
Operating Systems: Three Easy Pieces - reading notes

Contents

About these reading notes 2

Chapter 13: The abstraction: Address spaces 2
13.1 Early systems . 2
13.2 Multiprogramming and time sharing . 2
13.3 The address space . 3
13.4 Goals . 3
13.5 Summary . 3

Franklin Bristow 1

Operating Systems: Three Easy Pieces - reading notes

About these reading notes

These aremy ownpersonal reading notes that I took (me, Franklin) as I read the textbook. I’m providing
these to you as an additional resource for you to use while you’re reading chapters from the textbook.
These notes do not stand alone on their own— youmight be able to get the idea of a chapter while
reading these, but you’re definitely not going to get the chapter by reading these alone.

These notes are inconsistently all of the following:

• Me summarizing parts of the text.
• Me commenting on parts of the text.
• Me asking questions to myself about the text.

– …and sometimes answering those questions.

The way that I would expect you to read or use these notes is to effectively permit me to be your inner
monologuewhile you’re reading the textbook. As you’re reading chapters and sectionswithin chapters,
you can take a look at what I’ve written here to get an idea of how I’m thinking about this content.

Chapter 13: The abstraction: Address spaces

• Alright, file systems were fun, but let’s go all the way back to processes now.

13.1 Early systems

• Thinking about what your processes see in terms of address spaces, how does it differ from
what’s presented in figure 13.1? Does it differ fromwhat’s presented in figure 13.1?

• The authors explicitly state that “there would be one running program” in this kind of early
system. What do you think might happen if multiple processes were allowed to run in this
environment? What kinds of things could go wrong?

13.2 Multiprogramming and time sharing

• Yay, scheduling!
• Multiprogramming, yielding the processor on I/O, hooray!
• “The notion of interactivity became important” — can you imagine using a computer where you
had to write your programs entirely on paper, then encode them on some other kind of physical
medium, then give the program to someone else to run?

Franklin Bristow 2

Operating Systems: Three Easy Pieces - reading notes

• “In particular, allowingmultiple programs to reside concurrently in memory makes protection
an important issue” – it seems obvious that we wouldn’t want a process interacting with the
memory that belongs to another process, butwhy not? What kinds of things do you think could
happen if the OS were to allow that to happen?

• Before reading the next part, can you think of any issues with getting a process to figure out
what its ownmemory region is? Noting specifically that the address space in figure 13.2 for (for
example) process A does not start at 0.

13.3 The address space

• NOTE: address space != actual memory. We’re going to keep seeing this, but “it is the running
program’s view of memory in the system”.

• “The code of the program (the instructions) have to live in memory somewhere”; this makes
sense (a program is inert on disk, a process is running), but make sure that you can mentally
convince yourself that this is true.

• Heap and stack are separated from each other. Why do you think that is?
• In figure 13.3 we’re showing a 16KB address space. In terms of the first point here, that means
that actual memory might be much larger.

• Important: “… somehow the OS, in tandem with some hardware support.” This is a very
common theme when talking about operating systems: Software itself can’t do everything, and
neither can hardware, so the two have to work together to get things done.

13.4 Goals

• Transparency: when was the last time you cared about where, physically, in memory your
programwas running?

• Efficiency: this is a topic that’s getting into hardware (TLBs).
• Protection: the authors are using two different words here, “protect” and “isolate”. What’s the
difference?

13.5 Summary

• Try actually running the code listing in the aside on pg 7. Run it on the samemachine multiple
times, run it on differentmachines (e.g., rodents and aviary and your ownmachine). Is the output
always the same? Different? Based on the description here, what would you have expected?

Franklin Bristow 3

	About these reading notes
	Chapter 13: The abstraction: Address spaces
	13.1 Early systems
	13.2 Multiprogramming and time sharing
	13.3 The address space
	13.4 Goals
	13.5 Summary

