
Time-Space Trade-off for Finding the
k-Visibility Region of a Point in a Polygon?

Yeganeh Bahoo1, Bahareh Banyassady2 Prosenjit Bose3, Stephane Durocher1,
and Wolfgang Mulzer2

1 Department of Computer Science, University of Manitoba, Canada
[bahoo, durocher]@cs.umanitoba.ca

2 Institut für Informatik, Freie Universität Berlin, Germany
[bahareh, mulzer]@inf.fu-berlin.de

3 School of Computer Science, Carleton University, Canada
jit@scs.carleton.ca

Abstract. We study the problem of computing the k-visibility region
in the memory-constrained model. In this model, the input resides in
a randomly accessible read-only memory of O(n) words, with O(logn)
bits each. An algorithm can read and write O(s) additional words of
workspace during its execution, and it writes its output to write-only
memory. In a given polygon P and for a given point q ∈ P , we say that a
point p is inside the k-visibility region of q, if and only if the line segment
pq intersects the boundary of P at most k times. Given a simple n-vertex
polygon P stored in a read-only input array and a point q ∈ P , we give a
time-space trade-off algorithm which reports the k-visibility region of q
in P in O(cn/s+n log s+min{dk/sen, n log logs n}) expected time using
O(s) words of workspace. Here c ≤ n is the number of critical vertices
for q, i.e., the vertices of P where the visibility region may change. We
also show how to generalize this result for polygons with holes and for
sets of non-crossing line segments.

Keywords: memory-constrained model, k-visibility region, time-space
trade-off

1 Introduction

Memory constraints on mobile and distributed devices have led to an increasing
concern among researchers to design algorithms that use memory efficiently. One
common model to capture this notion is the memory-constrained model [2]. In
this model, the input is provided in a randomly accessible read-only array of
O(n) words, with O(log n) bits each. There is an additional read/write memory
consisting of O(s) words of O(log n) bits each, which is called the workspace of
the algorithm. Here, s ∈ {1, . . . , n} is a parameter of the model. The output is
written to a write-only array.

? This work was partially supported by DFG project MU/3501-2 and by the Natural
Sciences and Engineering Research Council of Canada (NSERC).

2

Suppose we are given a polygon P and a query point q ∈ P . We say that
the point p ∈ P is k-visible from q if and only if the line segment pq properly
intersects the boundary of P at most k times (p and q are not counted toward
k). The set of k-visible points of P from q is called the k-visibility region of q
within P , and it is denoted by Vk(P, q); see Figure 1. Visibility problems have
played and continue to play a major role in computational geometry since the
dawn of the field, leading to a rich history; see [16] for an overview. The concept
of visibility through a single edge first appeared in [11]. Recently, k-visibility for
k > 1 has been introduced and applied to model coverage of wireless devices
whose radio signals can penetrate a given number k of walls [1, 13]. There are
some other results in this context; for example see [4,10,12,14,15,17,20]. While
the 0-visibility region consists of one connected component, the k-visibility region
may be disconnected in general. A previous work [3] presents an algorithm for a
slightly different variant of this problem, which computes the set of points in the
plane which are k-visible from q in presence of a polygon P in O(n2) time using
O(n) space. In this case the k-visibility region is a single connected component.

The optimal classic algorithm for computing the 0-visibility region runs in
O(n) time using O(n) space [18]. In the memory-constrained model using O(1)
workspace, there is an algorithm which reports the 0-visibility region of a point
q ∈ P in O(nr̄) time, where r̄ denotes number of reflex vertices of P in output [6].
This algorithm scans the boundary of P in counterclockwise order and it reports
the maximal chains of adjacent vertices of P which are 0-visible from q. More
precisely, it starts from a visible vertex vstart, and it finds vvis, the next visible
reflex vertex with respect to q, in O(n) time. The first intersection of the ray
qvvis with the boundary of P is called the shadow of vvis. Depending on the type
of vvis, the end vertex of the maximal visible chain starting at vstart, is either
vvis or its shadow, and in each case the other one is the start vertex of the next
maximal visible chain. Thus, in each iteration the algorithm reports a maximal
visible chain and it repeats this procedure r̄ times, where r̄ is the number of
visible reflex vertices of P . This takes O(nr̄) time using O(1) workspace. When
the workspace is increased to O(s), such that s ∈ O(log r) and r is the number
of reflex vertices of P with respect to q, they present O(nr/2s+n log2 r) time or
O(nr/2s + n log r) randomized expected time algorithm. The method is based
on a divide-and-conquer approach which uses the previous algorithm as base
algorithm and in each step of the recursion, it splits a chain into two subchains
with roughly half of the visible reflex vertices of the chain. Due to differences
between the properties of the 0-visibility region and the k-visibility region, there
seems to be no straightforward way to generalize this approach. In [5] a general
method for transforming stack-based algorithms into the memory-constrained
model is provided, which can be used as an alternative method to obtain a
time-space trade-off to compute the 0-visibility region.

Here, we look at the more general problem of computing the k-visibility region
of a simple polygon P from q ∈ P using a small workspace, and we establish
a trade-off between running time and workspace. Unless stated otherwise, all
polygons will be understood to be simple.

3

v3

v1

v2
q

v4

v5v6

v7

v8

P

Fig. 1. The gray region is V2(P, q). The vertices v1, . . . , v8 are critical for q. Here
v1, v2, v3 and v6 are start vertices, while v4, v5, v7 and v8 are end vertices. The boundary
of P is partitioned into 8 disjoint chains, i.e, the counterclockwise chain v3v5.

2 Preliminaries and definitions

We assume that our simple polygon P is given in a read-only array as a list
of n vertices in counterclockwise (CCW) order along the boundary. This input
array also contains a query point q ∈ P . The aim is to report Vk(P, q), using
O(s) words of workspace. We assume that the vertices of P are in weak general
position, i.e., the query point q does not lie on the line determined by any two
vertices of P . Without loss of generality, assume that k is even and that k < n.
If k is odd, we compute Vk−1(P, q), which is by definition equal to Vk(P, q), and
if k ≥ n then P is completely k-visible. The boundary of Vk(P, q) consists of
part of the boundary of P and some chords that cross the interior of P to join
two points on its boundary. We denote the boundary of a planar set U by ∂U .

Let θ ∈ [0, 2π), and let rθ be the ray from q that forms a CCW angle θ with
the positive-horizontal axis. An edge of P that intersects rθ is called an inter-
secting edge of rθ. The edge list of rθ is defined as the sorted list of intersecting
edges of rθ, according to their intersection with rθ (from q). The jth member of
the edge list of rθ is denoted eθ(j). When rotating rθ around q in CCW order,
the edge list of rθ does not change unless rθ stabs a vertex v of P . If rθ stabs v,
then the edge lists of rθ−ε and of rθ+ε differ, for any small ε > 0. The difference
is caused only by edges incident to v. If these edges lie on opposite sides of rθ,
then the edge list of rθ+ε is obtained from the edge list of rθ−ε by exchanging
the incident edge of v, which is in the edge list of rθ−ε, with the other incident
edge of v. If both incident edges of v lie on the same side of rθ, we call v a critical
vertex; see Figure 1. If both incident edges of v lie on the right/left side of rθ,
then the edge list of rθ+ε is obtained by removing/adding the two incident edges
of v from/to the edge list of rθ−ε. For simplicity, if rθ stabs a vertex v, we define
the edge list of rθ equal to the edge list of rθ+ε, for a small ε > 0. The number of
critical vertices in P is denoted by c. A chain is defined as a maximal sequence
of edges of P which does not contain a critical vertex, except at the beginning
and at the end. The critical vertex v is called an end vertex/a start vertex if
both incident edges to v lie on the right/left side of rθ. The name is due to the

4

fact that an end/start vertex shows the end/start of two chains in the edge list;
see Figure 1. The angle of a vertex v which lies on the ray rθ refers to θ.

Observation 2.1. Suppose we are given an edge e of a chain C of P , and a
ray rθ. We can find the edge of C which intersects rθ (if it exists) by scanning
the chain C of P in O(|C|) time using O(1) words of workspace.

The above observation implies that, any edge of a chain may be used as a
proper representative of the chain and its other edges. Thus, in the edge list,
each edge refers to its containing chain. Obviously, in direction θ, only the first
k+ 1 members of the edge list of rθ are k-visible from q, which leads us to focus
on chains and their order in the edge list. As we explained before, when rotating
rθ around q, the structure of the edge list of rθ (i.e., the chains and their order)
changes only when rθ stabs a critical vertex v. We will see that in this case a
segment on rθ may belong to ∂Vk(P, q). Obviously, v is k-visible if its position
on rθ is not after eθ(k + 1).

Lemma 2.2. If rθ stabs a k-visible end (or start) vertex v, then the segment
on rθ between eθ(k) and eθ(k+1) (or eθ(k+2) and eθ(k+3)), if these two edges
exist, is an edge of Vk(P, q).

Proof. If v is an end vertex, then for small enough ε > 0, the edges eθ(k) and
eθ(k+1) are respectively eθ−ε(k+2) and eθ−ε(k+3), so they are not k-visible in
direction θ−ε. These edges are also eθ+ε(k) and eθ+ε(k+1), so they are k-visible
in direction θ+ε. Hence, the segment on rθ between eθ(k) and eθ(k+ 1) belongs
to ∂Vk(P, q). Similarly, if v is a start vertex, the segment between eθ(k+ 2) and
eθ(k + 3) belongs to ∂Vk(P, q); see Figure 2. ut

Lemma 2.2 leads to the following definition: for a ray rθ that stabs a k-visible
end (or start) vertex v, the segment between eθ(k) and eθ(k + 1) (or eθ(k + 2)
and eθ(k + 3)), if they exist, is called the window of rθ; see Figure 2.

Observation 2.3. The boundary of Vk(P, q) has O(n) vertices.

Proof. ∂Vk(P, q) consists of part of ∂P and windows; thus, a vertex of Vk(P, q)
is either a vertex of P or an endpoint of a window. Since each critical vertex
causes at most one window, the number of vertices of Vk(P, q) is O(n). ut

Obviously, if P has no critical vertex, then no window exists, and ∂Vk(P, q) =
∂P . Thus, we assume that P has at least one critical vertex. From now on,
ei(j) denotes the jth intersecting edge of the ray qvi, where vi is a vertex of
P . However, instead of ei(j), it suffices to find an arbitrary edge of the chain
containing ei(j) and then apply Observation 2.1 to find ei(j). Therefore, we refer
to any edge of the chain containing ei(j) by ei(j). In the following algorithms,
for any critical vertex vi, we determine ei(k+ 1) which helps to find the window
of qvi (if it exists), and also the part of ∂P which is in ∂Vk(P, q). However,
depending on how much workspace is available, we have different approaches for
finding all ei(k + 1). Details follow in the next sections.

5

wq v
rθ+ε

rθ−ε

rθ

w

q v
rθ+ε

rθ−ε

rθ

Fig. 2. The ray rθ in the top/bottom figure stabs the end/start vertex v. The segment
w is a window of 4-visible region. The tiled regions are not 4-visible for q.

3 A constant-memory algorithm

In this section, we assume that only O(1) words of workspace is available. Sup-
pose v0 and v1 are the critical vertices with respectively first and second smallest
(polar) angles. We start from qv0 and we find e0(k+1) in O(kn) time using O(1)
words of workspace. Basically, we perform a simple selection subroutine as fol-
lows: pass over the input k+1 times, and in each pass, find the next intersecting
edge of qv0 until the (k + 1)th one, e0(k + 1). If v0 does not lie after e0(k + 1)
on qv0, i.e., if v0 is k-visible, we report the window of qv0 (if it exists). Since the
window is defined by e0(k) and e0(k+ 1) or by e0(k+ 2) and e0(k+ 3), it can be
found in at most two passes over the input. Then we report the part of ∂Vk(P, q)
lying between qv0 and qv1 while scanning ∂P . In fact, for each edge e ∈ P which
is in the edge list of qv0 and lies before e0(k + 1) on qv0, we report the segment
of e which is between qv0 and qv1. We repeat the above procedure for v1 except
for determining e1(k+ 1) which is done in O(n) time using e0(k+ 1) as follows:
for 1 ≤ i, if vi is an end or a start vertex the incident edges to vi are respectively
in the edge list of qvi−1 or qvi and not in the other one; see Figure 3. Except
for edges incident to vi, all the other intersecting edges of qvi−1 intersect qvi in
the same order, and vice versa. Hence, if ei−1(k + 1) lies before vi on qvi, then
it defines ei(k + 1). Otherwise, if vi is an end/ a start vertex, then the second
right/ left neighbour of ei−1(k+1) in the edge list of qvi−1/ qvi defines ei(k+1).
However, in all cases the chain of ei(k + 1) is found by at most two passes over
the input; applying Observation 2.1, the edge ei(k + 1) is obtained. Notice that
here and in the following algorithms, if there are less than k + 1 intersecting
edges on qvi−1, we store the last intersecting edge of qvi−1, and the number
of intersecting edges of qvi−1. We this edge instead of ei−1(k + 1), in the same
procedure as above, to find ei(k+ 1) or the last intersecting edge of qvi and the
number of intersecting edges of qvi. The algorithm repeats the above procedure
until all critical vertices have been processed. The number of critical vertices is
c, and processing each of them takes O(n) time, except for the selection subrou-
tine during processing v0, which takes O(kn) time. Thus, the running time of
the algorithm is O(kn + cn), using O(1) words of workspace. This leads to the
following theorem:

6

q
ei−1(5)

ei(5)

vi

q

ei−1(5)

ei(5)

vivi−1
vi−1

Fig. 3. Left: vi is an end vertex and ei(5) is the second intersecting chain to the right
of ei−1(5). Right: vi is a start vertex and ei(5) is the second intersecting chain to the
left of ei−1(5).

Theorem 3.1. Given a simple polygon P with n vertices in a read-only array,
a point q ∈ P , and a parameter k ∈ N, there is an algorithm which reports
∂Vk(P, q) in O(kn + cn) time using O(1) words of workspace, where c is the
number of critical vertices of P .

4 Memory-constrained algorithms

In this section, we assume that word of O(s) workspace is available, and we
show how to exploit the additional workspace to compute the k-visibility region
faster. We provide two algorithms, the first one is presented only for better
understanding of the second algorithm, which provides a better running time. In
the first algorithm we process all the vertices in contiguous batches of size s in
angular order. In each iteration we find the next batch of s vertices, and using
the edge list of the last processed vertex, we construct a data structure which is
used to find the windows of the batch. Using the windows we report ∂Vk(P, q) in
the interval of the batch. In the second algorithm we improve the running time
by skipping the non-critical vertices. Specifically, in each iteration we find the
next batch of s adjacent critical vertices, and similarly as the first algorithm,
we construct a data structure for finding the windows, which requires a more
involved approach to be updated. We first state Lemma 4.1, which is implicitly
mentioned in [8] (see the second paragraph in the proof of Theorem 2.1)

Lemma 4.1. Given a read-only array A of size n and an element x ∈ A, there
is an algorithm that finds the s smallest elements in A, among those elements
which are larger than x, in O(n) time using O(s) additional words of workspace.

Proof. In the first step, insert the first 2s elements of A which are larger than
x into workspace memory (without sorting them). Select the median of the 2s
elements in memory in O(s) time and remove the elements which are larger than
the median. In the next step, insert the next batch of s elements of A which are
larger than x into memory and again find the median of the 2s elements in
memory and remove the elements which are larger than the median. Repeat the
latter step until all the elements of A are processed. Clearly, at the end of each

7

step, the s smallest elements of the ones which have been already processed, are
in memory. Since the number of batches or steps is O(n/s), the running time of
the algorithm is O(n) and it uses only O(s) word of workspace. ut

Lemma 4.2. Given a read-only array A of size n and a parameter k ∈ N, there
is an algorithm that finds the kth smallest element in A in O(dk/sen) time using
O(s) additional word of workspace.

Proof. In the first step, apply Lemma 4.1 to find the first batch of s smallest
elements in A and insert them into workspace memory in O(n) time. If k < s
select the kth smallest element in memory in O(s) time; otherwise, find the
largest element in memory, which plays the role of x in Lemma 4.1. In step i,
apply Lemma 4.1 to find the ith batch of s smallest elements in A and insert them
into memory. If k < i ·s select the (k− (i−1)s)th smallest element in memory in
O(s) time and stop; otherwise, find the largest element in memory and repeat.
The element being sought is in the dk/seth batch of s smallest elements of A;
therefore, we can find it in O(dk/sen) time using O(s) word of workspace. ut

In addition to our algorithm in Lemma 4.2 there are several other results
on the selection problem in the read-only model; see Table 1 of [9]. There are
O(n log logs n) expected time randomized algorithms for selection problem using
O(s) words of workspace in the read-only model [7, 19]. Depending on k, s and
n we choose one of the latter algorithms or the algorithm of Lemma 4.2. In con-
clusion, the running time of selection in the read-only model using O(s) words
of workspace, which is denoted by Tselection, is O(min{dk/sen, n log logs n}) ex-
pected time. Next we describe how to apply Lemmas 4.1 and 4.2.

4.1 Algo 1: processing all the vertices

First we find the critical vertex v0 with smallest angle. We apply Lemma 4.1 to
find the batch of s vertices with smallest angles after v0, and we sort them in
workspace memory in O(s log s) time. For qv0 we use the selection subroutine
(with O(s) word of workspace) to find e0(k + 1), and if v0 is a k-visible vertex
we report its window (if it exists).

Then, we apply Lemma 4.1 to find the two batches of 2s adjacent intersecting
edges to the right and to the left of e0(k+1) on qv0, we insert them in a balanced
search tree T . In other words, in T we store all e0(j), for k+1−2s ≤ j ≤ k+1+2s,
sorted according to their intersection with qv0. These edges are candidates for
the (k + 1)th intersecting edge of the next s rays in angular order or ei(k + 1),
for 1 ≤ i ≤ s. This is because, as we explained in Section 3, if ei(k + 1) belongs
to the edge list of qvi−1, there is at most one edge between ei−1(k + 1) and
ei(k+ 1) in the edge list. Therefore, ei(k+ 1) is either an in the edge list of qv0,
and in this case there are at most 2i−1 edges between e0(k+1) and ei(k+1), or
ei(k + 1) is an edge which is inserted in T later; see Figure 4. More specifically,
after creating T , we start from v1, the next vertex with smallest angle after v0,
and according to the type of v1, we update T : if v1 is a non-critical vertex we
change the incident edge to v1 which is already in T with the other incident edge

8

to v1; if v1 is an end (start) critical vertex, we remove (insert) the two edges
which are incident to v1. In all cases we update T only if the incident edges to
v1 are in the interval of the 2s intersecting edges of qv0 in T , this takes O(log s)
time. By updating T we can find e1(k + 1) and the window of qv1 (if it exists)
using the position of e0(k + 1) or its neighbours in T in O(1) time.

In the same procedure for 1 ≤ i ≤ s, using T and ei−1(k + 1), we determine
ei(k + 1) and the window of qvi, which take O(s log s) total time. Whenever we
find and report a window, we insert its endpoints into a balanced search tree
W in O(log s) time. In W the endpoints of windows are sorted according to the
indices of the edges of P on which they lie. For reporting the part of ∂Vk(P, q)
between qv0 and qvs, we use W (as a sorted array) and also E which is the set of
edges ei(k+ 1), 1 ≤ i ≤ s. We know that, if there is no endpoint of a window on
a segment, then the visibility of the segment is consistent on the entire segment.
Using this, we walk on ∂P and for each edge e of P , we check if its endpoints,
restricted to the interval of the batch, are k-visible or not (in O(1) time using E).
We also check if there is any endpoint of windows on e (in O(|we|) time, where
|we| is the number of windows’ endpoints on e). By having this information we
report the k-visible segments of e restricted to the interval of the batch. Since
the endpoints of windows are sorted according to their positions on ∂P , we do
not check any member of W more than one time. It follows that the procedure
of reporting the k-visible part of ∂P takes O(n) time in each batch.

q

v1
v2

. . .
vs

v0
e0(3)

e1(3)

v3
e3(3)

e2(3)

Fig. 4. The vertices v0, v1, . . . , vs are the first batch of s vertices in angular order. The
edge e1(3) is the second right neighbour of e0(3) because v1 is an end vertex. The edge
e2(3) is the second left neighbour of e1(3) which is inserted in T while processing v2.
The edge e3(3) is on the same chain as e2(3) because v3 is a non-critical vertex.

After processing the first batch of vertices, we apply Lemma 4.1 to find the
next batch of s vertices with smallest angle, and we sort them in memory in
O(s log s) time. The last updated T is not usable anymore, because it does not
necessarily contain any right or left neighbours of es(k+1). Applying Lemma 4.1
as before, we find the two batches of 2s adjacent intersecting edges to the right
and to the left of es(k+ 1) on qvs and we insert them into T . Then similarly for
each s < i ≤ 2s we find ei(k + 1) and its corresponding window and we update
T , W and E. Overall, finding a batch of s vertices, sorting and processing them,
reporting the windows and the k-visible part of ∂P in the batch, take O(n +

9

s log s) time. Moreover, we run the selection subroutine in the first batch. We
repeat this procedure for O(n/s) iterations, until all the vertices are processed.
Thus, the running time of the algorithm is O(n/s(n+ s log s)) + Tselection. Since
Tselection is dominated, Theorem 4.3 is follows:

Theorem 4.3. Given a simple polygon P with n vertices in a read-only array, a
point q ∈ P and a parameter k ∈ N, there is an algorithm which reports ∂Vk(P, q)
in O(n2/s+ n log s) time using O(s) words of workspace.

4.2 Algo 2: processing only critical vertices

In this algorithm we process critical vertices in contiguous batches of size s in
angular order. This algorithm works similarly as the algorithm in Section 4.1, but
it differs in constructing and updating the data structure for finding the windows.
In each iteration of this algorithm we find the next batch of s critical vertices
with smallest angles and sort them in workspace memory in O(s log s) time. As
in the previous algorithm, we construct a data structure T , which contains the
possible candidates for the (k + 1)th intersecting edges of the rays to critical
vertices of the batch. In each step, we process a critical vertex, and we use T
to find its corresponding window and we update T . For updating T efficiently,
we use another data structure, which is called Tθ; see below. After finding the
windows of the batch, we report the k-visible part of ∂P in the interval of the
batch. We repeat the same procedure for the next s critical vertices.

q

v1

. . .
vs

v0

v2

e0(4)
e0(1)

Fig. 5. The vertices v0, v1, . . . , vs are the first batch of s critical vertices in angular
order. The endpoint of the edge e0(1) is between qv1 and qv2, so e0(1) will be changed
in T after processing v1. The endpoint of e0(4) is between qv0 and qv1, so e0(4) will be
changed in T after processing v0.

In the first iteration, after computing v1, . . . , vs, the angular sorted critical
vertices after v0, we find the two batches of 2s adjacent intersecting edges to
the right and to the left of e0(k + 1) on qv0. We sort them and insert them in a
balanced search tree T , which takes O(n + s log s) time. Then for each edge in
T we determine the larger angle of its endpoints. This angle shows the position
of the endpoint between the rays from q to the critical vertices. Specifically, if
the edge is incident to a non-critical vertex, this angle determines the step in

10

which the edge in T should be updated to the other incident edge to the vertex;
see Figure 5. By traversing ∂P we determine these angles for the edges in T
and we insert them in a balanced search tree Tθ, whose entries are connected
through cross-pointers to their corresponding edges in T . We construct Tθ in
O(n+ s log s) time using O(s) words of workspace.

Now for finding the (k+ 1)th intersecting edge of qv1 we update T , so that it
contains the edge list of qv1: If there is any angle in Tθ which is smaller than the
angle of v1, we change the corresponding edge of the angle in T with its previous
or next edge in P . In other words, we have found a non-critical vertex between
qv0 and qv1, so we change its incident edge, which has been already in T , with
its other incident edge. Then we find the larger angle of the endpoints of the new
edge and insert it in Tθ. These two steps take O(1) and O(log s) time for each
angle that meets the condition. By doing these steps, changes in the edge list
which are caused by non-critical vertices between qv0 and qv1 are handled. Then
we update T and consequently Tθ according to the type of v1, with the same
procedure as in the previous algorithm: if v1 is an end (start) critical vertex,
we remove (insert) the two edges which are incident to v1, this can be done
in O(log s) time. Now T contains 2s intersecting edges of qv1, and we can find
e1(k+1) using the position of e0(k+1) and its neighbours in T in O(1) time. We
repeat this procedure for all critical vertices in this batch. In summary, updating
T considering the changes that are caused by critical and non-critical vertices
of the batch takes respectively O(s log s) and O(n′ log s) time, where n′ is the
number of non-critical vertices that lie on the interval of the batch.

While processing the batch, we insert all ei(k + 1), 1 ≤ i ≤ s into E. Also
whenever we find a window we report it and we insert its endpoints, sorted
according to the indices of the edges of P on which they lie, into a balanced
search tree W in O(log s) time. After processing all the vertices of the batch, we
use W (as a sorted array) and E to report the k-visible part of ∂P restricted to
the interval of the batch. We know that, if there is no endpoint of a window on
a chain, then the visibility of the chain is consistent on the entire chain. Using
this, we walk on ∂P and for each chain C, we check if its endpoints, restricted
to the interval of the batch, are k-visible or not (in O(1) time using E). We
also check whether there is any endpoint of windows on C (in O(|we|+ |C|) time
using W , where |we| is the number of windows’ endpoints on the chain). Then we
report the k-visible segments of C restricted to the interval of the batch. Since
the endpoints of windows are sorted according to their positions on ∂P , we do
not check any member of W more than one time. It follows that the procedure
of reporting the k-visible part of ∂P takes O(n) time in each batch.

In the next iteration, we repeat the same procedure for the next batch of
critical vertices until all critical vertices are processed. Since the batches do not
have any intersections, each non-critical vertex lies only on one batch. Thus,
updating T in all batches takes O(n log s) time. All together, finding the batches
of s sorted critical vertices, constructing and updating the data structures and
reporting ∂Vk(P, q) take O(cn/s+ n log s) total time, in addition to Tselection in
the first batch. This leads to the following theorem:

11

Theorem 4.4. Given a simple polygon P with n vertices in a read-only array, a
point q ∈ P and a parameter k ∈ N, there is an algorithm which reports ∂Vk(P, q)
in O(cn/s+ n log s+ min{dk/sen, n log logs n}) expected time using O(s) words
of workspace, where c is the number of critical vertices of P .

5 Variants and extensions

Our results can be extended in several ways; for example, computing the k-
visibility region of a point q inside a polygon P , when P may have some holes,
or computing the k-visibility region of a point q in presence of a set of non-
crossing segments inside a bounding box in the plane, (the bounding box is only
for bounding the k-visibility region). For the first problem, all the arguments
in the algorithms for simple polygons hold for polygon with holes. The only
remarkable issue is walking on ∂P to report the k-visible segments of ∂P . Here,
after walking on the outer part of ∂P , we walk on the boundary of the holes one
by one and we apply the same procedures for them. If there is no window on the
boundary of a hole, then it is completely k-visible or completely non-k-visible.
For such a hole, we check if it is k-visible and, if so, we report it completely. This
leads to the following corollary:

Corollary 5.1. Given a polygon P with h ≥ 0 holes and n vertices in a read-
only array, a point q ∈ P and a parameter k ∈ N, there is an algorithm which
reports ∂Vk(P, q) in O(cn/s+ n log s+ min{dk/sen, n log logs n}) expected time
using O(s) words of workspace. Here c is the number of critical vertices of P .

In the second problem for a set of n non-crossing segments inside a bounding
box in the plane, the output is the part of the segments which are k-visible. Here,
the endpoints of all segments are critical vertices and should be processed. In
the parts of the algorithm where a walk on the boundary is needed, reading the
input sequentially leads to similar results. Similarly, there may be some segments
with no windows’ endpoints on. For these we only need to check visibility of an
endpoint to decide whether they are completely k-visible or completely non-k-
visible. This leads to the following corollary:

Corollary 5.2. Given a set of n non-crossing segments S in a read-only array
which lie in a bounding box B, a point q ∈ B and a parameter k ∈ N, there is
an algorithm which reports Vk(S, q) in O(n2/s+ n log s) time using O(s) words
of workspace, where Vk(S, q) is the k-visible subsets of segments in S from q.

6 Conclusion

We have proposed algorithms for a class of k-visibility problems in the constrained-
memory model, which provide time-space trade-offs for these problems. We leave
it as an open question whether the presented algorithms are optimal. Also, it
would be interesting to see whether there exists an output sensitive algorithm
whose running time depends on the number of windows in the k-visibility region,
instead of the critical vertices in the input polygon.

12

References

1. Aichholzer, O., Fabila Monroy, R., Flores Peñaloza, D., Hackl, T., Huemer, C.,
Urrutia Galicia, J., Vogtenhuber, B.: Modem illumination of monotone polygons.
In: Proc. 25th EWCG. pp. 167–170 (2009)

2. Asano, T., Buchin, K., Buchin, M., Korman, M., Mulzer, W., Rote, G., Schulz, A.:
Memory-constrained algorithms for simple polygons. JoCG 46(8), 959–969 (2013)

3. Bajuelos, A.L., Canales, S., Hernández-Peñalver, G., Martins, A.M.: A hybrid
metaheuristic strategy for covering with wireless devices. J. UCS 18(14), 1906–
1932 (2012)

4. Ballinger, B., Benbernou, N., Bose, P., Damian, M., Demaine, E.D., Dujmović,
V., Flatland, R., Hurtado, F., Iacono, J., Lubiw, A., et al.: Coverage with k-
transmitters in the presence of obstacles. In: Proc. 4th COCOA, pp. 1–15. Springer
(2010)

5. Barba, L., Korman, M., Langerman, S., Sadakane, K., Silveira, R.I.: Space-time
trade-offs for stack-based algorithms. Algorithmica 72(4), 1097–1129 (2015)

6. Barba, L., Korman, M., Langerman, S., Silveira, R.I.: Computing a visibility poly-
gon using few variables. JoCG 47(9), 918–926 (2014)

7. Chan, T.M.: Comparison-based time-space lower bounds for selection. TALG 6(2),
26 (2010)

8. Chan, T.M., Chen, E.Y.: Multi-pass geometric algorithms. DCG 37(1), 79–102
(2007)

9. Chan, T.M., Munro, J.I., Raman, V.: Selection and sorting in the restore model.
In: Proc. 25th SODA. pp. 995–1004. SIAM (2014)

10. Dean, A.M., Evans, W., Gethner, E., Laison, J.D., Safari, M.A., Trotter, W.T.:
Bar k-visibility graphs: Bounds on the number of edges, chromatic number, and
thickness. In: Proc. 13th GD. pp. 73–82. Springer (2005)

11. Dean, J.A., Lingas, A., Sack, J.R.: Recognizing polygons, or how to spy. The Visual
Computer 3(6), 344–355 (1988)

12. Eppstein, D., Goodrich, M.T., Sitchinava, N.: Guard placement for efficient point-
in-polygon proofs. In: Proc. 23rd SoCG. pp. 27–36. ACM (2007)

13. Fabila-Monroy, R., Vargas, A.R., Urrutia, J.: On modem illumination problems.
In: Proc. 13th EGC (2009)

14. Felsner, S., Massow, M.: Parameters of bar k-visibility graphs. JGAA 12(1), 5–27
(2008)

15. Fulek, R., Holmsen, A.F., Pach, J.: Intersecting convex sets by rays. DCG 42(3),
343–358 (2009)

16. Ghosh, S.K.: Visibility algorithms in the plane. Cambridge University Press (2007)
17. Hartke, S.G., Vandenbussche, J., Wenger, P.: Further results on bar k-visibility

graphs. SIAM J. on Discrete Mathematics 21(2), 523–531 (2007)
18. Joe, B., Simpson, R.B.: Corrections to Lee’s visibility polygon algorithm. BIT

Numerical Mathematics 27(4), 458–473 (1987)
19. Munro, J.I., Raman, V.: Selection from read-only memory and sorting with mini-

mum data movement. TCS 165(2), 311–323 (1996)
20. O’Rourke, J.: Computational geometry column 52. ACM SIGACT News 43(1),

82–85 (2012)

