
Voronoi Diagrams { Computational Geometry's Favorite

Oswin Ai
hholzer and Franz Aurenhammer

Institute for Theoreti
al Computer S
ien
e

Graz University of Te
hnology

Graz, Austria

e-mail: foai
h,aureng�igi.tu-graz.a
.at

Introdu
tion

Computational Geometry is the name of a young and

dynami
 bran
h of 
omputer s
ien
e. It is dedi
ated

to the algorithmi
 study of elementary geometri
 ques-

tions, arising in numerous pra
ti
ally oriented areas

like 
omputer graphi
s, 
omputer-aided design, pat-

tern re
ognition, roboti
s, and operations resear
h, to

name a few. Computational geometry has attra
ted

enormous resear
h interest in the past two de
ades and

is an established area nowadays. It is also one of the

main resear
h areas at our institute. The 
omputa-

tional geometry group at IGI is well re
ognized in the

international 
ompetition in that �eld.

"Imagine a large modern-style 
ity whi
h is

equipped with a publi
 transportation net-

work like a subway or a bus system. Time

is money and people intend to follow the

qui
kest route from their homes to their de-

sired destinations, using the network when-

ever appropriate. For some people several

fa
ilities of the same kind are equally at-

tra
tive (think of post oÆ
es or hospitals),

and their wish is to �nd out whi
h fa
ility

is rea
hable �rst. There is also 
ommer
ial

interest (from real estate agents, or from a

tourist oÆ
e) to make visible the area whi
h


an be rea
hed in, say one hour, from a given

lo
ation in the 
ity (the apartment for sale,

or the re
ommended hotel). Neuralgi
 pla
es

lying within this 1-hour zone, like the main

square, train stations, shopping 
enters, or

tourist attra
tion sites should be displayed to

the 
ustomer."

From: Qui
kest Paths, Straight Skeletons,

and the City Voronoi Diagram [2℄.

The 
omplexity (and appeal) hidden in this motivating

every-day situation be
omes apparent when noti
ing

that qui
kest routes are inherently 
omplex: on
e hav-

ing a

essed the transportation network, it may be too

slow to simply follow it to an exit point 
lose to the de-

sired destination; taking intermediate short
uts by foot

walking may be advantageous at several pla
es. Still,

when interpreting travel duration as a kind of distan
e,

a metri
 is obtained. Distan
e problems, as problems

of this kind are 
alled, 
onstitute an important 
lass in


omputational geometry.

In this 
ontext, there is one geometri
 stru
ture

whi
h is maybe most famous in 
omputational geo-

metry: Voronoi diagrams. Intuitively speaking, a

Voronoi diagram divides the available spa
e among a

number of given lo
ations (
alled sites), a

ording to

the nearest-neighbor rule: ea
h site p gets assigned

the region (of the plane, say) whi
h is 
losest to p.

A honey
omb-like stru
ture is obtained; see Figure 1.

p

Γ

Figure 1: Voronoi regions { aestheti
ally pleasing : : :

Christened after the Russian mathemati
ian George

Voronoi { believed to be the �rst to formally introdu
e

it { this diagram has been reinvented and used in the

past 
entury in various di�erent s
ien
es. Area-spe
i�


names like Wigner-Seitz zones (
hemi
s, physi
s), do-
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mains of a
tion (
ristallography), Thiessen polygons

(geography), and Blum's transform (biology) do
u-

ment this remarkable fa
t. As of now, a good per
ent-

age of the 
omputational geometry literature (about

one out of 16 publi
ations) is 
on
erned with Voronoi

diagrams. The 
omputational geometry resear
h group

at Graz has been involved in this topi
 even before it

be
ame popular in the early 1980s (and long before our

present institute has been founded). In this sense, re-

sear
h on Voronoi diagrams is a tradition at our pla
e.

For example, some 30 publi
ations by the se
ond au-

thor, in
luding two survey arti
les [4℄ [6℄ (the former

also available in Japanese translation [5℄) have emerged

from this preferen
e.

Figure 2: 3D view of sites and distan
es

We devote the present arti
le to this fas
inating ge-

ometri
 stru
ture, with the intention to highlight its

manifold rôle in 
omputer s
ien
e. Voronoi diagrams

have proved to be a powerful tool in solving seemingly

unrelated 
omputational questions, and eÆ
ient and

reasonably simple te
hniques have been developed for

their 
omputer 
onstru
tion and representation. More-

over, Voronoi diagrams have surprising mathemati
al

properties and are related to many well-known geo-

metri
 stru
tures. Finally though, human intuition is

guided by visual per
eption: if one sees an underlying

stru
ture, the whole situation may be understood at a

higher level.

Classi
al appli
ations

Voronoi diagrams 
apture the distan
e information in-

herent in a given 
on�guration of sites in a 
ompa
t

manner. Basi
ally, the stru
ture is built from edges

(portions of perpendi
ular bise
tors between sites) and

verti
es (endpoints of edges). To represent a Voronoi

diagram in a 
omputer, any standard data stru
ture

for storing geometri
 graphs will do. Nonetheless, sev-

eral tailor-made representations have been developed,

the most popular one being the quad-edge data stru
-

ture. Simple graph-theoreti
al arguments show that

there are at most 3n�6 edges and 2n�4 verti
es for n

sites. In other words, the storage requirement is only

O(n), whi
h gives one more reason for the pra
ti
al

appli
ability of Voronoi diagrams.

Continuing from our introdu
tory example, imagine

the given sites are post oÆ
es. Then, for any 
ho-

sen lo
ation of a 
ustomer, the 
ontaining Voronoi re-

gion makes expli
it the post oÆ
e 
losest to him/her.

More abstra
tly, by performing point lo
ation in the

data stru
ture 'Voronoi diagram', the nearest neighbor

site of any query point 
an be retrieved qui
kly. (In

fa
t, in O(log n) time. This is optimal by a mat
hing

information-theoreti
 bound). Similarly, sites may rep-

resent department stores, and Voronoi neighborhood {

witnessed by diagram edges { will indi
ate stores in

strongest mutual in
uen
e (or 
ompetition). Apart

from e
onomi
s, this basi
 �nding has far-rea
hing ap-

pli
ations in biologi
al and physi
o-
hemi
al systems.

On the other hand, Voronoi verti
es are pla
es where

the in
uen
e from sites rea
hes a lo
al minimum { a

fa
t of interest in fa
ility lo
ation.

Similar observations apply to the roboti
s s
enery:

sites are snapshots of moving robots, and danger of


ollision is most a
ute for the 
losest pair. Moreover,

when planning a 
ollision-free motion of a robot among

a given set of obsta
le sites, sti
king to the boundaries

of Voronoi regions (that is, moving along Voronoi edges

and verti
es) will keep the robot o� the obsta
les in a

best possible way. (This is known as the retra
tion

approa
h in motion planning.)

Numerous other appli
ations of Voronoi diagrams

exist, one notable being geometri
 
lustering. The

grouping of data sites into a 
luster stru
ture is re-


e
ted by their Voronoi regions. (For instan
e, dense


lusters give rise to regions of small area.) Even more
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important is the fa
t that prominent types of optimal


lusterings are indu
ed by Voronoi diagrams, namely

by partition with regions (whi
h are not ne
essarily de-

�ned by the data sites to be 
lustered).

Two important and beautiful geometri
 stru
tures


annot be hidden at this point. Firstly, any shortest


onne
tion network for the sites (think of a road or a

ele
tri
ity network) will solely 
onne
t sites whi
h are

Voronoi neighbors. Se
ondly, the graph 
onne
ting all

the neighbored sites is a triangular network, 
alled the

Delaunay triangulation. Among all possible ways to

build a triangular irregular network (TIN) the Delau-

nay triangulation is provably optimum, in several re-

spe
ts 
on
erning the shape and size of its triangles (or

tetrahedra, when it 
omes to higher dimensions). It is

for this reason that Delaunay triangulations have been

extensively used in surfa
e generation, solid modeling,

and related areas.

Beside shortest 
onne
tion networks (or minimum

spanning trees, as they are 
alled in 
omputational

geometry) there are several other 
lasses of geometri


neighborhood graphs whi
h are 
ontained in the Delau-

nay triangulation: �-shapes (a tool in surfa
e model-

ing), �-skeletons (with appli
ations to the famous and

still unsettled minimum-weight-triangulation prob-

lem), Gabriel graphs (geographi
 information sys-

tems (GIS)), and nearest-neighborhood graphs (pat-

tern re
ognition).

Algorithms designer's playground

Methods for 
onstru
ting Voronoi diagrams are as old

as their use in the diverse areas of natural s
ien
es.

Of 
ourse, the �rst diagrams have been drawn with

pen
il and ruler. At these early times, people already


omplained about ambiguities if the sites 
ome in a


o-
ir
ular fashion. Nowadays, where sophisti
ated,

eÆ
ient, and pra
ti
al 
onstru
tion algorithms exist,

robustness in the 
ase of degenerate input sites is still

an issue, and mu
h of the program designers work goes

into the implementation of 'spe
ial 
ases'. The heart of

an algorithm, however, is the underlying paradigmati


te
hnique, and rarely a problem has been better a play-

ground for algorithms design than the 
omputation of

a Voronoi diagram.

Beside other intuitive 
onstru
tion rules, in
remen-

tal insertion has been among the �rst algorithmi
 te
h-

niques applied to Voronoi diagrams. This te
hnique

is well known from InsertionSort, a simple sorting

method that maintains a sorted list during the inser-

tion of items. In our 
ase, insertion of a site means

integrating its Voronoi region into the diagram 
on-

stru
ted so far { a pro
ess that involves the 
onstru
-

tion of new and the deletion of old parts. Though the

approa
h stands out by its simpli
ity and obvious 
or-

re
tness, the resulting runtime may be bad: �nding a

pla
e to start the insertion is tri
ky, and many already


onstru
ted parts may have to be deleted lateron. It

required the advent of randomization to give this ap-

proa
h an eÆ
ien
y guarantee. To be more spe
i�
, in-

serting n sites in random order leads to an (expe
ted)

runtime of O(n logn) whi
h is provably optimal. And

only (almost-)optimal algorithms 
ome up to a big ad-

vantage of the data stru
ture Voronoi diagram: the

linear storage requirement, O(n).

"The intrinsi
 potential of Voronoi diagrams

lies in their stru
tural properties, in the ex-

isten
e of eÆ
ient algorithms for their 
on-

stru
tion, and in their adaptability."

From: Handbook of Computational Geom-

etry [5℄, Chapter V.

Though the an
ient Romans de�nitely knew about

the power of "divide et impera", its algorithmi
 ana-

log divide & 
onquer is often 
onsidered a less intuitive

te
hnique. It a
hieves eÆ
ien
y by splitting the prob-

lem at hands, then solving the subproblems separately

(and re
ursively), and �nally merging the solutions.

Voronoi diagrams are well suited to this atta
k. After

presorting the sites (in x-dire
tion, say) the merging

of two subdiagrams 
an be done in O(n) time, whi
h


al
ulates to a total runtime of O(n logn) by the re
ur-

ren
e relation T (n) = 2 � T (

n

2

) + O(n). Divide & 
on-

quer provided the �rst optimal algorithm for Voronoi

diagrams, but 
ertain pe
uliarities are buried in its im-

plementation. On the other hand, it is a 
andidate for

eÆ
ient parallelization.

Two more optimal 
onstru
tion te
hniques are

known, both being spe
i�
 to geometry. The plane-

sweep te
hnique sweeps the plane 
ontaining the n in-

put sites with a verti
al line L, from left to right, say.

Thereby, it maintains the invariant that all parts of

the obje
t to be 
onstru
ted, whi
h lie to the left of

L, have already been 
ompleted. In this way, a 2D

stati
 problem (the 
onstru
tion of a Voronoi diagram)

is translated into a 1D dynami
 problem (the handling

of the intera
tions near the sweep line). When utilizing

the advan
ed data stru
tures 'priority queue' and 'di
-

tionary', this event-driven algorithm runs in O(log n)

time per event, the number of whi
h is proportional to

the size of a Voronoi diagram, O(n).

Finally, geometri
 transformation is an elegant tool

to gain algorithmi
 eÆ
ien
y, via mapping a given

problem to a better understood (and preferably solved)
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one. Its appli
ation to Voronoi diagrams is des
ribed

in the next paragraph.

Ba
k to geometry

Figure 2 gives a 
avor of how proximity in 2D may

be expressed by 
onvexity in 3D. The surprising ob-

servation that a 2D Voronoi diagram is nothing but

a proje
ted 
onvex 3D polyhedron opens our eyes {

and a door to new 
onstru
tion methods. Polytope

theory tells us to look for the geometri
 dual of that

polyhedron (whi
h now is the 
onvex hull of n points

in 3D), and indeed there is a simple rule to obtain

these hull points dire
tly from the given Voronoi sites:

proje
t them onto the paraboloid of rotation. The


areful reader may noti
e that this very 
onvex hull

proje
ts ba
k to the afore-mentioned Delaunay trian-

gulation of the sites in the plane. Convex hull algo-

rithms are well established in 
omputational geometry,

and pra
ti
al and robust implementations (running in

time O(n logn) in 3D) are available.

Noteworthy more is hidden in the geometri
 rela-

tion mentioned above. Firstly, the theory of 
onvex

polytopes allows us to exa
tly analyze the number of

individual 
omponents of a Voronoi diagram. This is a

highly non-trivial task in three and higher dimensions;

fa
es of various dimensions (verti
es, edges, fa
ets, et
.)

have to be 
ounted in a thorough analysis of the stor-

age requirement. Se
ondly, a 
onne
tion to hyper-

plane arrangements is drawn, that is of importan
e

when Voronoi diagrams are modi�ed to order k. Here

subsets of k sites get assigned their Voronoi regions;

they 
arry the information for eÆ
iently performing

k-nearest neighbor sear
h.

Finally, a natural generalization arises in the light

of the geometri
 transformation shown in Figure 2.

Power diagrams, de�ned by 
ir
ular or spheri
al sites,

and retaining the 
onvexity of the regions. They 
onsti-

tute exa
tly those diagrams that are proje
ted bound-

aries of 
onvex polyhedra; Voronoi diagrams are spe
ial


ases where 
ir
les degenerate to point sites. (When

writing his do
toral thesis, the se
ond author was ex-


ited when dis
overing the beauty and versatility of

this stru
ture; its name has been 
oined after one of

his papers [3℄.) Power diagrams in 3D are related to

important types of Voronoi diagrams in 2D, and thus

provide a uni�ed view of these stru
tures. Among

them are diagrams for sites with individual weights,

expressing their 
apability to in
uen
e the neighbor-

hood. These 
exible models are used in other areas

of s
ien
e (Johnson-Mehl model in 
hemi
s and Ap-

polonius model in e
onomi
s). Even the mathemati-


al physi
ist Clerk Maxwell in 1864 (impli
itly) payed

p

Figure 3: Power diagram for 6 
ir
les

attention to power diagrams: he observed that a dia-

gram re
e
ts the equilibrium state of a spider web just

if the diagram 
omes from proje
ting a polyhedron's

boundary: : :

A novel 
on
ept

In order to meet pra
ti
al needs, Voronoi diagrams

have been modi�ed and generalized in many ways over

the years. Con
epts subje
t to 
hange have been the

shape of the sites (standard: points), the distan
e fun
-

tion used (standard: Eu
lidean metri
), or even the

underlying spa
e (standard: the plane or 3-spa
e). It

is not appropriate here to give a systemati
 treatment

of the various existing types of Voronoi diagrams. In-

stead, we would like to report on a parti
ular type,

whi
h has been re
ently introdu
ed and highlighted

with su

ess by our resear
h group.

Let us aid the reader's intuition by giving a physi
al

interpretation of Voronoi diagrams. Imagine a hand-

ful of small pebbles being thrown into a quiet pond,

and wat
h the 
ir
ular waves expanding. The pla
es

where waves interfere are equidistant from the peb-

bles' hitting points. That is, a Voronoi diagram is pro-

du
ed. (This is the so-
alled growth model in biology

and 
hemi
s.)

Straight skeletons [1℄ are diagrams indu
ed by wave-

fronts of more general shape. Consider a set, F , of

simple polygons (
alled �gures) in the plane. Ea
h

�gure in F is asso
iated with a birth time, and an

individual speed for ea
h of its edges to move in a self-

parallel fashion. In this way, ea
h �gure sends out a

polygonal wavefront (a
tually two, an external and an

internal one). The straight skeleton of F now is the

interferen
e pattern of all these wavefronts, under the
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requirement that their expansion 
eases at all points

where wavefronts 
ome into 
onta
t or self-
onta
t.

During their propagation, the wavefront edges tra
e

out planar and 
onne
ted Voronoi diagram-like regions.

Wavefront verti
es move at (speed-weighted) angle bi-

se
tors for edges, and thus tra
e out straight line seg-

ments. We originally intended straight skeletons as a

linearization of the medial axis , a widely used inter-

nal stru
ture for polygons. (The medial axis is just

the Voronoi diagram for the 
omponents of a polygon's

boundary. It 
ontains paraboli
ally 
urved edges if the

polygon is non-
onvex.) In numerous appli
ations, e.g.,

in pattern re
ognition, roboti
s, and GIS, skeletonal

partitions of polygonal obje
ts are sought that re
e
t

shape in an appropriate manner. The straight skeleton

naturally suits these needs; see Figure 4. It is superior

to the medial axis also be
ause of its smaller size.

Figure 4: Internal straight skeleton

Curiously enough, straight skeletons do not ad-

mit a distan
e-from-site de�nition, in general (and

therefore are no Voronoi diagrams in the stri
t

sense). This 
ounter-intuitive �nding outrules the

well-developed ma
hinery for 
onstru
ting Voronoi dia-

grams; merely a simulation of the wavefront expansion

will work. The theoreti
ally most eÆ
ient implementa-

tion runs in roughly O(n

p

n) time, and a triangulation-

based method that maintains 'free-spa
e' exhibits an

O(n logn) observed behavior for many inputs.

Straight skeletons apply to seemingly unrelated situ-

ations. This partially stems from a ni
e 3D interpreta-

tion, whi
h visualizes the movement of ea
h wavefront

edge as a fa
et in 3D. The expansion speed of the edge

determines the slope of the fa
et. In this way, ea
h

�gure gives rise to a polyhedral 
one in 3D, whose in-

terse
tion with the plane is just the �gure itself. The

surfa
e made up from these 
ones proje
ts verti
ally to

the straight skeleton. See Figure 5 for an illustration.

A problem from ar
hite
tural design is 
onstru
ting

a roof that rises above a given outline of a building's

Figure 5: Terrain re
onstru
ted from river map

groundwalls. This task is by no means trivial as roofs

are highly ambigous obje
ts. A more general question

is the re
onstru
tion of geographi
al terrains (say, from

a given river map with additional information about el-

evation and slope of the terrain), whi
h is a 
hallenging

problem in GIS. The straight skeleton o�ers a promis-

ing approa
h to both questions. Of parti
ular elegan
e

is the following property: the obtained 3D surfa
es are


hara
terized by the fa
t that every raindrop that hits

the surfa
e fa
et f runs o� to the �gure edge that de-

�nes f . This applies to the study of rain water fall and

the predi
tion of 
oodings.

Finally, there is an appli
ation to a 
lassi
al ques-

tion in origami design that deserves mention: is every

simple polygon the silhouette of a 
at origami? An

aÆrmative answer has been found re
ently. The used

method is based on 
overing 
ertain polygonal rings

that arise from shrinking the polygon in a straight

skeleton manner. That is, our 
on
ept of straight skele-

ton allows for a relatively simple proof of this long-

standing open 
onje
ture in origami theory.

: : : and the 
ity Voronoi diagram

Whereas the standard Voronoi diagram has interpre-

tations in both the wavefront model and the distan
e-

from-site model, this is not true for other types. Re-

member that straight skeletons 
annot be de�ned in

the latter model. Conversely, the o

uran
e of dis
on-

ne
ted Voronoi regions (as in the Apollonius model,

where distan
es are weighted by multipli
ative 
on-

stants) disallows an interpretation in the former model.

We 
on
lude this arti
le with a non-standard and de-

manding stru
ture, that we have investigated re
ently,

and that bridges the gap between both models.

The stru
ture in question { we 
alled it the 
ity

Voronoi diagram [2℄ { is just the diagram mat
hing the

motivating example in the introdu
tion. Re
all that we

are given a 
ity transportation network that in
uen
es

proximity in the plane. We model this network as a
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Figure 6: A 
omplex transportation network C (bold segments) and the 
ity Voronoi diagram (full edges) for a

set S of �ve sites s
attered among C. The diagram is re�ned by straight skeleton edges (dashed). Quiet ranges

o

ur in the network, shown as dotted subsegments. They 
ould be 
losed down without delaying any qui
kest

path to S. Also, one site is isolated from the network (the rightmost site s), in the sense that from nowhere in

its region the qui
kest path to s takes advantage of C.

planar straight-line graph C with horizontal or verti-


al edges. No other requirements are posed on C { it

may 
ontain 
y
les and even may be dis
onne
ted.

By assumption, we are free to enter C at any point.

(This is not unrealisti
 for a bus system with densely

arranged stops, and exa
tly meets the situation for

shared taxis whi
h regularly drive on predetermined

routes and will stop for every 
ustomer.) On
e having

a

essed C we travel at arbitrary but �xed speed v > 1

in one of the (at most four) available dire
tions. Move-

ment o� the network takes pla
e with unit speed, and

with respe
t to the L

1

(Manhattan) metri
. (Again,

this is realisti
 when walking in a modern 
ity).

Let now d

C

(x; y) be the duration for qui
kest route

(whi
h of 
ourse may use the network) between two

given points x and y. When viewed as a distan
e fun
-

tion, this '
ity metri
' d

C

indu
es a Voronoi diagram as

follows. Ea
h site s in a given point set S gets assigned

the region

reg(s) = fx j d

C

(x; s) < d

C

(x; t);8t 2 S n fsgg:

Setting equality in this term gives the bise
tor of two

sites s and t. This is the lo
us of all points whi
h 
an

be rea
hed from s and t within the same (minimum)

time. Bise
tors are polygonal lines whi
h, however,

show undesirable properties in view of an algorithmi



onstru
tion of the 
ity Voronoi diagram. By C's in-


uen
e, they are of non-
onstant size, and even worse,

they may be 
y
li
. These are main obsta
les for ef-

�
iently applying divide & 
onquer and randomized

in
remental insertion.

The key for a proper geometri
 and algorithmi
 un-

derstanding of the 
ity Voronoi diagram lies in the 
on-


ept of straight skeletons. Let us ignore the network
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C for a moment. The L

1

-metri
 Voronoi diagram for

the sites in S already is a straight skeleton. Its �g-

ures are the L

1

unit 
ir
les (diamonds) 
entered at the

sites. How does the network C in
uen
e their wave-

fronts? Their shapes 
hange in a pre-determined man-

ner, namely whenever a wavefront vertex runs into a

network segment, or a wavefront edge slides into a net-

work node. A new diamond will appear at su
h a pla
e,

along with tangent sharp-angled wedges whose peaks

move at speed v in all possible dire
tions on C. All

these diamonds and wedges are taken as new �gures.

Together with the original L

1

diamonds, their straight

skeleton now gives the 
ity Voronoi diagram.

In fa
t, the obtained skeleton 
ontains a lot more

edges (and information). Given a query point q, not

only the �rst site s in S rea
hable from q 
an be re-

trieved, but rather the qui
kest route from q to s itself

{ a polygonal path of possibly high 
omplexity. Still,

this re�ned 
ity Voronoi diagram has a size of only

O(n + 
), where n and 
 denote the 
omplexity of S

and C, respe
tively. (This important property is lost

for non-isotheti
 networks or for the Eu
lidean metri
;

the size blows up to quadrati
.)

Two major diÆ
ulties have to be mastered before

arriving at an eÆ
ient 
onstru
tion algorithm. Firstly

the set of �gures, when 
onstru
ted from S and C as

sket
hed above, 
ontains high redundan
y for various

reasons. Se
ondly, when having available the set of

O(n+ 
) non-redundant �gures, a fast way of 
omput-

ing their straight skeleton has to be found. The se
ond

goal is a
hieved by modifying the �gures so as to �t into

the framework of so-
alled abstra
t Voronoi diagrams.

This general and elegant framework extra
ts the de-

sired algorithmi
 properties of a Voronoi diagram. It is

based on an admissible system of bise
tors, rather than

on some distan
e from the sites. For example, for ea
h

triple of abstra
t sites, any point 
ommon to two bise
-

tors must also belong to the third. (This property is

trivially ful�lled for any distan
e-de�ned diagram, but

is violated by straight skeletons, in general. 'No-mans

lands' belonging to no site are the 
onsequen
e.) In our


ase, a 
areful adaption of the �gures allows a redu
tion

to abstra
t Voronoi diagrams. The re�ned 
ity Voronoi

diagram then 
an be 
onstru
ted in O(n logn+


2

log 
)

time and optimal spa
e.
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