
Operating Systems: Three Easy Pieces - reading notes

Contents

About these reading notes 2

Chapter 32: Common concurrency bugs 2
32.1 What type of bugs exist? . 2
32.2 Non-deadlock bugs . 3
32.3 Deadlock bugs . 3
Summary . 5

Franklin Bristow 1

Operating Systems: Three Easy Pieces - reading notes

About these reading notes

These aremy ownpersonal reading notes that I took (me, Franklin) as I read the textbook. I’m providing
these to you as an additional resource for you to use while you’re reading chapters from the textbook.
These notes do not stand alone on their own— youmight be able to get the idea of a chapter while
reading these, but you’re definitely not going to get the chapter by reading these alone.

These notes are inconsistently all of the following:

• Me summarizing parts of the text.
• Me commenting on parts of the text.
• Me asking questions to myself about the text.

– …and sometimes answering those questions.

The way that I would expect you to read or use these notes is to effectively permit me to be your inner
monologuewhile you’re reading the textbook. As you’re reading chapters and sectionswithin chapters,
you can take a look at what I’ve written here to get an idea of how I’m thinking about this content.

Chapter 32: Common concurrency bugs

32.1 What type of bugs exist?

• FWIW: this book is kind of showing some age here: MySQL was acquired by Sun, which was
acquired by Oracle, which is kind of a “bad thing” ™ because Oracle itself is a huge RDBMS
company, so owning two really big relational database implementations makes people kind of
nervous. MySQL was forked to MariaDB.

Mozilla itself isn’t really a thing anymore, you’re probably more familiar with Firefox, which is
ultimately derived fromMozilla’s codebase.

OpenOffice itself is also not really a thing anymore, but LibreOffice is (OpenOffice has its heritage
in StarOffice, which was also at some point a Sun product, which was then bought by Oracle).

The Apache web server is the only software here that’s still what it was when this book was
originally written. Good going, Apache.

END OF HISTORY LESSON.

• Why do you think “Non-Deadlock” concurrency bugs are more common than “Deadlock” concur-
rency bugs? At least in the table the authors are reproducing in figure 32.1, deadlock bugs are
less frequent than non-deadlock bugs.

Franklin Bristow 2

Operating Systems: Three Easy Pieces - reading notes

32.2 Non-deadlock bugs

Atomicity-Violation bugs

• At the top of pg 3, the authors invite you to try figuring out the solution to the atomicity-violation
bug listed in figure 32.2. DO IT. Stop and think about it, how would you ensure that the value of
thd->proc_info doesn’t change while it’s being used?

Order-violation bugs

• Ok, this is tricky to do, but try covering up the text that’s immediately below figure 32.4 and see
if you can figure out what the bug is in the code.

• Why does the solution for this bug use condition variables and locks? Why wouldn’t it just use a
lock? Why does it have to use this additional variable mtInit? (Hint: is the code that follows
the lock+condition variable in Thread 2 a critical section? Assuming that mState itself is a stack
allocated local variable.)

Non-deadlock bugs: summary

• The authors reproduce a statistic here by Lu et al. that “(97%) of non-deadlock bugs…”, what are
the other 3%?

– This paper is called Learning fromMistakes — A Comprehensive Study on Real World Con-
currency Bug Characteristics.

32.3 Deadlock bugs

• Deadlock bugs
• BEFORE READING AFTER figure 32.6: Looking just at the code in figure 32.6, can you come up
with the sequence of execution and interruptions that would be required for a deadlock situation
to occur between thread 1 and thread 2?

Why do deadlocks occur?

• Check out the current(-ish) Java implementation of Vector#addAll.

The authors describe that this uses a lock, how does locking in Java differ from locking pthreads
in C? Does the Vector class have anything related to threading in its imports? Try to translate
the ideas in Java here (e.g., synchronized(this)with the corresponding pieces of locking
in pthreads (e.g., the functions you call and the objects you create).

Franklin Bristow 3

http://pages.cs.wisc.edu/~shanlu/paper/asplos122-lu.pdf
http://pages.cs.wisc.edu/~shanlu/paper/asplos122-lu.pdf
https://i.kym-cdn.com/entries/icons/original/000/023/397/C-658VsXoAo3ovC.jpg
https://hg.openjdk.java.net/jdk/jdk15/file/0dabbdfd97e6/src/java.base/share/classes/java/util/Vector.java#l895

Operating Systems: Three Easy Pieces - reading notes

Conditions for deadlock

• Be able to convince yourself about these four conditions, specifically from the perspective of “If
one of these four conditions isn’tmet, then deadlock cannot occur because…”

• We’ve used this word “preemption” before, but in the context of timeslices. Does the use of the
word preemption here match what you understand preemption to be in terms of timeslices?

Prevention: Circular wait

• The Linux kernel source code that the authors refer to is mm/filemap.c.

What the authors describe (lock ordering required by the kernel) is the huge block of comments
at the top of this file.

• This is outside the scope of our course, but: could lock ordering by identified by automated
tools? For example, could static analysis software (programs that read and understand source
code) be designed to identify patterns of lock acquisition and report errors when locks aren’t
used in the same order? (Hint: the answer is “Yes”, but only to a limited extent).

• Is total or partial ordering relevant when you only have 1 lock?

Prevention: Hold andwait

• The solution here is to basically lock lock acquisition. (Yo dawg).

• Can you convince yourself that this prevents the “hold-and-wait” problem? How does it do that?

• How would you design/implement/write code such that multiple locks are acquired atomically
wherever you needed to acquire them? What kind of programming structures would you use for
this (e.g., conditionals, loops, functions, etc)?

• If you had a set of locks that you wanted to acquire inmost threads, but one thread only needed
to acquire 1 lock, would it be OK for that thread to acquire the lock by itself? What if the thread
needed to acquire 2 locks? (where 2 is less than the total number of locks)

Prevention: No preemption

• How exactly is the use of the pthread_mutex_trylock function different from locking lock
acquisition in the “Hold-and-wait” section above? Don’t they both accomplish the same thing?

• “ordering-robust” (this is just above the figure on pg 9). What does this mean, exactly? The
authors used the terms “total ordering” and “partial ordering” before.

• “Youmight also notice that this approach doesn’t really add preemption… but rather uses the
trylock approach to allow a developer to back out of lock ownership (i.e., preempt their own
ownership)” – voluntarily forcibly remove a lock from yourself?

Franklin Bristow 4

https://elixir.bootlin.com/linux/latest/source/mm/filemap.c

Operating Systems: Three Easy Pieces - reading notes

• Convince yourself both that the trylock approach does solve the issue of deadlock, but also
convince yourself that this concept of livelock can actually happen.

Prevention: Mutual exclusion

• How do you prevent deadlock from happening as a result of locking critical sections? Easy: just
don’t lock anything! Of course! That makes somuch sense! :/

– This does actually make a little bit of sense, specifically in this context of “lock-free” data
structures: data structures that can be accessed andmodified concurrentlywithout the
use of locks.

– You can find somemore information about lock-free programming on LWN.

• Notice that the “lock-free” concepts that the authors are describing here use the same hardware
primitives that locks themselves use to guarantee atomicity (e.g., compare-and-swap). Is this
really lock-free? Or is it just locking at an instruction level?

• Really be able to convince yourself that the author’s solution to “locking” the insert function
on pg 11 with the compare and swap function actually does what it’s supposed to do.

Prevention: Avoidance via scheduling

• Given what we learned about locking last week by looking at musl code (this is a user-space
problem), is what the authors are describing here practical?

– “Unfortunately, they are only useful in very limited environments, for example, in an em-
bedded systemwhere one has full knowledge of the entire set of tasks that must be run
and the locks that they need.”

Prevention: Detect and recover

• The basic idea here is: Just don’t worry about it until it happens. Don’t waste your precious time
figuring out what the precise order of lock acquisition is, don’t waste your time with trylocks,
don’t waste your time with lock-free approaches, just write a bunch of locks. Uh, then also
write some extra code that runs in the background and detects when other code has entered a
deadlock, then interfere with those threads (e.g., preempt the lock) so that work can proceed.

– Is this practical? Is it possible to do this within your own code? Can you think of any ideas
about how to do this?

Summary

• Somuchof these problems come from the fact that threading is a user-space problem (remember
how locks are related to scheduling?). How do you think each of the four conditions of deadlock

Franklin Bristow 5

https://lwn.net/Articles/827180/
https://media.giphy.com/media/l41lUJ1YoZB1lHVPG/giphy.mp4
https://media.giphy.com/media/l41lUJ1YoZB1lHVPG/giphy.mp4

Operating Systems: Three Easy Pieces - reading notes

could be solved if locking was raised into the OS level, where the OS regains control of the CPU
(preemptively) and can inspect the state of running programs and threads?

Franklin Bristow 6

	About these reading notes
	Chapter 32: Common concurrency bugs
	32.1 What type of bugs exist?
	32.2 Non-deadlock bugs
	32.3 Deadlock bugs
	Summary

