
Operating Systems: Three Easy Pieces - reading notes

Contents

About these reading notes 2

Chapter 16: Segmentation 2
16.1 Segmentation: Generalized Base/Bounds . 2
16.2 Which segment are we referring to? . 3
16.3 What about the stack? . 4
16.4 Support for sharing . 4
16.5 Fine-grained vs coarse-grained segmentation . 5
16.6 OS Support . 5

Franklin Bristow 1

Operating Systems: Three Easy Pieces - reading notes

About these reading notes

These aremy ownpersonal reading notes that I took (me, Franklin) as I read the textbook. I’m providing
these to you as an additional resource for you to use while you’re reading chapters from the textbook.
These notes do not stand alone on their own— youmight be able to get the idea of a chapter while
reading these, but you’re definitely not going to get the chapter by reading these alone.

These notes are inconsistently all of the following:

• Me summarizing parts of the text.
• Me commenting on parts of the text.
• Me asking questions to myself about the text.

– …and sometimes answering those questions.

The way that I would expect you to read or use these notes is to effectively permit me to be your inner
monologuewhile you’re reading the textbook. As you’re reading chapters and sectionswithin chapters,
you can take a look at what I’ve written here to get an idea of how I’m thinking about this content.

Chapter 16: Segmentation

• “Segmentation”. That’s a word you’ve seen before. Uh, a lot probably. Where have you seen that
word before?

• How do we support virtual address spaces that are larger than physical memory? We had
questions like this from the last couple of chapters, nowwe’re going to figure out (a less than
ideal and currently unused) solution to this problem!

16.1 Segmentation: Generalized Base/Bounds

• Basic idea: don’t allocate the full address space, allocate the space you need for the different
known “segments” of memory that your process needs (like code, heap, and stack), have each of
those segments be relocatable by adding hardware support for 𝑛 different pairs of base/bounds
registers for 𝑛 different segments.

– Note that these segments are explicitly not the same size.
– What kind of problems can you predict happening with segments that differ in size?

• The hardware support here seems to know a lot about what’s going on with a program in that
it assumes that the program uses a heap. What if your program doesn’t use dynamic memory

Franklin Bristow 2

Operating Systems: Three Easy Pieces - reading notes

allocation? What do you think the OS will do in terms of allocating a segment for heap if you
never try to use dynamic memory allocation?

– Extending on this, figure 16.3 shows 3 sets of registers. How many sets of registers is
reasonable? Is it reasonable to assume that 3 will always be enough? Is it reasonable to
assume that all operating systems will forever use this idea of 3 different code regions?

• When we allocated the full virtual address space for a process, we had this issue of internal
fragmentation. One idea we saw from our classmates to solve the problem was to put
code/heap/stack regions into the middle of the virtual address space and grow outwards. This
was a great idea, but internal fragmentation still remained because we were allocating the full
address space.

– Does the idea of a sparse address space resemble the proposed solution above? Before you
read on past pg 3, does sparse address spaces solve the issue of internal fragmentation?

• On the top of pg 4 is an extraordinarily important aside.

– Read it first, then watch this video: https://www.youtube.com/watch?v=03QuygM0YB8

• Before you get to section 16.2 “Which segment are we referring to”, starting at the top of page 4,
try to predict: given an address, howmight you figure out which base and bounds registers to
use? Would the hardware test them all? Something else?

16.2 Which segment are we referring to?

• If you have taken COMP 3370 (or some equivalent course in a different faculty), this process of
splitting an address up into parts is directly related to cache memory implementations (e.g., the
tag, offset, index, etc).

• If we use the top 2 bits to indicate which segment we’re referring to, howmany segments could
we have? What if we used 3 bits? 𝑛 bits?

• In short: themappingof segment tobase/bounds registerpairs is something theOSandhardware
would have to agree on. The hardware doesn’t know the difference (necessarily) between the
“heap” and the “stack”, it just knows that there are different segments. The OS would have
to keep track of the semantic meaning of each of the segments, and configure the hardware
such that “01” (or whatever it chooses) should use one pair of base/bounds registers, “00” (or
whatever it chooses) should use another pair of base/bounds registers, etc

• On the bottom of pg 5: “Some systems put code in the same segment as the heap and thus use
only one bit to select which segment to use”.

Franklin Bristow 3

https://www.youtube.com/watch?v=03QuygM0YB8

Operating Systems: Three Easy Pieces - reading notes

– This is actually what we sawwhen we looked at themanual page for brk and sbrk, the
“data segment” being a combined code segment and heap segment.

– Can you think of any issueswith this solution? (hint: should the heap be executable? code?)
– Why would they choose the heap and not the stack? (hint: look at the direction that each
of those segments “grows”)

• On the bottom of pg 5

Specifically, each segment is limited to amaximum size, which in our example is 4KB

Can you convince yourself based on how these addresses are separated into “segment” and
“offset” that this is true?

– In other words: howmany addresses can 12 bits (the number of bits in the segment) refer
to?

16.3 What about the stack?

• OK, now things are going to getweird.

– The arithmetic is straightforward (not easy, straightforward), but your mind might be
throwing exceptions while you’re reading it. Take the time tomake sure you get this idea of
computing negative offsets.

– I found this arithmetic really confusing the first time I read it, I didn’t quite see why we had
to do this offset - size thing to get a negative offset.

– The base for the stack segment in physical memory (in figure 16.2) is at 28KB, but if you
imagine the stack as an array:

* the 0th stack frame (main) is at 28KB − 0 × sizeof(stack frame),

* the 1st stack frame is at 28KB − 1 × sizeof(stack frame),

* the 2nd stack frame is at 28KB − 2 × sizeof(stack frame),

* the 3rd stack frame is at 28KB − 3 × sizeof(stack frame), …

– The $offset − sizeof(stack segment)” to get a negative offset is effectively doing the same
arithmetic.

• Serious question: Why don’t we all just agree to let the stack grow forwards like the heap?

16.4 Support for sharing

• What kind of codememory do you think would be shared between processes?
• Why do we have to add bits (protection bits) to sharememory? Isn’t that counterintuitive?

Franklin Bristow 4

Operating Systems: Three Easy Pieces - reading notes

• The authors are again using the terms protection and isolation here. Do they mean the same
thing as we saw last time?

16.5 Fine-grained vs coarse-grained segmentation

• OK, so this is addressing a question that we saw earlier.

• Remember this term “segment table”, the idea is going to come back again real soon.

• Why on earth would we evenwant fine-grained segmentation?

… expected a compiler to chop code and data into separate segments which the OS and
hardware would then support.

What kind of maniac would come up with a system like that? Compilers supporting OS-specific
ideas?

16.6 OS Support

• Yay, we solved internal fragmentation. �

• Surprise: when we havemultiple segments instead of a fully-allocated address space, the OS
still has to domany of the same things!

• Libraries performing memory allocation:

the memory-allocation library will perform a system call to grow the heap

When you call malloc(), you’re almost always using the glibc implementation of malloc(),
but musl has its own allocator, and there are also dynamic memory allocators that are entirely
separate from standard libraries, like jemalloc andmimalloc.

• Check out man sbrk, this is a real thing. It also kind of means that you could write your own
memory allocator.

• We talked about external fragmentation last week, now we’re going to see it rear it’s ugly head.

– Is external fragmentation the same thing that happens with file systems on disk?

• Compacting memory:

One solution to this would be to compact physical memory by rearranging the existing
segments.

Franklin Bristow 5

Operating Systems: Three Easy Pieces - reading notes

Depending on when you took COMP 2160, this is literally the same word we used to describe the
feature of our compacting garbage collector that would shuffle allocatedmemory back to the
beginning of the array. In fact, this entire idea of virtual addresses aligns very closely with that
assignment, specifically about using an ID or tag instead of an actual address to interact with the
memory allocator.

• “Compaction also (ironically) makes requests to grow existing segments hard to serve”

– Is this ironic? https://www.youtube.com/watch?v=Jne9t8sHpUc
– Why is this true? Why does compactingmemory segmentsmake growing segments harder?

• Tracking free memory sounds like a “hard problem” ™; “There are literally hundreds of ap-
proaches that people have taken”. Maybe that means it’s easy? How would you track free
memory and decide which free space you should allocate a request in? Does this remind you of
any algorithms?

Franklin Bristow 6

https://www.youtube.com/watch?v=Jne9t8sHpUc

	About these reading notes
	Chapter 16: Segmentation
	16.1 Segmentation: Generalized Base/Bounds
	16.2 Which segment are we referring to?
	16.3 What about the stack?
	16.4 Support for sharing
	16.5 Fine-grained vs coarse-grained segmentation
	16.6 OS Support

