
Operating Systems: Three Easy Pieces - reading notes

Contents

About these reading notes 2

Chapter 17: Free-Spacemanagement 2
17.1 Assumptions . 2
17.2 Low-level mechanisms . 3
17.3 Basic strategies . 4
17.4 Other approaches . 5
17.5 Summary . 6

Franklin Bristow 1

Operating Systems: Three Easy Pieces - reading notes

About these reading notes

These aremy ownpersonal reading notes that I took (me, Franklin) as I read the textbook. I’m providing
these to you as an additional resource for you to use while you’re reading chapters from the textbook.
These notes do not stand alone on their own— youmight be able to get the idea of a chapter while
reading these, but you’re definitely not going to get the chapter by reading these alone.

These notes are inconsistently all of the following:

• Me summarizing parts of the text.
• Me commenting on parts of the text.
• Me asking questions to myself about the text.

– …and sometimes answering those questions.

The way that I would expect you to read or use these notes is to effectively permit me to be your inner
monologuewhile you’re reading the textbook. As you’re reading chapters and sectionswithin chapters,
you can take a look at what I’ve written here to get an idea of how I’m thinking about this content.

Chapter 17: Free-Spacemanagement

• Don’t let “Page 1 of 18” scare you! There are many pages with nearly full-page diagrams.
• “Let’s take a look at some algorithms for free-space management”, then quickly decide that it’s
easier touse fixed-size things (pages) andmostly forget about the ideaof free-spacemanagement.

17.1 Assumptions

• Always with the assumptions.
• Note that this chapter assumes you’re familiar with the memory management API (malloc and
free). I don’t know how you couldn’t be at this point, but if you need a refresher, you can read
chapter 14.

• “Note the implementation of this interface: the user, when freeing the space, does not inform
the library of its size” —…? Think about that for a second. When using malloc and free, have
you ever cared about telling free howmuch space you’re freeing?

• Dynamic memory allocation is kind of a split responsibility between the standard library and
the OS. In fact, all of the things this chapter talks about apply both to the OS’s management of
free memory (physical memory) and your dynamic allocator of choice’s free memory (virtual
memory within the heap).

Franklin Bristow 2

Operating Systems: Three Easy Pieces - reading notes

– Why not just make this an OS responsibility? Why aren’t malloc and free system calls?

• “Allocators could of course also have the problem of internal fragmentation” — do you think
your allocator cares about internal fragmentation? What even is internal fragmentation to a
memory allocator library? Should amemory allocator library care about internal fragmentation?

• “We’ll also assume that once memory is handed out to a client, it cannot be relocated to another
location in memory” ← note that this is specifically talking about “relocated to another virtual
address”, the OS is free to move the segment in physical memory wherever it wants, as long as it
correctly updates the base/bounds registers for that segment.

• Again, check out man sbrk and think about how you could write your ownmemory allocator
using this system call.

17.2 Low-level mechanisms

Splitting and coalescing

• A free list is literally a list, and you can see a visual depiction of that on the bottom of pg 3.

– This diagram alone looks extraordinarily similar to an assignment in COMP 2160. Ask me
(or anyone else in the class) about it if you don’t recognize this image.

• This idea of splitting and coalescing is pretty neat, particularly in terms of how the list changes.
The authors don’t include what the physical memory allocation looks like corresponding to
the list as regions are split and coalesced, take the time to draw out how this physical memory
changes as the list changes.

Tracking the size of allocated regions

• OK, this idea is actually super cool. Not lame cool, but super cool. This same idea is actually
used in some C string management libraries (“Cello”, a C library liberally uses this pattern:
http://libcello.org/).

How would you use this idea to build a “string library” in C?

• Why would a library that uses this approach check and confirm a “magic number”? (hint: what
happens when you free a pointer that you didn’t get back from malloc? What would free
even do if you give it a pointer you didn’t get back from malloc?)

Embedding a free list

• “In a more typical list, when allocating a new node, you would just call malloc()… . Unfortu-
nately, within the memory-allocation library, you can’t do this!” — Think about this for a second,

Franklin Bristow 3

http://libcello.org/

Operating Systems: Three Easy Pieces - reading notes

andmake sure that you understandwhy this is true. Why can’t a dynamic allocation library call
malloc()?

• mmap()? What’s that? Check out man mmap.

– What does this have to do with the heap?

• What the heck is going on here? This list doesn’t look anything like what I imagined a list to look
like! Where are the circles?!

– Seriously, though: why is this list embedded within the free space? Why wouldn’t they
allocate a chunk at the beginning and use that for the list?

– What they’re doing here is directly required by this idea that the dynamicmemory allocator
doesn’t have its own dynamic memory allocator to fall back on (insert Xzibit here).

• The authors describe figure 17.7 as “a bigmess”. I would agreewith them. When should amemory
allocator like this decide to coalesce memory?

Growing the heap

• Again, check out this system call sbrk. What does it do? What does sbrk stand for as an
acronym or abbreviation?

• “To service the sbrk request, the OS finds free physical pages”…what does this have to do with
segments?

17.3 Basic strategies

• As you’re reading about each of these different policies, think about this: are these in any way
related to the scheduling policies that we looked at? Thinking about time and space this way is a
little bit weird, but definitely think about it.

• For each of the policies, try to imagine, or, you know, draw a picture of, the worst-case scenario
for the policy.

• Is there a “best” policy of the ones that are described here? What does “best” evenmean in this
context? With scheduling policies we had some pretty goodmetrics, what are the metrics here?

• These policies are all fairly straightforward, so outside of “Worst fit”, there aren’t any questions
about them.

Best fit

Franklin Bristow 4

Operating Systems: Three Easy Pieces - reading notes

Worst fit

• Wait, what? Worst fit? Doesn’t “worst” imply “bad”?
• Worst fit is related to best fit in that it’s sort of the opposite. Are these policies similar in any
other ways?

First fit

Next fit

Examples

17.4 Other approaches

Segregated lists

• How would a dynamic memory allocator knowwhat a “popular-sized” request is? Think about
the memory API (the interface; how it would get that information), and think about what the
memory allocator could use that information in its implementation.

• Is this idea effectively the same as having fixed size blocks in terms of what we saw with virtual
memory implementations?

• “when the kernel boots up, it allocates a number of object caches for kernel objects that are
likely to be requested frequently” — that sounds awfully familiar. What is this idea similar to?

• Do you think this idea is at all related to the MLFQ scheduling policy? How is it related?

Buddy allocation

• https://www.youtube.com/watch?v=9jyCfRHumHU
• This whole idea of dividing spaces by two is an idea that comes up constantly in CS. Where’s
another place you’ve seen this?

– One place youmay never have seen this is in two dimensions: Quadtrees, and three dimen-
sions: Octrees

• “note that this scheme can suffer from internal fragmentation, as you are only allowed to give
out power-of-two-sized blocks.” Do the other allocation policies that you’ve seen suffer from
this problem of internal fragmentation? Why or why not?

• What kind of allocation patterns do you think would cause this policy to behave poorly? Specifi-
cally, given a 64kb chunk, what general kind of size requests would cause this policy to behave
poorly?

Franklin Bristow 5

https://www.youtube.com/watch?v=9jyCfRHumHU
https://en.wikipedia.org/wiki/Quadtree
https://en.wikipedia.org/wiki/Octree

Operating Systems: Three Easy Pieces - reading notes

Other ideas

• “Failing that, read about how the glibc allocator works”; you’re more than welcome to do that,
but know in advance that glibc source code is notoriously impenetrable to read.

– You could also read about jemalloc
– Or, uh, many others

17.5 Summary

• A lot of this sounds like it’s responsibility of a dynamic memory allocator library that’s running
in user space. What does this have to do with operating systems?

Franklin Bristow 6

http://jemalloc.net/
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation#Implementations

	About these reading notes
	Chapter 17: Free-Space management
	17.1 Assumptions
	17.2 Low-level mechanisms
	17.3 Basic strategies
	17.4 Other approaches
	17.5 Summary

