Voronoi Diagrams — Computational Geometry's Favorite
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Introduction

Computational Geometry is the name of a young and
dynamic branch of computer science. It is dedicated
to the algorithmic study of elementary geometric ques-
tions, arising in numerous practically oriented areas
like computer graphics, computer-aided design, pat-
tern recognition, robotics, and operations research, to
name a few. Computational geometry has attracted
enormous research interest in the past two decades and
is an established area nowadays. It is also one of the
main research areas at our institute. The computa-
tional geometry group at IGI is well recognized in the
international competition in that field.

”Imagine a large modern-style city which is
equipped with a public transportation net-
work like a subway or a bus system. Time
is money and people intend to follow the
quickest route from their homes to their de-
sired destinations, using the network when-
ever appropriate. For some people several
facilities of the same kind are equally at-
tractive (think of post offices or hospitals),
and their wish is to find out which facility
is reachable first. There is also commercial
interest (from real estate agents, or from a
tourist office) to make visible the area which
can be reached in, say one hour, from a given
location in the city (the apartment for sale,
or the recommended hotel). Neuralgic places
lying within this 1-hour zone, like the main
square, train stations, shopping centers, or
tourist attraction sites should be displayed to
the customer.”

From: Quickest Paths, Straight Skeletons,
and the City Voronoi Diagram [2].

that quickest routes are inherently complex: once hav-
ing accessed the transportation network, it may be too
slow to simply follow it to an exit point close to the de-
sired destination; taking intermediate shortcuts by foot
walking may be advantageous at several places. Still,
when interpreting travel duration as a kind of distance,
a metric is obtained. Distance problems, as problems
of this kind are called, constitute an important class in
computational geometry.

In this context, there is one geometric structure
which is maybe most famous in computational geo-
metry: Voronoi diagrams. Intuitively speaking, a
Voronoi diagram divides the available space among a
number of given locations (called sites), according to
the nearest-neighbor rule: each site p gets assigned
the region (of the plane, say) which is closest to p.
A honeycomb-like structure is obtained; see Figure 1.

Figure 1: Voronoi regions — aesthetically pleasing ...

Christened after the Russian mathematician George
Voronoi — believed to be the first to formally introduce
it — this diagram has been reinvented and used in the

The complexity (and appeal) hidden in this motivating past century in various different sciences. Area-specific
every-day situation becomes apparent when noticing names like Wigner-Seitz zones (chemics, physics), do-



mains of action (cristallography), Thiessen polygons
(geography), and Blum’s transform (biology) docu-
ment this remarkable fact. As of now, a good percent-
age of the computational geometry literature (about
one out of 16 publications) is concerned with Voronoi
diagrams. The computational geometry research group
at Graz has been involved in this topic even before it
became popular in the early 1980s (and long before our
present institute has been founded). In this sense, re-
search on Voronoi diagrams is a tradition at our place.
For example, some 30 publications by the second au-
thor, including two survey articles [4] [6] (the former
also available in Japanese translation [5]) have emerged
from this preference.
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Figure 2: 3D view of sites and distances

We devote the present article to this fascinating ge-
ometric structure, with the intention to highlight its
manifold r6le in computer science. Voronoi diagrams
have proved to be a powerful tool in solving seemingly
unrelated computational questions, and efficient and
reasonably simple techniques have been developed for
their computer construction and representation. More-
over, Voronoi diagrams have surprising mathematical

properties and are related to many well-known geo-
metric structures. Finally though, human intuition is
guided by visual perception: if one sees an underlying
structure, the whole situation may be understood at a
higher level.

Classical applications

Voronoi diagrams capture the distance information in-
herent in a given configuration of sites in a compact
manner. Basically, the structure is built from edges
(portions of perpendicular bisectors between sites) and
vertices (endpoints of edges). To represent a Voronoi
diagram in a computer, any standard data structure
for storing geometric graphs will do. Nonetheless, sev-
eral tailor-made representations have been developed,
the most popular one being the quad-edge data struc-
ture. Simple graph-theoretical arguments show that
there are at most 3n — 6 edges and 2n — 4 vertices for n
sites. In other words, the storage requirement is only
O(n), which gives one more reason for the practical
applicability of Voronoi diagrams.

Continuing from our introductory example, imagine
the given sites are post offices. Then, for any cho-
sen location of a customer, the containing Voronoi re-
gion makes explicit the post office closest to him/her.
More abstractly, by performing point location in the
data structure "Voronoi diagram’, the nearest neighbor
site of any query point can be retrieved quickly. (In
fact, in O(logn) time. This is optimal by a matching
information-theoretic bound). Similarly, sites may rep-
resent, department stores, and Voronoi neighborhood —
witnessed by diagram edges — will indicate stores in
strongest mutual influence (or competition). Apart
from economics, this basic finding has far-reaching ap-
plications in biological and physico-chemical systems.
On the other hand, Voronoi vertices are places where
the influence from sites reaches a local minimum — a
fact of interest in facility location.

Similar observations apply to the robotics scenery:
sites are snapshots of moving robots, and danger of
collision is most acute for the closest pair. Moreover,
when planning a collision-free motion of a robot among
a given set of obstacle sites, sticking to the boundaries
of Voronoi regions (that is, moving along Voronoi edges
and vertices) will keep the robot off the obstacles in a
best possible way. (This is known as the retraction
approach in motion planning.)

Numerous other applications of Voronoi diagrams
exist, one notable being geometric clustering. The
grouping of data sites into a cluster structure is re-
flected by their Voronoi regions. (For instance, dense
clusters give rise to regions of small area.) Even more



important is the fact that prominent types of optimal
clusterings are induced by Voronoi diagrams, namely
by partition with regions (which are not necessarily de-
fined by the data sites to be clustered).

Two important and beautiful geometric structures
cannot be hidden at this point. Firstly, any shortest
connection network for the sites (think of a road or a
electricity network) will solely connect sites which are
Voronoi neighbors. Secondly, the graph connecting all
the neighbored sites is a triangular network, called the
Delaunay triangulation. Among all possible ways to
build a triangular irregular network (TIN) the Delau-
nay triangulation is provably optimum, in several re-
spects concerning the shape and size of its triangles (or
tetrahedra, when it comes to higher dimensions). It is
for this reason that Delaunay triangulations have been
extensively used in surface generation, solid modeling,
and related areas.

Beside shortest connection networks (or minimum
spanning trees, as they are called in computational
geometry) there are several other classes of geometric
neighborhood graphs which are contained in the Delau-
nay triangulation: a-shapes (a tool in surface model-
ing), B-skeletons (with applications to the famous and
still unsettled minimum-weight-triangulation prob-
lem), Gabriel graphs (geographic information sys-
tems (GIS)), and nearest-neighborhood graphs (pat-
tern recognition).

Algorithms designer’s playground

Methods for constructing Voronoi diagrams are as old
as their use in the diverse areas of natural sciences.
Of course, the first diagrams have been drawn with
pencil and ruler. At these early times, people already
complained about ambiguities if the sites come in a
co-circular fashion. Nowadays, where sophisticated,
efficient, and practical construction algorithms exist,
robustness in the case of degenerate input sites is still
an issue, and much of the program designers work goes
into the implementation of ’special cases’. The heart of
an algorithm, however, is the underlying paradigmatic
technique, and rarely a problem has been better a play-
ground for algorithms design than the computation of
a Voronoi diagram.

Beside other intuitive construction rules, incremen-
tal insertion has been among the first algorithmic tech-
niques applied to Voronoi diagrams. This technique
is well known from InsertionSort, a simple sorting
method that maintains a sorted list during the inser-
tion of items. In our case, insertion of a site means
integrating its Voronoi region into the diagram con-
structed so far — a process that involves the construc-

tion of new and the deletion of old parts. Though the
approach stands out by its simplicity and obvious cor-
rectness, the resulting runtime may be bad: finding a
place to start the insertion is tricky, and many already
constructed parts may have to be deleted lateron. It
required the advent of randomization to give this ap-
proach an efficiency guarantee. To be more specific, in-
serting n sites in random order leads to an (expected)
runtime of O(nlogn) which is provably optimal. And
only (almost-)optimal algorithms come up to a big ad-
vantage of the data structure Voronoi diagram: the
linear storage requirement, O(n).

”The intrinsic potential of Voronoi diagrams
lies in their structural properties, in the ex-
istence of efficient algorithms for their con-
struction, and in their adaptability.”

From: Handbook of Computational Geom-
etry [5], Chapter V.

Though the ancient Romans definitely knew about
the power of ”divide et impera”, its algorithmic ana-
log divide € conguer is often considered a less intuitive
technique. It achieves efficiency by splitting the prob-
lem at hands, then solving the subproblems separately
(and recursively), and finally merging the solutions.
Voronoi diagrams are well suited to this attack. After
presorting the sites (in z-direction, say) the merging
of two subdiagrams can be done in O(n) time, which
calculates to a total runtime of O(nlogn) by the recur-
rence relation T'(n) = 2 - T'(3) + O(n). Divide & con-
quer provided the first optimal algorithm for Voronoi
diagrams, but certain peculiarities are buried in its im-
plementation. On the other hand, it is a candidate for
efficient parallelization.

Two more optimal construction techniques are
known, both being specific to geometry. The plane-
sweep technique sweeps the plane containing the n in-
put sites with a vertical line L, from left to right, say.
Thereby, it maintains the invariant that all parts of
the object to be constructed, which lie to the left of
L, have already been completed. In this way, a 2D
static problem (the construction of a Voronoi diagram)
is translated into a 1D dynamic problem (the handling
of the interactions near the sweep line). When utilizing
the advanced data structures ’priority queue’ and ’dic-
tionary’, this event-driven algorithm runs in O(logn)
time per event, the number of which is proportional to
the size of a Voronoi diagram, O(n).

Finally, geometric transformation is an elegant tool
to gain algorithmic efficiency, via mapping a given
problem to a better understood (and preferably solved)



one. Its application to Voronoi diagrams is described
in the next paragraph.

Back to geometry

Figure 2 gives a flavor of how proximity in 2D may
be expressed by convexity in 3D. The surprising ob-
servation that a 2D Voronoi diagram is nothing but
a projected convex 3D polyhedron opens our eyes —
and a door to new construction methods. Polytope
theory tells us to look for the geometric dual of that
polyhedron (which now is the convez hull of n points
in 3D), and indeed there is a simple rule to obtain
these hull points directly from the given Voronoi sites:
project them onto the paraboloid of rotation. The
careful reader may notice that this very convex hull
projects back to the afore-mentioned Delaunay trian-
gulation of the sites in the plane. Convex hull algo-
rithms are well established in computational geometry,
and practical and robust implementations (running in
time O(nlogn) in 3D) are available.

Noteworthy more is hidden in the geometric rela-
tion mentioned above. Firstly, the theory of convex
polytopes allows us to exactly analyze the number of
individual components of a Voronoi diagram. This is a
highly non-trivial task in three and higher dimensions;
faces of various dimensions (vertices, edges, facets, etc.)
have to be counted in a thorough analysis of the stor-
age requirement. Secondly, a connection to hyper-
plane arrangements is drawn, that is of importance
when Voronoi diagrams are modified to order k. Here
subsets of k sites get assigned their Voronoi regions;
they carry the information for efficiently performing
k-nearest neighbor search.

Finally, a natural generalization arises in the light
of the geometric transformation shown in Figure 2.
Power diagrams, defined by circular or spherical sites,
and retaining the convexity of the regions. They consti-
tute exactly those diagrams that are projected bound-
aries of convex polyhedra; Voronoi diagrams are special
cases where circles degenerate to point sites. (When
writing his doctoral thesis, the second author was ex-
cited when discovering the beauty and versatility of
this structure; its name has been coined after one of
his papers [3].) Power diagrams in 3D are related to
important types of Voronoi diagrams in 2D, and thus
provide a unified view of these structures. Among
them are diagrams for sites with individual weights,
expressing their capability to influence the neighbor-
hood. These flexible models are used in other areas
of science (Johnson-Mehl model in chemics and Ap-
polonius model in economics). Even the mathemati-
cal physicist Clerk Maxwell in 1864 (implicitly) payed
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Figure 3: Power diagram for 6 circles

attention to power diagrams: he observed that a dia-
gram reflects the equilibrium state of a spider web just
if the diagram comes from projecting a polyhedron’s
boundary. ..

A novel concept

In order to meet practical needs, Voronoi diagrams
have been modified and generalized in many ways over
the years. Concepts subject to change have been the
shape of the sites (standard: points), the distance func-
tion used (standard: Euclidean metric), or even the
underlying space (standard: the plane or 3-space). It
is not appropriate here to give a systematic treatment
of the various existing types of Voronoi diagrams. In-
stead, we would like to report on a particular type,
which has been recently introduced and highlighted
with success by our research group.

Let us aid the reader’s intuition by giving a physical
interpretation of Voronoi diagrams. Imagine a hand-
ful of small pebbles being thrown into a quiet pond,
and watch the circular waves expanding. The places
where waves interfere are equidistant from the peb-
bles’ hitting points. That is, a Voronoi diagram is pro-
duced. (This is the so-called growth model in biology
and chemics.)

Straight skeletons [1] are diagrams induced by wave-
fronts of more general shape. Consider a set, F, of
simple polygons (called figures) in the plane. Each
figure in F' is associated with a birth time, and an
individual speed for each of its edges to move in a self-
parallel fashion. In this way, each figure sends out a
polygonal wavefront (actually two, an external and an
internal one). The straight skeleton of F' now is the
interference pattern of all these wavefronts, under the



requirement that their expansion ceases at all points
where wavefronts come into contact or self-contact.

During their propagation, the wavefront edges trace
out planar and connected Voronoi diagram-like regions.
Wavefront vertices move at (speed-weighted) angle bi-
sectors for edges, and thus trace out straight line seg-
ments. We originally intended straight skeletons as a
linearization of the medial axis, a widely used inter-
nal structure for polygons. (The medial axis is just
the Voronoi diagram for the components of a polygon’s
boundary. It contains parabolically curved edges if the
polygon is non-convex.) In numerous applications, e.g.,
in pattern recognition, robotics, and GIS, skeletonal
partitions of polygonal objects are sought that reflect
shape in an appropriate manner. The straight skeleton
naturally suits these needs; see Figure 4. It is superior
to the medial axis also because of its smaller size.

Figure 4: Internal straight skeleton

Curiously enough, straight skeletons do mnot ad-
mit a distance-from-site definition, in general (and
therefore are no Voronoi diagrams in the strict
sense). This counter-intuitive finding outrules the
well-developed machinery for constructing Voronoi dia-
grams; merely a simulation of the wavefront expansion
will work. The theoretically most efficient implementa-
tion runs in roughly O(ny/n) time, and a triangulation-
based method that maintains ’free-space’ exhibits an
O(nlogn) observed behavior for many inputs.
Straight skeletons apply to seemingly unrelated situ-
ations. This partially stems from a nice 3D interpreta-
tion, which visualizes the movement of each wavefront
edge as a facet in 3D. The expansion speed of the edge
determines the slope of the facet. In this way, each
figure gives rise to a polyhedral cone in 3D, whose in-
tersection with the plane is just the figure itself. The
surface made up from these cones projects vertically to
the straight skeleton. See Figure 5 for an illustration.
A problem from architectural design is constructing
a roof that rises above a given outline of a building’s

Figure 5: Terrain reconstructed from river map

groundwalls. This task is by no means trivial as roofs
are highly ambigous objects. A more general question
is the reconstruction of geographical terrains (say, from
a given river map with additional information about el-
evation and slope of the terrain), which is a challenging
problem in GIS. The straight skeleton offers a promis-
ing approach to both questions. Of particular elegance
is the following property: the obtained 3D surfaces are
characterized by the fact that every raindrop that hits
the surface facet f runs off to the figure edge that de-
fines f. This applies to the study of rain water fall and
the prediction of floodings.

Finally, there is an application to a classical ques-
tion in origami design that deserves mention: is every
simple polygon the silhouette of a flat origami? An
affirmative answer has been found recently. The used
method is based on covering certain polygonal rings
that arise from shrinking the polygon in a straight
skeleton manner. That is, our concept of straight skele-
ton allows for a relatively simple proof of this long-
standing open conjecture in origami theory.

... and the city Voronoi diagram

Whereas the standard Voronoi diagram has interpre-
tations in both the wavefront model and the distance-
from-site model, this is not true for other types. Re-
member that straight skeletons cannot be defined in
the latter model. Conversely, the occurance of discon-
nected Voronoi regions (as in the Apollonius model,
where distances are weighted by multiplicative con-
stants) disallows an interpretation in the former model.
We conclude this article with a non-standard and de-
manding structure, that we have investigated recently,
and that bridges the gap between both models.

The structure in question — we called it the city
Voronoi diagram [2] — is just the diagram matching the
motivating example in the introduction. Recall that we
are given a city transportation network that influences
proximity in the plane. We model this network as a



Figure 6: A complex transportation network C (bold segments) and the city Voronoi diagram (full edges) for a
set S of five sites scattered among C. The diagram is refined by straight skeleton edges (dashed). Quiet ranges
occur in the network, shown as dotted subsegments. They could be closed down without delaying any quickest
path to S. Also, one site is isolated from the network (the rightmost site s), in the sense that from nowhere in

its region the quickest path to s takes advantage of C.

planar straight-line graph C with horizontal or verti-
cal edges. No other requirements are posed on C' — it
may contain cycles and even may be disconnected.

By assumption, we are free to enter C' at any point.
(This is not unrealistic for a bus system with densely
arranged stops, and exactly meets the situation for
shared taxis which regularly drive on predetermined
routes and will stop for every customer.) Once having
accessed C we travel at arbitrary but fixed speed v > 1
in one of the (at most four) available directions. Move-
ment off the network takes place with unit speed, and
with respect to the L; (Manhattan) metric. (Again,
this is realistic when walking in a modern city).

Let now dc(z,y) be the duration for quickest route
(which of course may use the network) between two
given points x and y. When viewed as a distance func-
tion, this ’city metric’ d¢ induces a Voronoi diagram as

follows. Each site s in a given point set S gets assigned
the region

reg(s) = {x | do(z,s) < dc(z,t),Vt € S\ {s}}.

Setting equality in this term gives the bisector of two
sites s and ¢. This is the locus of all points which can
be reached from s and ¢ within the same (minimum)
time. Bisectors are polygonal lines which, however,
show undesirable properties in view of an algorithmic
construction of the city Voronoi diagram. By C’s in-
fluence, they are of non-constant size, and even worse,
they may be cyclic. These are main obstacles for ef-
ficiently applying divide & conquer and randomized
incremental insertion.

The key for a proper geometric and algorithmic un-
derstanding of the city Voronoi diagram lies in the con-
cept of straight skeletons. Let us ignore the network



C for a moment. The L;-metric Voronoi diagram for
the sites in S already is a straight skeleton. Its fig-
ures are the Ly unit circles (diamonds) centered at the
sites. How does the network C' influence their wave-
fronts? Their shapes change in a pre-determined man-
ner, namely whenever a wavefront vertex runs into a
network segment, or a wavefront edge slides into a net-
work node. A new diamond will appear at such a place,
along with tangent sharp-angled wedges whose peaks
move at speed v in all possible directions on C. All
these diamonds and wedges are taken as new figures.
Together with the original L; diamonds, their straight
skeleton now gives the city Voronoi diagram.

In fact, the obtained skeleton contains a lot more
edges (and information). Given a query point g, not
only the first site s in S reachable from ¢ can be re-
trieved, but rather the quickest route from ¢ to s itself
— a polygonal path of possibly high complexity. Still,
this refined city Voronoi diagram has a size of only
O(n + ¢), where n and c denote the complexity of S
and C, respectively. (This important property is lost
for non-isothetic networks or for the Euclidean metric;
the size blows up to quadratic.)

Two major difficulties have to be mastered before
arriving at an efficient construction algorithm. Firstly
the set of figures, when constructed from S and C' as
sketched above, contains high redundancy for various
reasons. Secondly, when having available the set of
O(n + ¢) non-redundant figures, a fast way of comput-
ing their straight skeleton has to be found. The second
goal is achieved by modifying the figures so as to fit into
the framework of so-called abstract Voronoi diagrams.

This general and elegant framework extracts the de-
sired algorithmic properties of a Voronoi diagram. It is
based on an admissible system of bisectors, rather than
on some distance from the sites. For example, for each
triple of abstract sites, any point common to two bisec-
tors must also belong to the third. (This property is
trivially fulfilled for any distance-defined diagram, but
is violated by straight skeletons, in general. ’No-mans
lands’ belonging to no site are the consequence.) In our
case, a careful adaption of the figures allows a reduction
to abstract Voronoi diagrams. The refined city Voronoi
diagram then can be constructed in O(nlogn+-c?logc)
time and optimal space.
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