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Introdution

Computational Geometry is the name of a young and

dynami branh of omputer siene. It is dediated

to the algorithmi study of elementary geometri ques-

tions, arising in numerous pratially oriented areas

like omputer graphis, omputer-aided design, pat-

tern reognition, robotis, and operations researh, to

name a few. Computational geometry has attrated

enormous researh interest in the past two deades and

is an established area nowadays. It is also one of the

main researh areas at our institute. The omputa-

tional geometry group at IGI is well reognized in the

international ompetition in that �eld.

"Imagine a large modern-style ity whih is

equipped with a publi transportation net-

work like a subway or a bus system. Time

is money and people intend to follow the

quikest route from their homes to their de-

sired destinations, using the network when-

ever appropriate. For some people several

failities of the same kind are equally at-

trative (think of post oÆes or hospitals),

and their wish is to �nd out whih faility

is reahable �rst. There is also ommerial

interest (from real estate agents, or from a

tourist oÆe) to make visible the area whih

an be reahed in, say one hour, from a given

loation in the ity (the apartment for sale,

or the reommended hotel). Neuralgi plaes

lying within this 1-hour zone, like the main

square, train stations, shopping enters, or

tourist attration sites should be displayed to

the ustomer."

From: Quikest Paths, Straight Skeletons,

and the City Voronoi Diagram [2℄.

The omplexity (and appeal) hidden in this motivating

every-day situation beomes apparent when notiing

that quikest routes are inherently omplex: one hav-

ing aessed the transportation network, it may be too

slow to simply follow it to an exit point lose to the de-

sired destination; taking intermediate shortuts by foot

walking may be advantageous at several plaes. Still,

when interpreting travel duration as a kind of distane,

a metri is obtained. Distane problems, as problems

of this kind are alled, onstitute an important lass in

omputational geometry.

In this ontext, there is one geometri struture

whih is maybe most famous in omputational geo-

metry: Voronoi diagrams. Intuitively speaking, a

Voronoi diagram divides the available spae among a

number of given loations (alled sites), aording to

the nearest-neighbor rule: eah site p gets assigned

the region (of the plane, say) whih is losest to p.

A honeyomb-like struture is obtained; see Figure 1.

p

Γ

Figure 1: Voronoi regions { aesthetially pleasing : : :

Christened after the Russian mathematiian George

Voronoi { believed to be the �rst to formally introdue

it { this diagram has been reinvented and used in the

past entury in various di�erent sienes. Area-spei�

names like Wigner-Seitz zones (hemis, physis), do-
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mains of ation (ristallography), Thiessen polygons

(geography), and Blum's transform (biology) dou-

ment this remarkable fat. As of now, a good perent-

age of the omputational geometry literature (about

one out of 16 publiations) is onerned with Voronoi

diagrams. The omputational geometry researh group

at Graz has been involved in this topi even before it

beame popular in the early 1980s (and long before our

present institute has been founded). In this sense, re-

searh on Voronoi diagrams is a tradition at our plae.

For example, some 30 publiations by the seond au-

thor, inluding two survey artiles [4℄ [6℄ (the former

also available in Japanese translation [5℄) have emerged

from this preferene.

Figure 2: 3D view of sites and distanes

We devote the present artile to this fasinating ge-

ometri struture, with the intention to highlight its

manifold rôle in omputer siene. Voronoi diagrams

have proved to be a powerful tool in solving seemingly

unrelated omputational questions, and eÆient and

reasonably simple tehniques have been developed for

their omputer onstrution and representation. More-

over, Voronoi diagrams have surprising mathematial

properties and are related to many well-known geo-

metri strutures. Finally though, human intuition is

guided by visual pereption: if one sees an underlying

struture, the whole situation may be understood at a

higher level.

Classial appliations

Voronoi diagrams apture the distane information in-

herent in a given on�guration of sites in a ompat

manner. Basially, the struture is built from edges

(portions of perpendiular bisetors between sites) and

verties (endpoints of edges). To represent a Voronoi

diagram in a omputer, any standard data struture

for storing geometri graphs will do. Nonetheless, sev-

eral tailor-made representations have been developed,

the most popular one being the quad-edge data stru-

ture. Simple graph-theoretial arguments show that

there are at most 3n�6 edges and 2n�4 verties for n

sites. In other words, the storage requirement is only

O(n), whih gives one more reason for the pratial

appliability of Voronoi diagrams.

Continuing from our introdutory example, imagine

the given sites are post oÆes. Then, for any ho-

sen loation of a ustomer, the ontaining Voronoi re-

gion makes expliit the post oÆe losest to him/her.

More abstratly, by performing point loation in the

data struture 'Voronoi diagram', the nearest neighbor

site of any query point an be retrieved quikly. (In

fat, in O(log n) time. This is optimal by a mathing

information-theoreti bound). Similarly, sites may rep-

resent department stores, and Voronoi neighborhood {

witnessed by diagram edges { will indiate stores in

strongest mutual inuene (or ompetition). Apart

from eonomis, this basi �nding has far-reahing ap-

pliations in biologial and physio-hemial systems.

On the other hand, Voronoi verties are plaes where

the inuene from sites reahes a loal minimum { a

fat of interest in faility loation.

Similar observations apply to the robotis senery:

sites are snapshots of moving robots, and danger of

ollision is most aute for the losest pair. Moreover,

when planning a ollision-free motion of a robot among

a given set of obstale sites, stiking to the boundaries

of Voronoi regions (that is, moving along Voronoi edges

and verties) will keep the robot o� the obstales in a

best possible way. (This is known as the retration

approah in motion planning.)

Numerous other appliations of Voronoi diagrams

exist, one notable being geometri lustering. The

grouping of data sites into a luster struture is re-

eted by their Voronoi regions. (For instane, dense

lusters give rise to regions of small area.) Even more
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important is the fat that prominent types of optimal

lusterings are indued by Voronoi diagrams, namely

by partition with regions (whih are not neessarily de-

�ned by the data sites to be lustered).

Two important and beautiful geometri strutures

annot be hidden at this point. Firstly, any shortest

onnetion network for the sites (think of a road or a

eletriity network) will solely onnet sites whih are

Voronoi neighbors. Seondly, the graph onneting all

the neighbored sites is a triangular network, alled the

Delaunay triangulation. Among all possible ways to

build a triangular irregular network (TIN) the Delau-

nay triangulation is provably optimum, in several re-

spets onerning the shape and size of its triangles (or

tetrahedra, when it omes to higher dimensions). It is

for this reason that Delaunay triangulations have been

extensively used in surfae generation, solid modeling,

and related areas.

Beside shortest onnetion networks (or minimum

spanning trees, as they are alled in omputational

geometry) there are several other lasses of geometri

neighborhood graphs whih are ontained in the Delau-

nay triangulation: �-shapes (a tool in surfae model-

ing), �-skeletons (with appliations to the famous and

still unsettled minimum-weight-triangulation prob-

lem), Gabriel graphs (geographi information sys-

tems (GIS)), and nearest-neighborhood graphs (pat-

tern reognition).

Algorithms designer's playground

Methods for onstruting Voronoi diagrams are as old

as their use in the diverse areas of natural sienes.

Of ourse, the �rst diagrams have been drawn with

penil and ruler. At these early times, people already

omplained about ambiguities if the sites ome in a

o-irular fashion. Nowadays, where sophistiated,

eÆient, and pratial onstrution algorithms exist,

robustness in the ase of degenerate input sites is still

an issue, and muh of the program designers work goes

into the implementation of 'speial ases'. The heart of

an algorithm, however, is the underlying paradigmati

tehnique, and rarely a problem has been better a play-

ground for algorithms design than the omputation of

a Voronoi diagram.

Beside other intuitive onstrution rules, inremen-

tal insertion has been among the �rst algorithmi teh-

niques applied to Voronoi diagrams. This tehnique

is well known from InsertionSort, a simple sorting

method that maintains a sorted list during the inser-

tion of items. In our ase, insertion of a site means

integrating its Voronoi region into the diagram on-

struted so far { a proess that involves the onstru-

tion of new and the deletion of old parts. Though the

approah stands out by its simpliity and obvious or-

retness, the resulting runtime may be bad: �nding a

plae to start the insertion is triky, and many already

onstruted parts may have to be deleted lateron. It

required the advent of randomization to give this ap-

proah an eÆieny guarantee. To be more spei�, in-

serting n sites in random order leads to an (expeted)

runtime of O(n logn) whih is provably optimal. And

only (almost-)optimal algorithms ome up to a big ad-

vantage of the data struture Voronoi diagram: the

linear storage requirement, O(n).

"The intrinsi potential of Voronoi diagrams

lies in their strutural properties, in the ex-

istene of eÆient algorithms for their on-

strution, and in their adaptability."

From: Handbook of Computational Geom-

etry [5℄, Chapter V.

Though the anient Romans de�nitely knew about

the power of "divide et impera", its algorithmi ana-

log divide & onquer is often onsidered a less intuitive

tehnique. It ahieves eÆieny by splitting the prob-

lem at hands, then solving the subproblems separately

(and reursively), and �nally merging the solutions.

Voronoi diagrams are well suited to this attak. After

presorting the sites (in x-diretion, say) the merging

of two subdiagrams an be done in O(n) time, whih

alulates to a total runtime of O(n logn) by the reur-

rene relation T (n) = 2 � T (

n

2

) + O(n). Divide & on-

quer provided the �rst optimal algorithm for Voronoi

diagrams, but ertain peuliarities are buried in its im-

plementation. On the other hand, it is a andidate for

eÆient parallelization.

Two more optimal onstrution tehniques are

known, both being spei� to geometry. The plane-

sweep tehnique sweeps the plane ontaining the n in-

put sites with a vertial line L, from left to right, say.

Thereby, it maintains the invariant that all parts of

the objet to be onstruted, whih lie to the left of

L, have already been ompleted. In this way, a 2D

stati problem (the onstrution of a Voronoi diagram)

is translated into a 1D dynami problem (the handling

of the interations near the sweep line). When utilizing

the advaned data strutures 'priority queue' and 'di-

tionary', this event-driven algorithm runs in O(log n)

time per event, the number of whih is proportional to

the size of a Voronoi diagram, O(n).

Finally, geometri transformation is an elegant tool

to gain algorithmi eÆieny, via mapping a given

problem to a better understood (and preferably solved)

3



one. Its appliation to Voronoi diagrams is desribed

in the next paragraph.

Bak to geometry

Figure 2 gives a avor of how proximity in 2D may

be expressed by onvexity in 3D. The surprising ob-

servation that a 2D Voronoi diagram is nothing but

a projeted onvex 3D polyhedron opens our eyes {

and a door to new onstrution methods. Polytope

theory tells us to look for the geometri dual of that

polyhedron (whih now is the onvex hull of n points

in 3D), and indeed there is a simple rule to obtain

these hull points diretly from the given Voronoi sites:

projet them onto the paraboloid of rotation. The

areful reader may notie that this very onvex hull

projets bak to the afore-mentioned Delaunay trian-

gulation of the sites in the plane. Convex hull algo-

rithms are well established in omputational geometry,

and pratial and robust implementations (running in

time O(n logn) in 3D) are available.

Noteworthy more is hidden in the geometri rela-

tion mentioned above. Firstly, the theory of onvex

polytopes allows us to exatly analyze the number of

individual omponents of a Voronoi diagram. This is a

highly non-trivial task in three and higher dimensions;

faes of various dimensions (verties, edges, faets, et.)

have to be ounted in a thorough analysis of the stor-

age requirement. Seondly, a onnetion to hyper-

plane arrangements is drawn, that is of importane

when Voronoi diagrams are modi�ed to order k. Here

subsets of k sites get assigned their Voronoi regions;

they arry the information for eÆiently performing

k-nearest neighbor searh.

Finally, a natural generalization arises in the light

of the geometri transformation shown in Figure 2.

Power diagrams, de�ned by irular or spherial sites,

and retaining the onvexity of the regions. They onsti-

tute exatly those diagrams that are projeted bound-

aries of onvex polyhedra; Voronoi diagrams are speial

ases where irles degenerate to point sites. (When

writing his dotoral thesis, the seond author was ex-

ited when disovering the beauty and versatility of

this struture; its name has been oined after one of

his papers [3℄.) Power diagrams in 3D are related to

important types of Voronoi diagrams in 2D, and thus

provide a uni�ed view of these strutures. Among

them are diagrams for sites with individual weights,

expressing their apability to inuene the neighbor-

hood. These exible models are used in other areas

of siene (Johnson-Mehl model in hemis and Ap-

polonius model in eonomis). Even the mathemati-

al physiist Clerk Maxwell in 1864 (impliitly) payed

p

Figure 3: Power diagram for 6 irles

attention to power diagrams: he observed that a dia-

gram reets the equilibrium state of a spider web just

if the diagram omes from projeting a polyhedron's

boundary: : :

A novel onept

In order to meet pratial needs, Voronoi diagrams

have been modi�ed and generalized in many ways over

the years. Conepts subjet to hange have been the

shape of the sites (standard: points), the distane fun-

tion used (standard: Eulidean metri), or even the

underlying spae (standard: the plane or 3-spae). It

is not appropriate here to give a systemati treatment

of the various existing types of Voronoi diagrams. In-

stead, we would like to report on a partiular type,

whih has been reently introdued and highlighted

with suess by our researh group.

Let us aid the reader's intuition by giving a physial

interpretation of Voronoi diagrams. Imagine a hand-

ful of small pebbles being thrown into a quiet pond,

and wath the irular waves expanding. The plaes

where waves interfere are equidistant from the peb-

bles' hitting points. That is, a Voronoi diagram is pro-

dued. (This is the so-alled growth model in biology

and hemis.)

Straight skeletons [1℄ are diagrams indued by wave-

fronts of more general shape. Consider a set, F , of

simple polygons (alled �gures) in the plane. Eah

�gure in F is assoiated with a birth time, and an

individual speed for eah of its edges to move in a self-

parallel fashion. In this way, eah �gure sends out a

polygonal wavefront (atually two, an external and an

internal one). The straight skeleton of F now is the

interferene pattern of all these wavefronts, under the

4



requirement that their expansion eases at all points

where wavefronts ome into ontat or self-ontat.

During their propagation, the wavefront edges trae

out planar and onneted Voronoi diagram-like regions.

Wavefront verties move at (speed-weighted) angle bi-

setors for edges, and thus trae out straight line seg-

ments. We originally intended straight skeletons as a

linearization of the medial axis , a widely used inter-

nal struture for polygons. (The medial axis is just

the Voronoi diagram for the omponents of a polygon's

boundary. It ontains parabolially urved edges if the

polygon is non-onvex.) In numerous appliations, e.g.,

in pattern reognition, robotis, and GIS, skeletonal

partitions of polygonal objets are sought that reet

shape in an appropriate manner. The straight skeleton

naturally suits these needs; see Figure 4. It is superior

to the medial axis also beause of its smaller size.

Figure 4: Internal straight skeleton

Curiously enough, straight skeletons do not ad-

mit a distane-from-site de�nition, in general (and

therefore are no Voronoi diagrams in the strit

sense). This ounter-intuitive �nding outrules the

well-developed mahinery for onstruting Voronoi dia-

grams; merely a simulation of the wavefront expansion

will work. The theoretially most eÆient implementa-

tion runs in roughly O(n

p

n) time, and a triangulation-

based method that maintains 'free-spae' exhibits an

O(n logn) observed behavior for many inputs.

Straight skeletons apply to seemingly unrelated situ-

ations. This partially stems from a nie 3D interpreta-

tion, whih visualizes the movement of eah wavefront

edge as a faet in 3D. The expansion speed of the edge

determines the slope of the faet. In this way, eah

�gure gives rise to a polyhedral one in 3D, whose in-

tersetion with the plane is just the �gure itself. The

surfae made up from these ones projets vertially to

the straight skeleton. See Figure 5 for an illustration.

A problem from arhitetural design is onstruting

a roof that rises above a given outline of a building's

Figure 5: Terrain reonstruted from river map

groundwalls. This task is by no means trivial as roofs

are highly ambigous objets. A more general question

is the reonstrution of geographial terrains (say, from

a given river map with additional information about el-

evation and slope of the terrain), whih is a hallenging

problem in GIS. The straight skeleton o�ers a promis-

ing approah to both questions. Of partiular elegane

is the following property: the obtained 3D surfaes are

haraterized by the fat that every raindrop that hits

the surfae faet f runs o� to the �gure edge that de-

�nes f . This applies to the study of rain water fall and

the predition of oodings.

Finally, there is an appliation to a lassial ques-

tion in origami design that deserves mention: is every

simple polygon the silhouette of a at origami? An

aÆrmative answer has been found reently. The used

method is based on overing ertain polygonal rings

that arise from shrinking the polygon in a straight

skeleton manner. That is, our onept of straight skele-

ton allows for a relatively simple proof of this long-

standing open onjeture in origami theory.

: : : and the ity Voronoi diagram

Whereas the standard Voronoi diagram has interpre-

tations in both the wavefront model and the distane-

from-site model, this is not true for other types. Re-

member that straight skeletons annot be de�ned in

the latter model. Conversely, the ourane of dison-

neted Voronoi regions (as in the Apollonius model,

where distanes are weighted by multipliative on-

stants) disallows an interpretation in the former model.

We onlude this artile with a non-standard and de-

manding struture, that we have investigated reently,

and that bridges the gap between both models.

The struture in question { we alled it the ity

Voronoi diagram [2℄ { is just the diagram mathing the

motivating example in the introdution. Reall that we

are given a ity transportation network that inuenes

proximity in the plane. We model this network as a
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Figure 6: A omplex transportation network C (bold segments) and the ity Voronoi diagram (full edges) for a

set S of �ve sites sattered among C. The diagram is re�ned by straight skeleton edges (dashed). Quiet ranges

our in the network, shown as dotted subsegments. They ould be losed down without delaying any quikest

path to S. Also, one site is isolated from the network (the rightmost site s), in the sense that from nowhere in

its region the quikest path to s takes advantage of C.

planar straight-line graph C with horizontal or verti-

al edges. No other requirements are posed on C { it

may ontain yles and even may be disonneted.

By assumption, we are free to enter C at any point.

(This is not unrealisti for a bus system with densely

arranged stops, and exatly meets the situation for

shared taxis whih regularly drive on predetermined

routes and will stop for every ustomer.) One having

aessed C we travel at arbitrary but �xed speed v > 1

in one of the (at most four) available diretions. Move-

ment o� the network takes plae with unit speed, and

with respet to the L

1

(Manhattan) metri. (Again,

this is realisti when walking in a modern ity).

Let now d

C

(x; y) be the duration for quikest route

(whih of ourse may use the network) between two

given points x and y. When viewed as a distane fun-

tion, this 'ity metri' d

C

indues a Voronoi diagram as

follows. Eah site s in a given point set S gets assigned

the region

reg(s) = fx j d

C

(x; s) < d

C

(x; t);8t 2 S n fsgg:

Setting equality in this term gives the bisetor of two

sites s and t. This is the lous of all points whih an

be reahed from s and t within the same (minimum)

time. Bisetors are polygonal lines whih, however,

show undesirable properties in view of an algorithmi

onstrution of the ity Voronoi diagram. By C's in-

uene, they are of non-onstant size, and even worse,

they may be yli. These are main obstales for ef-

�iently applying divide & onquer and randomized

inremental insertion.

The key for a proper geometri and algorithmi un-

derstanding of the ity Voronoi diagram lies in the on-

ept of straight skeletons. Let us ignore the network
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C for a moment. The L

1

-metri Voronoi diagram for

the sites in S already is a straight skeleton. Its �g-

ures are the L

1

unit irles (diamonds) entered at the

sites. How does the network C inuene their wave-

fronts? Their shapes hange in a pre-determined man-

ner, namely whenever a wavefront vertex runs into a

network segment, or a wavefront edge slides into a net-

work node. A new diamond will appear at suh a plae,

along with tangent sharp-angled wedges whose peaks

move at speed v in all possible diretions on C. All

these diamonds and wedges are taken as new �gures.

Together with the original L

1

diamonds, their straight

skeleton now gives the ity Voronoi diagram.

In fat, the obtained skeleton ontains a lot more

edges (and information). Given a query point q, not

only the �rst site s in S reahable from q an be re-

trieved, but rather the quikest route from q to s itself

{ a polygonal path of possibly high omplexity. Still,

this re�ned ity Voronoi diagram has a size of only

O(n + ), where n and  denote the omplexity of S

and C, respetively. (This important property is lost

for non-isotheti networks or for the Eulidean metri;

the size blows up to quadrati.)

Two major diÆulties have to be mastered before

arriving at an eÆient onstrution algorithm. Firstly

the set of �gures, when onstruted from S and C as

skethed above, ontains high redundany for various

reasons. Seondly, when having available the set of

O(n+ ) non-redundant �gures, a fast way of omput-

ing their straight skeleton has to be found. The seond

goal is ahieved by modifying the �gures so as to �t into

the framework of so-alled abstrat Voronoi diagrams.

This general and elegant framework extrats the de-

sired algorithmi properties of a Voronoi diagram. It is

based on an admissible system of bisetors, rather than

on some distane from the sites. For example, for eah

triple of abstrat sites, any point ommon to two bise-

tors must also belong to the third. (This property is

trivially ful�lled for any distane-de�ned diagram, but

is violated by straight skeletons, in general. 'No-mans

lands' belonging to no site are the onsequene.) In our

ase, a areful adaption of the �gures allows a redution

to abstrat Voronoi diagrams. The re�ned ity Voronoi

diagram then an be onstruted in O(n logn+

2

log )

time and optimal spae.
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Figure 7: Diretion-sensitive diagram [7℄. Quo vadis?
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