
Operating Systems: Three Easy Pieces - reading notes

Contents

About these reading notes 2

Chapter 30: Condition Variables 2
30.1: Definition and routines . 2
30.2: The producer/consumer (bounded buffer) problem 3

A Broken Solution . 3
Better, but still broken: While, not if . 3
The Single buffer producer/consumer solution . 3
The correct producer/consumer solution . 3

30.3: Covering conditions . 4

Franklin Bristow 1

Operating Systems: Three Easy Pieces - reading notes

About these reading notes

These aremy ownpersonal reading notes that I took (me, Franklin) as I read the textbook. I’m providing
these to you as an additional resource for you to use while you’re reading chapters from the textbook.
These notes do not stand alone on their own— youmight be able to get the idea of a chapter while
reading these, but you’re definitely not going to get the chapter by reading these alone.

These notes are inconsistently all of the following:

• Me summarizing parts of the text.
• Me commenting on parts of the text.
• Me asking questions to myself about the text.

– …and sometimes answering those questions.

The way that I would expect you to read or use these notes is to effectively permit me to be your inner
monologuewhile you’re reading the textbook. As you’re reading chapters and sectionswithin chapters,
you can take a look at what I’ve written here to get an idea of how I’m thinking about this content.

Chapter 30: Condition Variables

• We skipped chapter 29 “Locked Data Structures”. If you want to see locks in practice, feel free to
take a look at that chapter (there’s as much code as text in that chapter).

• We’ve seen this idea of joining before, for both threads and processes. Now you can put a name
to this idea.

• Figure 30.2, what is this, a spin lock? Didn’t we figure out that those were “bad”?

30.1: Definition and routines

• “A condition variable is an explicit queue…” There’s that queue data structure again.

– Think back to chapter 28: we’re using a new term (condition variable), but isn’t this basically
just a lock?

• Think back to several weeks ago now: can you do this with signals? How?
• Convince yourself that the two changes to figure 30.3 that are defined in 30.4 (replacing the
thr_exit and thr_join functions) can result in a condition where the parent gets stuck
waiting forever.

Franklin Bristow 2

Operating Systems: Three Easy Pieces - reading notes

30.2: The producer/consumer (bounded buffer) problem

• Can you think of any real-life analogy for what the authors describe as the producer/consumer
problem?

• The authors use an unnamed shell pipe | as an example of the bounded buffer problem. Think
back to when we looked at the kernel source code for pipes: what was that bounded buffer data
structure?

• “The put routine assumes the buffer is empty”, how does it do that? Can it assume that, in
general, without a lock? Can you think about how this is related to condition variables and
signals before we get to the actual answer below?

A Broken Solution

• “However, putting a lock around the code doesn’t work; we need something more.” Why? Why
doesn’t a basic lock work here?

• Convince yourself about how this solution is broken using figure 30.9. This is getting difficult to
think about 3 things running concurrently!

• This is a very subtle reference, but on pg 9 the authors write “An assertion triggers” — they’re
very subtly referring to the use of assertions (i.e., assert.h) and design by contract here.

Better, but still broken: While, not if

• Again, convince yourself that figure 30.10 is broken using the trace in figure 30.11.
• Really importantly: these problems are coming from the fact that locks and threading are per-
mitting us to have some control over scheduling, but the scheduler is kinda fighting back and
we can’t predict when the scheduler is going to take over.

The Single buffer producer/consumer solution

• Once again, convince yourself that figure 30.13 is indeed correct compared to the previous
solutions. What’s different about this specific solution compared to the others?

The correct producer/consumer solution

• Finally, and again, convince yourself that what the authors have done in in figure 30.14 is indeed
a correct and general solution to this problem (e.g., buffer size > 1, multiple producers, multiple
consumers).

Franklin Bristow 3

Operating Systems: Three Easy Pieces - reading notes

30.3: Covering conditions

• OK wat? Amulti-threadedmemory allocation library? We’ll eventually take a look at memory
allocation (when we take a deep dive into memory management), but the general idea here is
good to think about: you’ve got pthreads, they’re almost certainly going to call malloc at some
point, how would the OS (or, in reality, the standard C library) actually handle multiple threads
asking it to allocate memory for them on the heap?

• The broadcast variant of cond_signal is kind of cool, it wakes up all threads that are blocked
on a condition variable instead of just one. Can you do this with the signals that we looked at
with the kill and signal system calls?

– As an exercise, try creating multiple pthreads that register the same signal handler, then
send the signal to your process.

Franklin Bristow 4

	About these reading notes
	Chapter 30: Condition Variables
	30.1: Definition and routines
	30.2: The producer/consumer (bounded buffer) problem
	A Broken Solution
	Better, but still broken: While, not if
	The Single buffer producer/consumer solution
	The correct producer/consumer solution

	30.3: Covering conditions

