
Minimum Ply Covering of Points with Unit
Squares?

Stephane Durocher1, J. Mark Keil2, and Debajyoti
Mondal2[0000−0002−7370−8697]

1 University of Manitoba, Winnipeg, Canada
stephane.durocher@umanitoba.ca

2 University of Saskatchewan, Saskatoon, Canada
{keil,dmondal}@cs.usask.ca

Abstract. Given a set P of points and a set U of axis-parallel unit
squares in the Euclidean plane, a minimum ply cover of P with U is a
subset of U that covers P and minimizes the number of squares that
share a common intersection, called the minimum ply cover number of
P with U . Biedl et al. [Comput. Geom., 94:101712, 2020] showed that
determining the minimum ply cover number for a set of points by a
set of axis-parallel unit squares is NP-hard, and gave a polynomial-
time 2-approximation algorithm for instances in which the minimum
ply cover number is constant. The question of whether there exists a
polynomial-time approximation algorithm remained open when the min-
imum ply cover number is ω(1). We settle this open question and present
a polynomial-time (8+ε)-approximation algorithm for the general prob-
lem, for every fixed ε > 0.

1 Introduction

The ply of a set S, denoted ply(S), is the maximum cardinality of any subset
of S that has a non-empty common intersection. The set S covers the set P if
P ⊆

⋃
Si∈S Si. Given sets P and U , a subset S ⊆ U is a minimum ply cover of

P if S covers P and S minimizes ply(S) over all subsets of U . Formally:

plycover(P,U) = arg min
S⊆U

S covers P

ply(S). (1)

The ply of such a set S is called the minimum ply cover number of P with
U , denoted ply∗(P,U). Motivated by applications in covering problems, includ-
ing interference minimization in wireless networks, Biedl et al. [3] introduced
the minimum ply cover problem: given sets P and U , find a subset S ⊆ U that
minimizes (1). They showed that the problem is NP-hard to solve exactly, and
remains NP-hard to approximate by a ratio less than two when P is a set of
points in R2 and U is a set of axis-aligned unit squares or a set of unit disks in

? This work is supported in part by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

2 S. Durocher and J. M. Keil and D. Mondal

(a) (b) (c)

Fig. 1. (a) An input consisting of points and unit squares. (b) A covering of the points
with ply 1, which is also the minimum ply cover number for the given input. (c) A
covering of the points with ply 2.

R2. They also provided 2-approximation algorithms parameterized in terms of
ply∗(P,U) for unit disks and unit squares in R2. Their algorithm for axis-parallel
unit squares runs in O((k+ |P |)(2 · |U |)3k+1) time, where k = ply∗(P,U), which
is polynomial when ply∗(P,U) ∈ O(1). Biniaz and Lin [4] generalized this result
for any fixed-size convex shape and obtained a 2-approximation algorithm when
ply∗(P,U) ∈ O(1). The problem of finding a polynomial-time approximation
algorithm to the minimum ply cover problem remained open when the mini-
mum ply cover number, ply∗(P,U), is not bounded by any constant. This open
problem is relevant to the motivating application of interference minimization.
For example, algorithms for constructing a connected network on a given set of
wireless nodes sometimes produce a network with high interference [8]. Selecting
a set of network hubs that minimizes interference relates to the ply covering
problem in a setting where ply may not be a constant.

Given a set P and a set U of subsets of P , the minimum membership set
cover problem, introduced by Kuhn et al. [12], seeks to find a subset S ⊆ U that
covers P while minimizing the maximum number of elements of S that contain a
common point of P . A rich body of research examines the minimum membership
set cover problem (e.g., [6,13]). The minimum ply cover problem is a general-
ization of the minimum membership set cover problem: U is not restricted to
subsets of P , and ply is measured at any point covered by U instead of being re-
stricted to points in P . Consequently, the cardinality of a minimum membership
set cover is at most the cardinality of a minimum ply cover. Erlebach and van
Leeuwen [9] showed that the minimum membership set cover problem remains
NP-hard when P is a set of points in R2 and U are unit squares or unit disks.
For unit squares, they gave a 5-approximation algorithm for instances where the
optimum objective value is bounded by a constant. Improved approximation al-
gorithms are found in [2] and [10]. We refer the readers to [1,5] for more details
on geometric set cover problems.

Our contribution: In this paper we consider the minimum ply cover prob-
lem for a set P of points in R2 with a set U of axis-aligned unit squares in R2.
We show that for every fixed ε > 0, the minimum ply cover number can be
approximated in polynomial time for unit squares within a factor of (8 +ε). The

Minimum Ply Covering of Points with Unit Squares 3

algorithm is for the general case, i.e., no assumption on the ply cover of the input
instance is needed. Hence, this settles an open question posed in [3] and [4].

Our algorithm overlays a regular grid on the plane and then approximates
the ply cover number from the near exact solutions for these grid cells. The most
interesting part of the algorithm is to model the idea of bounding the ply cover
number with a set of budget points, and to exploit this set’s geometric properties
to enable dynamic programming to be applied. We show that one can set budget
at the corners of a grid cell and check for a solution where the number of squares
hit by a corner does not exceed its assigned budget. A major challenge to solve
this decision problem is that the squares that hit the four corners may mutually
intersect to create a ply that is bigger than any budget set at the corners. We
show that an optimal solution can take a few well-behaved forms that can be
leveraged to tackle this problem.

2 Minimum Ply Covering with Unit Squares

Let P be a finite set of points in R2 and let U be a set of axis-parallel unit
squares in general position in R2, i.e., no two squares in U have edges that lie on
a common vertical or horizontal line. In this section we give a polynomial-time
algorithm to approximate the minimum ply cover number for P with U .

We consider a unit grid G over the point set P . The rows and columns of
the grid are aligned with the x- and y-axes, respectively, and each cell of the
grid is a unit square. We choose a grid that is in general position relative to the
squares in U . In addition, no grid line intersects the points of P . A grid cell is
called non-empty if it contains some points of P . We prove that one can first
find a near exact ply cover for each non-empty grid cell R and then combine
the solutions to obtain an approximate solution for P . We only focus on the ply
inside R, because if the ply of a minimum ply cover is realized outside R, then
there also exists a point inside R giving the same ply number.

We first show how to find a near exact ply cover when the points are bounded
inside a unit square and then show how an approximate ply cover number can
be computed for P . We will use the following property of a minimum ply cover.
We include the proof in the full version [7] due to space constraint.

Lemma 1. Let P be a set of points in a unit square R and let U be a set of
axis-parallel unit squares such that each square contains either the top left or top
right corner of R. Let W` ⊆ U and Wr ⊆ U be the squares that contain the top
left and top right corners of R, respectively. Let S ⊆ U be a minimum ply cover
of the points in R such that every square in S is necessary. In other words, if a
square of S is removed, then the resulting set cannot cover all the points of R.
Then S admits the property that one can remove at most one square from S to
ensure that squares of S ∩W` do not intersect squares in S ∩Wr (e.g., Fig. 2).

Ply Cover for Points in a Grid Cell.

Let R be a 1 × 1 closed grid cell. Let Q ⊆ P be the set of points in R, and let
W ⊆ U be the set of squares that intersect R. Note that by the construction of

4 S. Durocher and J. M. Keil and D. Mondal

(a) (b)

L L

Fig. 2. (a)–(b) Illustration for the configuration of Lemma 1, where (S ∩ W`) and
(S ∩Wr) are shown in blue and red, respectively. R is shown in dotted line.

Fig. 3. Illustration for Case 1. The squares taken in the solution are shaded in gray. R
is shown in dotted line.

the grid G, every square in W contains exactly one corner of R. We distinguish
some cases depending on the position of the squares in W . In each case we show
how to compute either a minimum ply cover or a ply cover with ply at most four
more than the minimum ply cover number in polynomial time.

Case 1 (A corner of R intersects all squares in W) In this case we compute
a minimum ply cover. Without loss of generality assume that the top right corner
of R intersects all the squares in W . We now can construct a minimum ply cover
by the following greedy algorithm G.
Step 1: Let z be the leftmost (break ties arbitrarily) uncovered point of Q. Find
the square B ∈ W with the lowest bottom boundary among the squares that
contain z.
Step 2: Add B to the solution, remove the points covered by B.
Step 3: Repeat Steps 1 and 2 unless all the points are covered.

Fig. 3 illustrates such an example for Case 1. It is straightforward to compute
such a solution in O((|W |+ |Q|) log2(|W |+ |Q|)) time using standard dynamic
data structures, i.e, the point z can be maintained using a range tree and the
square B can be maintained by leveraging dynamic segment trees [11].

Lemma 2. Algorithm G computes a minimum ply cover.

Proof. To verify the correctness of the greedy algorithm, first observe that in
this case the number of squares in a minimum cardinality cover coincides with a
minimum ply cover. We now show that the above greedy algorithm constructs a
minimum cardinality cover. We employ an induction on the number of squares
in a minimum cardinality cover. Let W1,W2, . . . ,Wk be a set of squares in a

Minimum Ply Covering of Points with Unit Squares 5

minimum cardinality cover. First consider the base case where k = 1. Since W1

covers all the points, it also covers z. Since z is the leftmost point and since our
choice of square B has the lowest bottom boundary, B must cover all the points.
Assume now that if a minimum cardinality cover contains less than k squares,
then the greedy algorithm constructs a minimum cardinality cover. Consider
now the case when we have k squares in a minimum cardinality cover. For any
minimum cardinality cover, if z is covered by a square W1, then we can replace
it with the greedy choice B. The reason is that any point covered by W1 would
also be covered by B. By induction hypothesis, we have a minimum cardinality
cover for the points that are not covered by B. Hence the greedy solution must
give a minimum cardinality cover. ut

Case 2 (Two consecutive corners of R intersect all the squares in W)
In this case we compute a minimum ply cover. Without loss of generality assume
that the top left and top right corners of R intersect all the squares in W . Let
W` and Wr be the squares of W that intersect the top left corner and top right
corner, respectively. We construct a minimum ply cover by considering whether
a square of W` intersects a square of Wr.

If the squares of W` do not intersect the squares of Wr, then we can reduce
it into two subproblems of type Case 1. We solve them independently and it
is straightforward to observe that the resulting solution yields a minimum ply
cover. Similar to Case 1, here we need O((|W | + |Q|) log2(|W | + |Q|)) time.
Consider now the case when some squares in W` intersect some squares of Wr.
By Lemma 1, there exists a minimum ply cover S such that at least one of the
following two properties hold:

C1 There exists a vertical line L that passes through the left or right side of
some square and separates S ∩W` and S ∩Wr, as illustrated in Fig. 2(a).

C2 There exists a square M in S such that after the removal of M from S, one
can find a vertical line L that passes through the left or right side of some
square and separates (S \{M})∩W` and (S \{M})∩Wr. This is illustrated
in Fig. 2(b), where the square M is shown with the falling pattern.

To find a minimum ply cover, we thus try out all possible L (for C1), and all
possible M and L (for C2). More specifically, to consider C1, for each vertical line
L passing through the left or right side of some square in W , we independently
find a minimum ply cover for the points and squares on the left halfplane of L
and right halfplane of L. We then construct a ply cover of Q by taking the union
of these two minimum ply covers.

To consider C2, for each square M , we first delete M and the points it
covers. Then for each vertical line L determined by the squares in (W \ {M}),
we independently find a minimum ply cover for the points and squares on the
left halfplane of L and right halfplane of L. We then construct a ply cover of Q
by taking the union of these two minimum ply covers and M . Finally, among all
the ply covers constructed considering C1 and C2, we choose the ply cover with
the minimum ply as the minimum ply cover of Q.

6 S. Durocher and J. M. Keil and D. Mondal

(a) (b) (c)

c4

c2

c3 c4

c2

c3

c1

c4

c2

c3

c1c1

Fig. 4. Illustration for the scenarios that may occur after applying Lemma 1: (a)–(b)
Diagonal, and (c) Disjoint. R is shown in dotted line.

Since there are O(|W |) possible choices for L and O(|W |) possible choices
for M , the number of ply covers that we construct is O(|W |2). Each of these ply
covers consists of two independent solutions that can be computed in O((|W |+
|Q|) log2(|W |+|Q|)) time using the strategy of Case 1. Hence the overall running
time is O((|W |3 + |W |2|Q|) log2(|W |+ |Q|)).
Case 3 (Either two opposite corners or at least three corners of R
intersect the squares in W) Let S be a minimum ply cover of Q such that
all the squares in S are necessary (i.e., removing a square from S will fail to
cover Q). Let c1, c2, c3, c4 be the top-left, top-right, bottom-right and bottom-
left corners of R, respectively. Let Wi, where 1 ≤ i ≤ 4, be the squares of W
that contain ci. Similarly, let Si be the subset of squares in S that contain ci.

By Lemma 1, one can remove at most four squares from S such that the
squares of Si do not intersect the squares of S(i mod 4)+1. We assume these squares
to be in the solution and hence also remove the points they cover. Consequently,
we now have only the following possible scenarios after the deletion.

Diagonal: The squares of Si do not intersect the squares of S(i mod 4)+1. The
squares of S1 may intersect the squares of S3, but the squares of S2 do not
intersect the squares of S4 (or, vice versa). See Fig. 4(a) and (b).

Disjoint: If two squares intersect, then they belong to the same set, e.g., Fig. 4(c).

We will compute a minimum ply cover in both scenarios. However, consider-
ing the squares we deleted, the ply of the final ply cover we compute may be at
most four more than the minimum ply cover number.

Case 3.1 (Scenario Diagonal) We now consider the scenario Diagonal. Our
idea is to perform a search on the objective function to determine the minimum
ply cover number. Let k be a guess for the minimum ply cover number. If k ≤ 4,
we will show how to leverage Case 1 to verify whether the guess is correct. If
k > 4, then one can observe that the ply is determined by a corner of R, as
follows. Let H be the common rectangular region of k mutually intersecting
squares in the solution. If H does not contain any corner of R, then it lies

Minimum Ply Covering of Points with Unit Squares 7

interior to R. Since H is a rectangular region, we could keep only the squares
that determine the boundaries of H to obtain the same point covering with
at most 4 squares. Therefore, for k > 4, the region determining the ply cover
number must include a corner of R. We will use a dynamic program to determine
such a ply cover (if exists).

In general, by T (r, k1, k2, k3, k4) we denote the problem of finding a min-
imum ply cover for the points in a rectangle r such that the ply is at most
max{k1, k2, k3, k4}, and each corner ci respects its budget ki, i.e., ci does not
intersect more than ki squares. We will show that r can always be expressed as a
region bounded by at most four squares in W and T returns a feasible ply cover
if it exists. To express the original problem, we add four dummy squares in W
determined by the four sides of R such that they lie outside of R. Thus r = R is
the region bounded by the four dummy squares.

We are now ready to describe the details. Without loss of generality assume
that a square A ∈ S4 intersects a square B ∈ S2, as shown in Fig. 5(a). We
assume A and B to be in a minimum ply cover of R and try out all such pairs.
We first consider the case when k ≤ 4 and the minimum ply cover already
contains A and B. We enumerate all O(|W |4) possible options for k ≤ 4, S2,
and S4 with ply(S2 ∪ S4) ≤ k and for each option, we use Case 1 to determine
whether ply(W1) and ply(W3) are both upper bounded by k. We thus compute
the solution to T (r, k1, k2, k3, k4) and store them in a table D(r, k1, k2, k3, k4),
which takes O((|W |5 + |W |4|Q|) log2(|W |+ |Q|)) time.

We now show how to decompose T (r, k1, k2, k3, k4) into two subproblems
assuming that the minimum ply cover already contains A and B. We will use
the table D as a subroutine.

The first subproblem consists of the points that lie above A and to the left of
B, e.g., Fig. 5(a) and (b). We refer to this set of points by Q1. The corresponding
region r′ is bounded by four squares: A, B, and the two (dummy) squares from
r. We now describe the squares that need to be considered to cover these points.

– Note that for Diagonal, no square in S1 intersects A or B, hence we can
only focus on the squares of W1 that do not intersect A or B.

– The squares of W2 that do not intersect Q1 are removed. The squares of
W2 that contains the bottom left corner of B are removed because including
them will make B an unnecessary square in the cover to be constructed.

– Similarly, the squares of W4 that do not intersect Q1 or contains the top
right corner of A are removed.

– No square in W3 needs to be considered since to cover a point of Q1 it must
intersect A or B, which is not allowed in Diagonal.

The second subproblem consists of the points that lie below B and to the
right of A, e.g., Fig. 5(a) and (c). The corresponding region r′′ is bounded by
four squares: A, B, and the two squares from r. We denote these points by Q2.
The squares to be considered can be described symmetrically.

Let W ′ and W ′′ be the set of squares considered to cover Q1 and Q2, respec-
tively. By the construction of the two subproblems, we have Q1 ∩ Q2 = ∅ and
W ′ ∩W ′′ = ∅.

8 S. Durocher and J. M. Keil and D. Mondal

c4

c2

c3

c1 k′2

k′3

k′1

k′4

k′′2

k′′3

k′′1

k′′4

(b) (c)(a)

B

A

c4 c3

c1

c4

c2

c3

c1

A

B

(d)

c2

(f)

c4 c3

c1 c2

(e)

A

B

Fig. 5. Illustration for the dynamic program. (a)–(c) Decomposition into subproblems.
(d)–(f) Illustration for the (k + 1) mutually intersecting squares. The dashed squares
can be safely discarded. R is shown in dotted line.

For each corner ci, we use k′i and k′′i to denote the budgets allocated for ci
in the first and the second subproblems, respectively. Since we need to ensure
that the ply of the problem T is at most k = max{k1, k2, k3, k4} and each corner
ci respects its budget ki, we need to carefully distribute the budget among the
subproblems when constructing the recurrence formula. Furthermore, let S′2 and
S′4 be the sets of squares corresponding to c2 and c4 that are returned as the
solution to the first subproblem. Similarly, define S′′2 and S′′4 for the second
subproblem. We now have the following recurrence formula.

T (r,k1,
k2,k3,k4)

= min
{A∈W4,B∈W2:A∩B 6=∅}
k′1=k

′′
1 =k1,k

′
3=k

′′
3 =k3,

k′2+k
′′
2 =k2−1,

k′4+k
′′
4 =k4−1

T (r′,k′1,k
′
2,k
′
3,k
′
4)∪

T (r′′,k′′1 ,k
′′
2 ,k
′′
3 ,k
′′
4)∪{A,B} , if δ ≤ k

T (r′,k′1,k
′
2,k
′
3,k
′
4)∪

T (r′′,k′′1 ,k
′′
2 ,k
′′
3 ,k
′′
4)∪β , if δ > k and k ≥ 4

D(r,k1,k2,k3,k4) , if δ > k and k ≤ 3

Here δ is the ply of (S′2 ∪ S′4 ∪ S′′2 ∪ S′′4 ∪A∪B) and β is the set of squares that
remain after discarding unnecessary squares from (S′2 ∪ S′4 ∪ S′′2 ∪ S′′4 ∪ A ∪ B),
i.e., removal of these squares would still ensure that all points are covered by

Minimum Ply Covering of Points with Unit Squares 9

the remaining squares. Since S1 and S4 are disjoint, one can also set k′3 = 0 in
T (r′, k′1, k

′
2, k
′
3, k
′
4) and k′′1 = 0 in T (r′′, k′′1 , k

′′
2 , k
′′
3 , k
′′
4).

If δ ≤ k, then the union of {A,B} and the squares obtained from the two
subproblems must have a ply of at most k for the following two reasons. First,
the squares of S1 = S′1 ∪ S′′1 (similarly, S3) cannot intersect the squares of
S2 ∪ S4 = S′2 ∪ S′′2 ∪ S′4 ∪ S′′4 . Second, by the budget distribution, the ply of S1

can be at most k1 ≤ k and the ply of S3 can be at most k3 ≤ k.

If δ > k and k ≤ 4, then each of S1, S2, S3, S4 can have at most three
rectangles. We can look it up using the table D(r, k1, k2, k3, k4).

If δ > k > 4, then we can have k + 1 mutually intersecting squares in
(S′2 ∪ S′4 ∪ S′′2 ∪ S′′4 ∪ A ∪ B) and in the following we show how to construct
a solution with ply cover at most k respecting the budgets, or to determine
whether no such solution exists.

If T (r′, k′1, k
′
2, k
′
3, k
′
4) and T (r′′, k′′1 , k

′′
2 , k
′′
3 , k
′′
4) each returns a feasible solution,

then we know that (k + 1) mutually intersecting squares can neither appear in
S′2∪S′4 nor in S′′2 ∪S′′4 . Therefore, these k+1 mutually intersecting squares must
include either both A and B, or at least one of A and B. We now consider the
following options.

Option 1: S4 and S2 each contains at least two squares that belong to the set
of k + 1 mutually intersecting squares. Since the region created by the k + 1
mutually intersecting squares is a rectangle, as illustrated in Fig. 5(f), we can
keep only the squares that determine the boundaries of this rectangle to obtain
the same point covering.

After discarding the unnecessary squares, we only have β squares where |β| =
4 < k. Thus the ply of the union of S1∪S3 and the remaining β squares is at most
k. Hence we can obtain an affirmative solution by taking T (r′, k′1, k

′
2, k
′
3, k
′
4)∪

T (r′′, k′′1 , k
′′
2 , k
′′
3 , k
′′
4) ∪ β.

Option 2: S4 only contains A and A intersects all k squares of S′2∪S′′2 ∪B. Since
the k + 1 mutually intersecting region is a rectangle, as illustrated in Fig. 5(d),
we can keep only the squares that determine the boundaries of this rectangle
to obtain the same point covering. After discarding the unnecessary squares, we
only have β squares where |β| = 3 < k. Hence we can handle this case in the
same way as in Option 1.

Option 3: S2 only contains B and B intersects all k squares of S′4 ∪ S′′4 ∪ A.
This case is symmetric to Option 2.

In the base case of the recursion, we either covered all the points, or we obtain
a set of problems of type Case 1 or of Scenario Disjoint (Case 3.1.2). The
potential base cases corresponding to Case 1 are formed by guessing O(|W |2)
pairs of intersecting squares from opposite corners, as illustrated in Fig. 6(a). The
potential O(|W |4) base cases corresponding to Scenario Disjoint are formed by
two pairs of intersecting squares from opposite corners, as illustrated in Fig. 6(b).

The precomputation of the base cases takes O(|W |4f(|W |, |Q|)) time, where
f(|W |, |Q|) is the time to solve a problem of type Case 1 and of Scenario Dis-
joint. We will discuss the details of f(|W |, |Q|) in the proof of Theorem 1.

10 S. Durocher and J. M. Keil and D. Mondal

(a) (b)

A

A

A′

B

B′

B

Fig. 6. Illustration for the base cases, where the region corresponding to the base
cases are shown in gray. (a) The base case corresponds to Case 1, where we ignore the
squares that intersect the chosen squares A and B. (b) An example of the base case
that corresponds to scenario Disjoint, where we need to construct a solution such that
no two squares from opposite corners intersect. We ignore all the squares of W1 or W3

that intersect the chosen squares A and B, or A′ and B′, as well as those that makes
any of them unnecessary. R is shown in dotted line.

Since r is determined by at most four squares (e.g., Fig. 6), and since there
are four budgets, the solution to the subproblems can be stored in a dynamic
programming table of size O(|W |4k4). Computing each entry requires examining
O(|W |2) pairs of squares. Thus the overall running time becomes O(|W |6k4 +
|W |4f(|W |, |Q|)).
Case 3.2 (Scenario Disjoint) In this case, we can find a sequence of empty
rectangles σ = (e1, e2, . . .) from top to bottom such that they do not intersect
any square of S, as illustrated in Fig. 7(a)–(b). The idea is again to exploit a
dynamic programming with a budget given for each corner of R. A subproblem
is expressed by a region determined by at most two squares — one intersecting
the left side and the other intersecting the right side of R. In Fig. 7(c), this
region is shown in gray. The overall running time for this case is O(|W |4k4 +
|W |4 log |Q|+ |Q| log |Q|). See the full version [7] for more details.

The following theorem combines all cases and its proof is in full version [7].

Theorem 1. Given a set Q of points inside a unit square R and a set W of axis-
parallel unit squares, a ply cover of size 4+k∗ can be computed in O((|W |8(k∗)4+
|W |8 log |Q|+|W |4|Q| log |Q|) log k∗) time, where k∗= ply∗(Q,W)≤min{|Q|, |W |}.

Covering a General Point Set.

Given a set P of points and a set U of axis-parallel unit squares, both in R2,
we now give a polynomial-time algorithm that returns a ply cover of P with U
whose ply is at most (8 + ε) times the minimum ply cover number of P with U .
Recall that our algorithm partitions P along a unit grid and applies Theorem 1
iteratively at each grid cell to select a subset of U that is a near minimum ply
cover for the grid cell. Elements of U selected to cover points of P in a given grid
cell overlap neighbouring grid cells, which can cause the ply to increase in those

Minimum Ply Covering of Points with Unit Squares 11

(a) (b) (c)

e1
e2

A1
B1

B1

B2

A1 = A2

Fig. 7. Illustration for the dynamic program. R is shown in dotted line.

neighbouring cells; Lemma 3 allows us to prove Theorem 2 and Corollary 1,
showing that the resulting ply is at most (8 + ε) times the optimal value.

Partition P using a unit grid, i.e., each cell in the partition contains P ∩ [i, i+
i) × [j, j + 1), for some i, j ∈ Z. Each grid cell has eight grid cells adjacent to
it. Let C1, . . . , C4 denote the four grid cells in counter-clockwise order that are
its diagonal neighbours. We now have the following lemma with the proof in the
full version [7].

Lemma 3. If any point p in a grid cell C is contained in four squares, {S1, . . . ,
S4} ⊆ U , such that for each i ∈ {1, . . . , 4}, Si intersects the cell Ci that is C’s
diagonal grid neighbour, then C ⊆ S1 ∪ S2 ∪ S3 ∪ S4.

We now partition P along a unit grid and apply Theorem 1 iteratively to find
a near minimum ply cover for each grid cell. For each cell that contains a point
p of P , we leverage Lemma 3 to show that at most 8 grid cells can contribute
to the ply of p. We thus obtain the following theorem with the proof in the full
version [7].

Theorem 2. Given a set P of points and a set U of axis-parallel unit squares,
both in R2, a ply cover of P using U can be computed in O((|U |8(k∗)4+|U |8 log |P |
+|U |4|P | log |P |) log k∗) time whose ply is at most 8k∗+32, where k∗ = ply∗(P,U)
≤ min{|P |, |U |} denotes the minimum ply cover number of P by U .

Corollary 1. Given a set P of points and a set U of axis-parallel unit squares,
both in R2, a ply cover of P using U can be computed in polynomial time whose
ply is at most (8 + ε) times the minimum ply cover number k∗ = ply∗(P,U), for
every fixed ε > 0.

Proof. We use Theorem 2 to find a ply cover with ply at most 8k∗+32, and then
consider the following two cases. Case 1. Suppose εk∗ ≥ 32. Then 8k∗ + 32 ≤
(8 + ε)k∗. Case 2. Suppose εk∗ < 32. We apply the 2-approximation algorithm
of Biedl et al. [3] in O(|P | · |U |)3k∗+1) time, which is polynomial since k∗ ∈ O(1).

ut

12 S. Durocher and J. M. Keil and D. Mondal

3 Conclusion

We gave a (8+ε)-approximation polynomial-time algorithm for the minimum ply
cover problem with axis-parallel unit squares. Through careful case analysis, it
may be possible to further improve the running time of our approximation algo-
rithm presented in Theorem 2. A natural direction for future research would be
to reduce the approximation factor or to apply a different algorithmic technique
with lower running time. It would also be interesting to examine whether our
strategy can be generalized to find polynomial-time approximation algorithms
for other covering shapes, such as unit disks or convex shapes of fixed size.

References

1. Agarwal, P.K., Ezra, E., Fox, K.: Geometric optimization revisited. In: Steffen, B.,
Woeginger, G.J. (eds.) Computing and Software Science - State of the Art and
Perspectives, LNCS, vol. 10000, pp. 66–84. Springer (2019)

2. Basappa, M., Das, G.K.: Discrete unit square cover problem. Discret. Math. Algo-
rithms Appl. 10(6), 1850072:1–1850072:18 (2018)

3. Biedl, T.C., Biniaz, A., Lubiw, A.: Minimum ply covering of points with disks and
squares. Comput. Geom. 94, 101712 (2021)

4. Biniaz, A., Lin, Z.: Minimum ply covering of points with convex shapes. In: Proc.
32nd Canadian Conference on Computational Geometry (CCCG). pp. 2–5 (2020)

5. Chan, T.M., He, Q.: Faster approximation algorithms for geometric set cover. In:
Cabello, S., Chen, D.Z. (eds.) Proc. of the 36th International Symposium on Com-
putational Geometry (SoCG). LIPIcs, vol. 164, pp. 27:1–27:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2020)

6. Demaine, E.D., Feige, U., Hajiaghayi, M., Salavatipour, M.R.: Combination can be
hard: Approximability of the unique coverage problem. SIAM J. Comput. 38(4),
1464–1483 (2008)

7. Durocher, S., Keil, J.M., Mondal, D.: Minimum ply covering of points with unit
squares. CoRR abs/2208.06122 (2022)

8. Durocher, S., Mehrpour, S.: Interference minimization in k-connected wireless net-
works. In: Proceedings of the 29th Canadian Conference on Computational Geom-
etry (CCCG). pp. 113–119 (2017)

9. Erlebach, T., van Leeuwen, E.J.: Approximating geometric coverage problems. In:
Teng, S. (ed.) Proc. 19th ACM-SIAM Symposium on Discrete Algorithms (SODA).
pp. 1267–1276. SIAM (2008)

10. Erlebach, T., van Leeuwen, E.J.: PTAS for weighted set cover on unit squares.
In: Serna, M.J., Shaltiel, R., Jansen, K., Rolim, J.D.P. (eds.) Proc. of the 13th
International Workshop on Approximation, Randomization, and Combinatorial
Optimization (APPROX). LNCS, vol. 6302, pp. 166–177. Springer (2010)

11. van Kreveld, M.J., Overmars, M.H.: Union-copy structures and dynamic segment
trees. J. ACM 40(3), 635–652 (1993)

12. Kuhn, F., Rickenbach, P., Wattenhofer, R., Welzl, E., Zollinger, A.: Interference in
cellular networks: The minimum membership set cover problem. In: Proc. of the
11th Conference on Computing and Combinatorics (COCOON). LNSC, vol. 3595,
pp. 188–198. Springer-Verlag (2005)

13. Misra, N., Moser, H., Raman, V., Saurabh, S., Sikdar, S.: The parameterized com-
plexity of unique coverage and its variants. Algorithmica 65(3), 517–544 (2013)

	Minimum Ply Covering of Points with Unit Squares

