set embeddings of plane 3-trees, and hence
also for partial plane 3-trees (e.g., series-parallel graphs and Halin graphs).

Approximate Point-Set Embeddings. Although any set of n points in gen-
eral position is universal for n-vertex outerplanar graphs [7], a plane 3-tree with
n vertices may not admit a point-set embedding on a given set of n points [11].
On the other hand, while allowing two bends per edge, any set of n points in
general position is 2-bend universal for plane 3-trees. Due to this apparent dif-
ficulty of defining algorithms that simultaneously minimize area, the number of
bends, and running time, we consider algorithms that provide approximate solu-
tions, that is, at least a fraction p of the vertices of the input graph are mapped
to distinct points of the given point set. Specifically, if the input points are in
general position, then we prove that the point-set embeddability of plane 3-trees
is approximable with factor £2(1/4/n).

2 Faster Point-Set Embeddings of Plane 3-Trees

In this section we give an O(n log3 n)-time algorithm for deciding point-set em-
beddability of plane 3-trees. Before going into details, we review a few definitions.

A plane 3-tree G with n > 3 vertices is a triangulated plane graph such that
if n > 3, then G contains a vertex whose deletion yields a plane 3-tree with
n — 1 vertices. Let r, s,t be a cycle of three vertices in G. By G, we denote the
subgraph induced by 7, s,t and the vertices that lie interior to the cycle. Every
plane 3-tree G with n > 3 vertices contains a vertex that is the common neighbor
of all the three outer vertices of G. We call this vertex the representative vertex
of G. Let p be the representative vertex of G and let a,b,c be the three outer
vertices of G in clockwise order. Then each of the subgraphs Gupp, Gpep and Gegp
is a plane 3-tree. Let S be a set of n points in the plane. Let p, ¢ and r be three
points that do not necessarily belong to S. Then S(pgr) consists of the points
of S that lie either on the boundary or in the interior of the triangle pqr.

Overview of Known Algorithms. Let G be a plane 3-tree with n vertices,
and let a, b, c and p be the three outer vertices and the representative vertex of
G, respectively. Nishat et al. [11]’s algorithm is as follows.



Step 1. If the number of points on the boundary of the convex hull C' of S is not
exactly three, then G does not admit a point-set embedding on S. Otherwise,
let x,y, z be the points on C.

Step 2. For each of the possible six different mappings of the outer vertices
a, b, ¢ to the points x,y, z, execute Step 3.

Step 3. Let ni,ne and ng be the number of vertices of Gapp, Goep and Gegp,
respectively. Without loss of generality assume that the current mapping of a,b
and cis to x, y and z, respectively. Find the unique mapping of the representative
vertex p of G to a point w € S such that the triangles zyw, yzw and zaxw properly
contain exactly ni,ny and ng points, respectively. If no such mapping of p exists,
then G does not admit a point-set embedding on S for the current mapping of
a, b, c; hence go to Step 2 for the next mapping. Otherwise, recursively compute
point-set embeddings of Gupp, Goep and Geqp on S(zyw), S(yzw) and S(zzw),
respectively. See Figures 1(a)—(d).

Observe that the recurrence relation for the time taken in Step 3 is T'(n) =
T(n1)+T(n2) +T(n3)+ T, where T denotes the time required to find the map-
ping of the representative vertex. The algorithm of Nishat et al. [11] preprocesses
the set S in O(n?) time so that the computation for the mapping of a represen-
tative vertex takes O(n) time. Hence 7 = O(n) and the overall time complexity
becomes O(n?). Moosa and Rahman [13] used a binary search technique with
the help of a triangular range search data structure of Chazelle et al. [19] to
obtain 7 = min{ni, no,nz} - n'/3+= and T(n) = O(n*/3*¢). Durocher et al. [12]
use the same idea, but instead of a binary search they use a randomized search.

Embedding Plane 3-Trees in O(nlog®n) time. We speed up the mapping
of the representative vertex as follows. We first select O(min{ny,n2,n3}) points
interior to the triangle zyz in O(min{n; + ng,ny + nz,n; + nz} log”n) time
using a dynamic convex hull data structure. We prove that these are the only
candidates for the mapping of the representative vertex. We then make some
non-trivial observations to test and compute a mapping for the representative
vertex in O(min{ny,ns,n3}) time. Hence we obtain 7 = O(min{n; + ng, na +
ns,n1 + ng}log”n) and a running time of T'(n) = O(nlog® n), which dominates
the O(nlog2 n) time for building the initial dynamic convex hull data structure.
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Fig.1. (a) A plane 3-tree G. (b) A point set S. (c¢) A valid mapping of the represen-
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tative vertex of G, and the recursive computation of the three subproblems. (d)—(e)
Illustration for the lines uy, vy, r and zs. The region of interest is shown in gray.
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In the following we use three lemmas to obtain our main result. Lemma 1 se-
lects a region R containing the candidate points inside the triangle zyz. Lemma 2
reduces the problem of finding a mapping inside the triangle zyz to the problem
of finding a point satisfying specific criteria inside R. Lemma 3 gives an efficient
technique to find such a point. Finally, we use these lemmas to obtain a mapping
for the representative vertex in O(min{n; + na,ns + nz,n1 + ns} log? n) time.

Without loss of generality assume that n3 < ny < ny. Observe that n; +
ne +n3 —5 = n. Let S be a set of n points in general position such that the
convex hull of S contains exactly three points z,y, z on its boundary. Without
loss of generality assume that the vertices outer vertices a,b, c are mapped to
the points z, y, z, respectively.

Let v and v be two points on the straight line segment xz such that |S(uxy)| =
ny — 1 and |S(vzy)| = ne — 1, as shown in Figure 1(d). It is straightforward to
verify that if a valid mapping for the representative vertex exists (i.e, there exists
a point w € S such that |S(wzy)| = nq1, |S(wyz)| = ne and |S(wzz)| = ng), then
the corresponding point (i.e., the point w) must lie inside S(uvy). Let r and s
be two points on the straight line segments uy and vy, respectively, such that
|S(rux)| = |S(svz)| = ng — 1. We call the region defined by the simple polygon
x,u,v,z,8,Yy,r,x the region of interest. An example is shown in Figures 1(e). We
will use the following lemma whose proof is omitted due to space constraints.

Lemma 1. If there exists a point w € S that corresponds to a valid mapping for
the representative vertex of G, then the straight line segments wx, wy and wz lie
inside the region of interest R. Moreover, the number of points in R that belong
to S is O(ns), and the following properties hold.

(a) If the points s,y, z (respectively, points r,x,y) are distinct, then |S(syz)| =
ny — ng + 2 (respectively, |S(ray)| = n1 — ng + 2).

(b) Otherwise, point s (respectively, point r) coincides with y (respectively, y)
and |S(syz)| = 2 (respectively, |S(rzy)| = 2).

Let S’ C S be the set that consists of the points lying on the boundary of R
and the points lying in the proper interior of R. We call S’ the set of interest.
By Lemma 1, |S’|=0(n3). We reduce the problem of finding a valid mapping in
S to the problem of finding a point with certain properties in S’, as shown in
the following lemma. We omit its proof due to space constraints.

Lemma 2. There exists a valid mapping for the representative vertex of G in S
if and only if there exists a point w' € 8" such that |S"(w'yz)| = na—|S(yzs)|+3,
|S'(w'zy)| = ny — |S(zyr)| + 3 and |S"(w'x2)| = ns.

Since a valid mapping for the representative vertex is unique, w’ must be unique.
We call the point w’ the principal point of S’. Observe that this principal point
corresponds to the valid mapping of the representative vertex of G in S.

Lemma 3. Let S be a set of t > 4 points in general position such that the
convex hull of S is a triangle xyz. Let i, j, k be three non-negative integers, where
i1>3,j>3andk =t+5—1i—j. Then we can decide in O(t) time whether there
exists a point w € S such that |S(wzy)| = i,|S(wyz)| = j and |S(wzz)| = k,
and compute such a point if it exists.



Fig. 2. Tllustration for the proof of Lemma 3, where {m,m'}NS=0@ and {x,y, z, w}CS.

Proof. Consider first a variation of the problem, where we want to construct a
point m ¢ S interior to zyz such that |S(may)| =i+ 1,|S(myz)| = j — 1 and
|S(maz)| = k—1. Steiger and Streinu [20] proved the existence of m and gave an
O(t)-time algorithm to find m. If there exists a point w € S such that |S(wzy)| =
i,|S(wyz)| = j and |S(wxz)| = k, then it is straightforward to observe that there
exists a point m ¢ S interior to xzyz such that |S(mazy)| = i+1,|S(myz)| =j—1
and |S(mzz)| = k — 1. We now prove that the existence of m implies a unique
partition of S. Hence we can efficiently test whether w exists.

We claim that if there exists a point m’ # m, where m’ € S, such that
|S(m'zy)| = i+ 1,|S(m'yz)| = j — 1 and |S(m’zz)| = k — 1, then the sets
S(m’zy), S(m'yz) and S(m'xzz) must coincide with the sets S(may), S(myz) and
S(maxz). To verify the claim assume without loss of generality that m’ € S(myz).
Since the triangle m'yz lies interior to the triangle myz, the sets S(m’yz) and
S(myz) must be identical. On the other hand, either the triangle maz lies interior
to the triangle m/xzz, or the triangle mxy lies interior to the triangle m’xy, as
shown in Figures 2(a)—-(b). Therefore, either the sets S(mzz) and S(m'zz), or
the sets S(mzy) and S(m’zy) must be identical. Consequently, the remaining
pair of sets must also be identical.

Observe that if the point w € S we are looking for exists, then w must lie
interior to S(mazy), as shown in Figure 2(c). Otherwise, if w € S(myz) (respec-
tively, w € S(mzz)), then |S(myz)| > |S(wyz)| = j (respectively, |S(maxz)| >
|S(wxz)| = k), which contradicts our initial assumption that |S(myz)| =j —1
(respectively, |S(maz)| = k—1). Figure 2(d) depicts such a scenario. If w exists,
then the convex hull of S(maxy) must be a triangle xym”, where m” € S(may).
If |S(m"zy)| = i,|S(m"yz)| = j and |S(m"zz)| = k, then m” is the required
point w. Otherwise, no such w exists.

We can test whether the convex hull of S(mazy) is a triangle in O(¢) time
(e.g., find the leftmost point a, the rightmost point b and the point ¢ with the
largest perpendicular distance to the line determined by the line segment ab, and
then test whether triangle abc contains all the points). It is also straightforward
to compute the values |S(m”zy)|,|S(m"yz)| and |S(m”zz)| in O(t) time. O

Given the set of interest S’ C S, we use Lemmas 2 and 3 to find the principal
point w’ € S’ in O(n3) time. Observe that this principal point corresponds to
the valid mapping of the representative vertex of G in S. We now show how to
compute the set S” in O((ng +ns)log? n) time using the dynamic planar convex



hull data structure of Overmars and van Leeuwen [21], which supports a single
update (i.e., a single insertion or deletion) in O(log®n) time.

Step A. Assume that the points of S are placed in a dynamic convex hull data
structure D. We recursively delete the neighbor of y on the boundary of the
convex hull of S starting from z in anticlockwise order. After deleting ny — 2
points, we insert all the deleted points into a new dynamic convex hull data
structure D’. We then insert a copy of y into D’. Recall u and v from Figure 1(e).
Observe that all the points of S(vyz) are placed in D'. In a similar way we
construct another dynamic convex hull data structure D” that maintains all
the points of S(uvy). Consequently, D now only maintains the points of S(uxy).
Since a single insertion or deletion takes O(log” n) time, all the above O(ng+n3)
insertions and deletions take O((ng + n3)log®n) time in total.

Step B. We now construct two other dynamic convex hull data structures D;
and Dy using D and D’ such that they maintain the points of S(ruz) and S(svz),
respectively. Since |S(ruz)| 4 |S(svz)| = O(n3), this takes O(nszlog®n) time.

Step C. We construct the point set S’ using the points maintained in D", Dy
and Dy, which also takes O(nzlog?n) time. In similar way we can restore the
original point set S and the initial data structure D in O((ng +n3)log? n) time.

The time for the construction of S’ using Steps A-C is O((ng + n3)log®n),
which dominates the time required for the computation of the valid mapping
of the representative vertex p. Let w be the point that corresponds to the valid
mapping. We now need to construct the point sets S(wzy), S(wyz) and S(wzx)
for recursively testing the point-set embeddability of Gapp, Goep and Geqp, respec-
tively. We can construct S(wzy), S(wyz) and S(wzz) and their corresponding
dynamic convex hull data structures in O((ng + n3)log®n) time as follows. Let
[ be the point of intersection of the straight lines determined by the line seg-
ments wy and xzz. First construct the set S(lyz) and then modify it to obtain
the sets S(wyz) and S(lwz), which takes O((ny + n3)log? n) time. Now modify
the set S(lxy) to construct the set S(lwz), and then use the sets S(lwz) and
S(lwz) to construct S(wzz), which takes O(nzlog®n) time. Observe that after
the modification of the set S(lzy), we are left with the set S(wxy).

We now show that the total time taken is T'(n) < dn log® n, for some constant
d, as follows. There exists ¢ > 0 such that for all d > ¢,

T(n) = T(ny) + T(ny) + T(ns) + O((ny + n3) log® n)
< dnq log® ny + dns log® ns + dng log® ns + c(ng + ng3) log®n
< dnq log® n + dns log® nlog 5 +dns log® nlog 5+ c(n2 +n3) log®n
= dny log® n + dng log® n(logn — 1) + dnslog® n(logn — 1) + ¢(ng 4 n3) log® n
=d(n1 +nz +n3) log®n — (d —¢)(ng + n3) log® n
<dn log3 n.



Observe that the construction of the initial data structure D takes O(nlog?n)
time, which is dominated by T'(n). The dynamic planar convex hull of Brodal
and Jacob [22] takes amortized O(logn) time per update. Therefore, using their
data structure instead of Overmars and van Leeuwen’s data structure [21] we
can improve the expected running time of our algorithm. Since the algorithms
of [21, 20] take linear space, the space complexity of our algorithm is O(n).

Theorem 1. Given a plane 3-tree G with n vertices and a set S of n points in
general position in R?, we can decide the point-set embeddability of G on S in
O(nlog®n) time and O(n) space, and compute such an embedding if it exists.

Under the assumption that the algorithms of Overmars and van Leeuwen [21]
and Steiger and Streinu [20] can handle degenerate cases, it is straightforward
to modify our algorithm for the case when the input points are not necessarily
in general position.

3 Universal Point Set for Plane 3-Trees

In this section we give an algorithm to compute 2-bend point-set embeddings of
plane 3-trees on a set of n points in general position in O(W?) area, where W
is the length of the side of the smallest axis-parallel square that encloses S.

We describe an outline of the algorithm. Given a plane 3-tree G and a set of
points S in general position, we first construct a straight-line drawing I" of G
such that every point of S other than a pair of points on the convex hull of S lies
in the proper interior of some distinct inner face in I, as shown in Figure 3(b).
While constructing I', we compute a bijective function ¢ from the vertices of
I" to the points of S. We then extend each edge (u,v) in I using two bends to
place the vertices u and v onto the points ¢(u) and ¢(v), respectively, as shown
in Figure 3(c). We prove that I and ¢ maintain certain properties so that the
resulting drawing I’ remains planar.

In the following we describe the algorithm in detail. Let H be the convex hull
of S. Construct a triangle xyz with O(W?) area such that xyz encloses H and
the side yz passes through a pair of consecutive points 3’, z’ on the boundary
of H. Assume that 3’ is closer to y than 2’. Set ¢(y) = 3’ and ¢(z) = 2. Set
¢(z) = 2’, where ' is the point on the convex hull of S(zyz) for which the angle
Zxyx' is smallest. Figure 3(a) illustrates the triangle xyz and the function ¢.
We call the straight line segments x¢(x), yd(y), 2¢(z) the wings of xyz. Observe
that only z¢(z) among the three wings of zyz lie in the proper interior of xyz.
We use this invariant throughout the algorithm, i.e., every face f in the drawing
will contain at most one wing that is in the proper interior of f. We call such a
wing the major wing of f.

Let a,b,c be the outer vertices of G in anticlockwise order and let p be
the representative vertex of GG. Map the vertices a, b, ¢ to the points z,y, z. Let
S\ {2',y,2'} be the point set S’. Let ny,ny and ng be the number of inner
vertices of Gupp, Goep and Gegqp, respectively. Since the major wing of zyz is
incident to x, we construct a point w ¢ S such that S'(wzy) = ny, S (wyz) =



Fig. 3. (a) Illustration for the triangle zyz. (b) I" and ¢, where ¢ is illustrated with
dashed lines. (¢) A 2-bend point-set embedding of G on S. (d)—(e) Construction of w
and ¢(w), where ¢(w) = w’ is shown in white and the convex hull of S(zyz) in gray.

n2 + 1 and S'(wzz) = ng, as shown in Figure 3(a). Steiger and Streinu [20]
proved that such a point always exists and gave an O(|S’|)-time algorithm to
find w. Since the angle Zxyg(z) is the smallest, if wy or wz intersects x¢(z),
then by continuity there must exist another point w on the line wz such that
S (wzy) = n1, S (wyz) = na + 1, S’ (wxz) = n3 holds, and we choose @ as the
point w. Figures 3(d)—(e) depict such scenarios. Set ¢p(w) = w’, where w’ is the
point on the convex hull of S’(wyz) for which the angle Zwyw’ is smallest. Since
wyz does not contain z¢(x), the mapping we compute maintains the invariant
that every face contains at most one major wing.

We now recursively construct the drawings of Gapp, Gpep and Geqp with the
point sets S’ (zyw), S’ (yzw)\w’ and S’ (zzw), respectively. Note that while recur-
sively constructing a point w for the representative vertex inside some triangle
xyz, then the triangle may not have any major wing. Also in this case, it suffices
to compute w such that S'(wzxy) = ny, S (wyz) = na + 1 and S’ (wzz) = ng
holds. Once we complete the recursive computation, we obtain a straight-line
drawing I" of GG, and a bijective function ¢ from the vertices of I" to the points
of S. We now extend each edge (u,v) in I" using two bends to place the vertices
u and v onto the points ¢(u) and ¢(v), respectively. We use ¢ and the property
that every face in I" contains at most one major wing, to maintain planarity. We
omit the details due to space constraints.

Theorem 2. Given a plane 3-tree G with n vertices and a point set S of n
points in general position, we can compute a 2-bend point-set embedding of G
in O(nlog®n) time with O(W?) area, where W is the length of the side of the
smallest axis-parallel square that encloses S.

4 Approximate Point-Set Embeddings

Let I" be a straight-line drawing of G. Then S(I") denotes the number of vertices
in I' that are mapped to distinct points of S. The optimal point-set embedding
of G is a straight-line drawing I'* such that S(I™*) > S(I"") for any straight-line
drawing I'" of G. A p-approximation point-set embedding algorithm computes
a straight-line drawing I" of G such that S(I")/S(I"*) > p. In this section we
show that given a plane 3-tree G with n vertices, we can construct a straight-line



drawing I" of G such that S(I") = 2(y/n), and hence point-set embeddability is
approximable with factor 2(1/+/n) for plane 3-trees.

Let G be a plane 3-tree with the outer vertices a,b,c and representative
vertex p, and let the number of vertices of G be n. Then the representative tree
T,,—3 of G satisfies the following conditions [11].

(a) If n =3, then T,,_3 is empty.

(b) If n =4, then T,,_3 consists of a single vertex.

(¢) If n > 4, then the root p of T;,_3 is the representative vertex of G and the
subtrees rooted at the three counter-clockwise ordered children py, po and p3
of p in T;,_3 are the representative trees of Gupp, Gpep and Geqp, respectively.

Since a rooted tree with n nodes is a partially ordered set under the ‘successor’
relation, by Dilworth’s theorem [23], either the height or the number of leaves
in the tree is at least v/n. Let G be the input plane 3-tree with n vertices and
let T be its representative tree with n — 3 vertices [11].

If T has £2(y/n) leaves, then it is straightforward to construct a drawing I’
of G using the algorithm of Steiger and Streinu [20] such that exactly the leaves
are mapped to the points of S, i.e., S(I") = £2(y/n). Otherwise, the height of T is
£2(y/n). In this case we prove that G has a ‘canonical ordering tree’(also, called
Schnyder’s realizer [2]) with height {2(1/n), as shown in Lemma 4. There exists
a simple algorithm (one can also modify de Fraysseix et al.’s algorithm [1]) to
obtain a straight-line drawing I of G such that S(I') = 2(y/n). We omit the
details due to space constraints.

Lemma 4. Let G be a plane 3-tree and let T be its representative tree. If the
height of the representative tree is £2(y/n), then G has a canonical ordering tree
with height 2(y/n).

Proof. Let P = (v1,va,...,vk), k = 2(y/n), be the longest path from the root
v1 of T to some leaf vi. Without loss of generality assume that k is even. By G;
we denote the plane 3-tree induced by the outer vertices of G and the vertices
V1, V2, . . ., V. We now incrementally construct Gy. First construct a triangle xyz,
place the vertex v interior to xyz and add the segments viz, v1y, v12. Since vy
is a child of w1, vo must be placed interior to one of the triangles incident to
v1. Since v;41, where i + 1 < k, is a child of v;, this condition holds throughout
the construction. Let T,,T,, T, be the trees of the Schnyder’s realizer rooted at
x,y, z, respectively. Figure 4(a) illustrates the realizer of Ga, where the height
of T, T, and T is two, two and three, respectively. By A and B we denote
the rooted trees isomorphic to T, and T, of Gs, respectively. The nodes of
Tw,w € {x,y,z}, where the realizer grows while adding v;; to G;, i > 2, are
called the connectors of Ty, in G;. See Figure 4(b).

Consider now the steps when we obtain the graphs G3, Gy, ..., Gg. Observe
that each time some tree of the form A (or B) gets connected with some T,,,w €
{z,y, 2}, of G;, the connectors of A (or B) become the only connectors of T, in
Gito. Figures 4(c)—(d) illustrate such a scenario. Consequently, each time some
tree of the form B gets connected with some T, w € {z,y, z}, of G;, the height
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Fig. 4. (a) Illustration for G2, where T,,T, and T, are shown in red, green and blue.
(b) Hlustration for the connectors, shown in gray. (c¢)—(d) Example of a connection of
A, A, B with B, A, A, respectively.

of T,, increases by one in G;;2. Since we need to encounter k/2 steps before we
obtain Gy, one of T,,T, or T. must have height at least k/6 = {2(\/n). Since
each tree of the Schnyder’s realizer of G is a subtree of a distinct tree of the
Schnyder’s realizer of G, the proof is complete. O

Theorem 3. Given a plane 3-tree G with n vertices and a point set S of n
points in general position in R?, we can compute a straight-line drawing I’ of
G in polynomial time such that the number of vertices in I' that are mapped
to distinct points of S is 2(1/y/n) times to the optimal. Hence the point-set
embeddability of plane 3-trees is approzimable with factor 2(1/y/n).

5 Conclusion

Using techniques that are completely different from those used in the previ-
ously best known approaches for testing point-set embeddability of plane 3-trees
(achieving O(n*/3+¢) time and O(n*/3) space), in Section 2 we described an
algorithm that solves the problem for a given plane 3-tree in O(n log® n) time
using O(n) space. As suggested by an anonymous reviewer, one possibility for
potentially reducing the running time further might be to apply the algorithm
of Moosa and Rahman [13], where an orthogonal range search would be used
instead of a triangular range search. Specifically, given points x and y and an
integer k, a triangle wxy that contains k£ points can be found by encoding each
point w using two values: the slopes of wz and wy. The triangle wxy is then
mapped to a two-sided axis-aligned orthogonal range query. It is not obvious,
however, how this technique would be applied in recursive levels. One possibility
might be to use a dynamic orthogonal range counting data structure. Another
interesting issue is to examine the amount of scale up required to ensure that
the vertices and bend points of the drawings produced in Section 3 lie on integer
coordinates, i.e., the area requirement under minimum resolution assumption.
In Section 4 we gave an (2(1/y/n)-approximation algorithm for plane 3-trees.
Hence a natural question is to examine whether a constant factor approxima-
tion algorithm exists.

Acknowledgement. We thank Valentin Polishchuk and the other anonymous
reviewers for many constructive and helpful comments.
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