
Operating Systems: Three Easy Pieces - reading notes

Contents

About these reading notes 2

Chapter 18: Paging: Introduction 2
18.1 A simple example and overview . 2
18.2 Where are page tables stored? . 4
18.3 What’s actually in the page table? . 4
18.4 Paging: also too slow . 4
18.5 A memory trace . 4

Franklin Bristow 1

Operating Systems: Three Easy Pieces - reading notes

About these reading notes

These aremy ownpersonal reading notes that I took (me, Franklin) as I read the textbook. I’m providing
these to you as an additional resource for you to use while you’re reading chapters from the textbook.
These notes do not stand alone on their own— youmight be able to get the idea of a chapter while
reading these, but you’re definitely not going to get the chapter by reading these alone.

These notes are inconsistently all of the following:

• Me summarizing parts of the text.
• Me commenting on parts of the text.
• Me asking questions to myself about the text.

– …and sometimes answering those questions.

The way that I would expect you to read or use these notes is to effectively permit me to be your inner
monologuewhile you’re reading the textbook. As you’re reading chapters and sectionswithin chapters,
you can take a look at what I’ve written here to get an idea of how I’m thinking about this content.

Chapter 18: Paging: Introduction

• On pg 1:

… itmay beworth considering the second approach: to chop up space into fixed-size pieces.

that sounds almost the same as what we were doing originally with allocating the full address
space. What was wrong with that? How is this going to fix things for us now?

• “The Atlas” that the authors are referring to is here:

https://en.wikipedia.org/wiki/Atlas/_(computer)

• Make sure you’re keeping the terminology straight here: a page is a small piece of the virtual
address space for a process, a page frame is where that page might go in physical memory. Just
like in real life, you’ve got a picture and you put it into a picture frame.

18.1 A simple example and overview

• Looking at figure 18.1: before you get too far into this chapter, try to think about what a virtual
address is (a number), and how youmight get information from that virtual address to figure out
which page an address belongs to.

Franklin Bristow 2

https://en.wikipedia.org/wiki/Atlas/_(computer)

Operating Systems: Three Easy Pieces - reading notes

– Howmany bits might you need to represent 4 pages?

• On pg 2:

We won’t for example make assumptions about the direction the heap and stack grow and
how they are used.

but, but, but, our programs still have a heap and a stack! How can the underlying virtual memory
implementation not care about those things?

• On pg 3:

To record where each virtual page of the address space is placed in physical memory, the
operating system usually keeps a per-process data structure known as a page table.”

In terms of what you know about processes, where do you think this page table might be stored?

• The answer to our first question above (howmany bits) is at the bottom of page 3.

• Something important tonote about thediscussionhere is that the virtual address space is smaller
than the physical address space again (we have 8 page frames and 4 pages of virtual memory
per process). This is explicitly not required though, the virtual address space can be as big or
bigger than the physical size of memory.

– This idea is reinforced in the middle of page 4, where the number of bits in the virtual
address is smaller than the number of bits in a physical address.

• Be able to convince yourself that the VPN (on the bottom of pg 3) can uniquelymap each address
to a page in the virtual address space.

• Given the number of bits in a VPN (say we have 5 bits for VPN), howmany pages would we have
in virtual memory?

• Before you get much farther than page 4, try to think about this: how much of this address
translation work is the OS responsible for? Hardware?

• On page 5:

Note the offset stays the same (i.e., it is not translated), because the offset just tells us which
bytewithin the page we want.

Why isn’t the offset translated? What would it be translated to if you did translate it?

Franklin Bristow 3

Operating Systems: Three Easy Pieces - reading notes

18.2 Where are page tables stored?

• Near the top of page 6:

Instead, we store the page table for each process inmemory somewhere.

—wait a minute. We store the table that has themappings between virtual and physical memory
inmemory?

18.3 What’s actually in the page table?

• We’re starting to talk about this idea of valid bits here. Try drawing a diagram that shows the
“page table”, and how it might correspond to physical memory.

– What might that diagram look like?

• If you have already taken COMP 3370, some of this might look awfully familiar to you, both in the
context of paging and in the context of caching.

• If you’re actually interested in taking a look at the Intel Architecture Manuals, you can find them
here:

https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html

Note that these are pointing at PDFs that are bigger than textbooks, weighing in at about 60+MB
a piece.

• The aside “why no valid bit?” is a pretty nice example of hardware and the OS working together
to do something better than the hardware might be able to provide alone.

18.4 Paging: also too slow

• Try to think about howmanymemory accesses are actually required to do this lookup, consid-
ering that we have to both translate the virtual address to a physical address, then actually go
to that physical address to get the value. Add on top of that the idea that we’re also needing to
fetch an instruction, howmany additional accesses would that take?

18.5 Amemory trace

• At the top of page 10, the authors refer to objdump and otool, try them out on a program you
compile!

• This section (18.5) is slowly stepping through the answer to the question posed above for 18.4,
use this to confirm what you thought about howmanymemory accesses this would take.

Franklin Bristow 4

https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html

	About these reading notes
	Chapter 18: Paging: Introduction
	18.1 A simple example and overview
	18.2 Where are page tables stored?
	18.3 What’s actually in the page table?
	18.4 Paging: also too slow
	18.5 A memory trace

