Operating Systems: Three Easy Pieces - reading notes

Contents

About these reading notes

Chapter 36: 1/0 Devices
36.1Systemarchitecture e
36.2Acanonicaldevice L e e e e e e e
36.3Thecanonicalprotocol e
36.4 Lowering CPU overhead withiinterrupts
36.5 More efficient data movementwithDMA,
36.6 Methods of device interaction
36.7 Fitting into the OS: the devicedriver
36.8 Case study: Asimple IDE diskdriver
36.9 Historicalnotes e e e e
36.10 SUMMANY . . o vt e

Franklin Bristow

Operating Systems: Three Easy Pieces - reading notes

About these reading notes

These are my own personal reading notes that | took (me, Franklin) as | read the textbook. I’'m providing
these to you as an additional resource for you to use while you’re reading chapters from the textbook.
These notes do not stand alone on their own — you might be able to get the idea of a chapter while
reading these, but you’re definitely not going to get the chapter by reading these alone.

These notes are inconsistently all of the following:

+ Me summarizing parts of the text.
+ Me commenting on parts of the text.
+ Me asking questions to myself about the text.

- ...and sometimes answering those questions.

The way that | would expect you to read or use these notes is to effectively permit me to be your inner
monologue while you’re reading the textbook. As you’re reading chapters and sections within chapters,
you can take a look at what I've written here to get an idea of how I’'m thinking about this content.

Chapter 36: 1/0 Devices

Hard drives are cool and stuff, but it’s probably a good idea to look at the generalization or abstraction
of input and output devices before we look at a specific example of 1/0 devices.

Everything that’s attached to our computer (pretty much) is some kind of I/O device. Keyboards, mice,
screens, stuff that you attach with USB, WiFi.

Before you get into this chapter:

+ How do you (as a programmer) currently interact with I/O devices?

« How do you (as a user) interact with /0 devices?

+ Based on what you saw in COMP 2280 (or an appropriate related course in a different program,
COMP 2280 is introduction to computer systems: assembly languages, architecture, etc), how do
you think an OS actually interacts with hardware devices? It can’t just make system calls like
open,canit?

36.1 System architecture

+ Whoa, hold on a second here. | thought COMP 3370 was computer architecture, what’s the deal?

Franklin Bristow 2

Operating Systems: Three Easy Pieces - reading notes

« We're really just starting to get comfortable with terms and acronyms (so many acronyms). We’re
also starting to get comfortable with the physical relationship between devices (e.g., where they
are located physically relative to each other, who’s connected to what).

- “memory bus”: beep beep.

« This architecture stuff is about “physics, and cost”. What does an operating system care about
this stuff?

+ While the detailed description on pg 2 is interesting, it’s not really that relevant beyond “here are
the definitions of acronyms, and where these are physically related to each other”.

- Are there any acronyms here that you don’t recognize?

36.2 A canonical device

« Alright, so this is actually more like what an operating system needs to care about (does it need
to care about physical location of devices relative to others?)

« “From Figure 36.3 (page 4), we can see that a device has two important components. ... interface
...internal structure ..”

- Wait, what? Isn’t that what we’re looking at in COMP 33507 Are software and hardware

design related to each other somehow?

+ “more complex devices will include a simple CPU, some general purpose memory, and other
device-specific chips to get their job done.”, this feels very much like the kind of device that Xzibit
would like.

- Does that mean that there’s a computer inside my computer? Does that mean that there
are multiple operating systems running on my machine?

36.3 The canonical protocol

+ Protocol: we’ve seen this word before in the context of pipes and client/server architectures.
Protocols are really more of a distributed computing thing, but(!), given what we just learned
above, is this a distributed computing situation?

+ “By reading and writing these registers, the operating system can control device behaviour”, OK,
this is our first hint about how an OS actually communicates with hardware devices.

« Given just the pseudocode just below the start of this section: what might happen if multiple
threads tried to interact with this device?

Franklin Bristow 3

Operating Systems: Three Easy Pieces - reading notes

« Have you ever seen the term “polling” before? (outside of the context of politics and outside of
the context of surveying people)

+ The description of what this pseudocode is doing (poll, write, poll): what does this look like to
you? Does it remind you of anything we’ve seen before?

- What kinds of problems with that thing did we eventually try to overcome? HINT: we got to
use new system calls that are only available on ancient operating systems (Solaris): park
and unpark.

36.4 Lowering CPU overhead with interrupts

+ OK, cool. We put the process to sleep and let the I/O device tell us when it’s finished rather than
constantly asking it “Are you done yet?”.

« Yay! Our CPU is more efficiently utilized now!

« Why would really fast I/0 requests make the system slower? Can an OS actually recognize this?
Do operating systems need to know about how fast a device is?

« This term livelock was used previously when discussing solutions to deadlock. Does it mean the
same thing here?

« Is coalescing the same thing that the OS is doing in the hybrid approach? Maybe. Coalescing is
something we’ll see in the next chapter in terms of scheduling writes to disk.

36.5 More efficient data movement with DMA

+ OK, so while maybe we improved resource utilization (we’re not just constantly asking the 1/0
device ifit’s finished, we can do meaningful work!), performance still has room for improvement!

« The main problem that’s left is that the CPU (and thus the OS) still is responsible for transferring
the data somewhere once the I/0 device indicates that it’s finished. The OS actually has to give
those bytes to the process that did the read system call.

« Wait: didn’t we say earlier that there’s basically a tiny computer inside that I/O device? Instead
of us (the OS and the CPU) pushing data at the device from memory, why don’t we let the device
pull the data directly from memory? Yay! This is DMA!

- The OS tells the device where and how much data to copy from/to memory, then the device
does the rest of the work itself.

Franklin Bristow 4

Operating Systems: Three Easy Pieces - reading notes

36.6 Methods of device interaction

+ Wait a minute. We didn’t say how the OS communicates with the device? | thought we said
that the OS communicates by reading and writing registers? How does it read and write those
registers? Does x86 assembly have specific notation for writing to drives?

+ Uh, | guess really old machines had I/O instructions.

- Whoa, x86 does have special instructions for this, in and out. The instruction lets you
specify which device should be communicated with using a port.

+ “Such instructions are usually privileged.” - why would this instruction be privileged? Why
wouldn’t you want a user program to be able to directly issue reads and writes to a disk, for
example?

- What does it even mean for an instruction to be privileged? Think way way back to direct
execution in chapter 6!

« Memory-mapped I/O: steal/hide a tiny bit of memory from the system and use those addresses
to communicate with a device. You may have done something like this in COMP 2280.

36.7 Fitting into the OS: the device driver

+ Based on what’s being described here, try to think about where this device driver fits; the file
system is a pretty integral part of an operating system. If you were to imagine you sittingin a
chair at your keyboard and the disk, where the file system, the operating system, and a device
driver are “in between” you, how would you actually order these things?

+ OK, awesome. Abstraction. That was something we learned about... well, everywhere in CS |
guess.

- Thinking about something like a hard drive, what kinds of abstract operations might an
operating system or a file system need to do?

- Thinking about something like a web cam, what kinds of abstract operations might an
operating system need to do?

+ You might not pick up on this, but an interesting thing about what’s being described here:

it simply issues block read and write requests to the generic block layer, which routes to
them to the appropriate device driver, which handles the details of issuing the specific
request.

Franklin Bristow 5

Operating Systems: Three Easy Pieces - reading notes

is that this means that the “generic block layer” could service an I/0 request that spans across
multiple physical drives. Think about that: a file spread across multiple physical hard drives!
Neat!

+ Why would something like a file-system checker need “raw” support?

+ “Note that the encapsulation seen above can have its downside as well.”, what’s described here
is also a downside of the entire idea of O0: yeah, we get it, a dog barks to speak and cat meows
and they’re both animals, but, uh. Wait, what was this about? Right. 0O. Can you think of any
ways that you might approach changing this relationship (device drivers, 00, encapsulation) so
that, for example, the “rich error reporting” from SCSI would be available?

« “Studies ofthe Linux kernel reveal that over 70% of OS code isfound in device drivers;” — the Linux
kernel is millions of lines of source code. Millions and millions. We’ve looked at an infinitesimally
small fraction of the Linux source code in class.

36.8 Case study: A simple IDE disk driver

+ ACK. Figure 36.5 is... not a sight for sore eyes. It’s a sight that maybe makes sore eyes.

+ Really, this is just showing all of the addresses where you would write to in with the in and out
instructions to communicate with an IDE drive. We’re not going to write x86 assembly, so we
don’t really have to care very much about these specific addresses.

« The protocol here is describing how you would interact with the device, using these addresses,
and you can see some actual code in figure 36.6 on pg 12 that’s implementing this protocol.

36.9 Historical notes

« “Interrupts are an ancient idea”, yeah, a lot of things (a surprising number of things) in modern
operating systems are ancient ideas.

« DMA was available 70 years ago (as an idea, anyway).

36.10 Summary

+ Make CPU get used for good stuff more, let the I/O device do more of the work, abstraction makes
supporting many kinds of things easier.

Franklin Bristow 6

	About these reading notes
	Chapter 36: I/O Devices
	36.1 System architecture
	36.2 A canonical device
	36.3 The canonical protocol
	36.4 Lowering CPU overhead with interrupts
	36.5 More efficient data movement with DMA
	36.6 Methods of device interaction
	36.7 Fitting into the OS: the device driver
	36.8 Case study: A simple IDE disk driver
	36.9 Historical notes
	36.10 Summary

