
Operating Systems: Three Easy Pieces - reading notes

Contents

About these reading notes 2

Chapter 39: Interlude: files and directories 2
39.1 files and directories . 2
39.2 The file system interface . 3
39.3 Creating files . 3
39.4 Reading and writing files . 3
39.5 Reading and writing, but not sequentially . 4
39.6 Shared file table entries . 4
39.7 Writing immediately with fsync() . 4
39.8 Renaming files . 5
39.9 Getting information about files . 5
39.10 Removing files . 5
39.11 Making directories . 5
39.12 Reading directories . 6
39.13 Deleting directories. 6
39.14 Hard links . 6
39.15 Symbolic links . 6
39.16 Permission bits and access control lists . 6
39.17 Making andmounting a file system . 6

Franklin Bristow 1

Operating Systems: Three Easy Pieces - reading notes

About these reading notes

These aremy ownpersonal reading notes that I took (me, Franklin) as I read the textbook. I’m providing
these to you as an additional resource for you to use while you’re reading chapters from the textbook.
These notes do not stand alone on their own— youmight be able to get the idea of a chapter while
reading these, but you’re definitely not going to get the chapter by reading these alone.

These notes are inconsistently all of the following:

• Me summarizing parts of the text.
• Me commenting on parts of the text.
• Me asking questions to myself about the text.

– …and sometimes answering those questions.

The way that I would expect you to read or use these notes is to effectively permit me to be your inner
monologuewhile you’re reading the textbook. As you’re reading chapters and sectionswithin chapters,
you can take a look at what I’ve written here to get an idea of how I’m thinking about this content.

Chapter 39: Interlude: files and directories

• Note: we haven’t really looked at address spaces yet beyond how they fit into processes and
threads. Virtual memory is coming up real soon.

• Note: This chapter is primarily about the client side of the file management interface, and some
stuff about its implementation.

• This chapter is describing a UNIX file system. As you’re working through this chapter, try to think
about how the ideas are similar to a Windows-based operating system. Some ideas are literally
the same (e.g., files and folders), others are not exactly the same (e.g., links and permissions).

39.1 files and directories

• Make sure you agree with the author’s description of the abstract idea of a file: a linear array of
bytes that you can read or write.

• As the authors say: just accept that “inode number” is a thing, that a file has it, and that it is
unique, you don’t need to knowwhat it is (yet) beyond “it’s also part of the file”.

• Notice how the authors are describing the structure for a directory: the directory “thing” itself
contains the names of the files that are underneath it, paired up with inode numbers. Note
specifically that this means that file “things” do not have a name embedded within them, but

Franklin Bristow 2

Operating Systems: Three Easy Pieces - reading notes

instead only have this unique inode number. The name is attached to its relationship with the
directory that it’s contained within.

– This both sounds and feels really weird: I thought files would have had their own names
embedded within them! Nevertheless, make sure you’re keeping the relationship between
files, inode numbers, their names, and directories in the right place.

• How does this concept of a “root” entry differ fromWindows? BothmacOS and Linux (and all
UNIXes) share this idea of a root entry.

39.2 The file system interface

• We’ve seen unlink before when we looked at FIFOs (mkfifo specifically). Keep this unlink
function in mind. Keep it in mind in the context of above (how directories have inode references
+ names to refer to a file), and keep it in mind in the context of figure 39.1 (which is a tree).

39.3 Creating files

• Weirdly, you create a file by using the open system call. Is this consistent with higher-level
languages like Python and Java?

• Note two things about the API for open here:

1. What kinds of options you can pass (permissions and file modification options), and
2. How you pass those options (with some binary arithmetic).

We’re going to see this binary arithmetic again real soon, specifically in the context of permissions.

• Hey look! File descriptors! Neat!

– The authors show the xv6 PCB; the Linux kernel does something similar, there’s a ref-
erence to a files_struct in the struct task_struct PCB, which leads you to
fdtable.h

– Wait, so a file descriptor is a number, the PCB has an array of pointers. What is the file
descriptor in this context?

39.4 Reading andwriting files

• The authors aren’t joking about strace, it’s an incredibly useful tool to see what system calls
a programmakes when it’s running.

Franklin Bristow 3

https://elixir.bootlin.com/linux/v5.10.10/source/include/linux/fdtable.h#L49

Operating Systems: Three Easy Pieces - reading notes

• “each running process already has three files open, standard output…, standard input…, and
standard error”

– If file descriptors are an array of pointers, do you think that the “standard output” pointer
for each process in a single shell is the same? Do all processes share the same standard
output pointer?

• TRY running the code snippet at the bottom of pg 5 yourself!

39.5 Reading andwriting, but not sequentially

• This is pretty neat, if you need to write to a specific and known part of a file, you can just go
directly to that part of the file with the lseek system call.

– Check and see: the commands head and tail let you print out the beginning of or the
end of a file respectively. Do these programs use lseek? What would it mean for these
files to use lseek on something like standard output?

• The authors again show some code from xv6 that relates to the PCB for that OS, you can also
take a look at the corresponding code from the Linux kernel

– Can you find the “offset” or “position” that they’re referring to in xv6 in the Linux kernel?

• What’s the difference between the open file table and the array of file descriptors that was
described earlier? (hint: think about the levelwhere these two structures are located, there’s
only one open file table, but there aremany file descriptor arrays).

39.6 Shared file table entries

• Try running the code in figure 39.2 yourself, and confirm that you can see how the file descriptors
and the open file table are related here in terms of the parent and child process.

39.7 Writing immediately with fsync()

• The file system, for performance reasons, will buffer such writes in memory for some time

This was actually described before in the I/O scheduling policies section. What is the OS trying
to accomplish by buffering writes like this?

– What kinds of things do you think could go wrong if, for example, the system suddenly lost
power when it’s only buffered (in memory) the write you issued?

Franklin Bristow 4

https://elixir.bootlin.com/linux/v5.10.10/source/include/linux/fs.h#L916

Operating Systems: Three Easy Pieces - reading notes

• this sequence does not guarantee everything that youmight expect; in some cases you also
need to fsync() the directory that contains the file foo.

Why do you think you would need to do this? What’s the relationship between a file and a
directory? Does the directory itself have changes that would need to be persisted to the disk?

39.8 Renaming files

• Rename is an atomic operation: thinking about the relationship between files and directories
(specifically about where and how a name of a file is kept), how do you think this works?

• Convince yourself that the steps the authors are describing here about how an editor might
overwrite a file makesmore sense than just overwriting the file (using a temp file, then renaming
the temp file).

– Also: This is literally what vim does! Neat!

39.9 Getting information about files

• Actually try running the code snippet beneath figure 39.5 yourself, what does your output look
like compared to the author’s? What’s different, and what’s the same?

• Note now that we’re talking about an inode, which is distinct from an inode number. They are
related (an inode has an inode number), but they are not the same thing.

39.10 Removing files

• OK cool, here’s that unlink again. Why do you think unlink takes the name of a file rather
than a file descriptor?

– Hint: Think about this in the context of the relationship between files, directories, and file
names.

39.11 Making directories

• Note you can never write to a directory directly.

Why not? Why doesn’t it make sense to write to a directory?

Franklin Bristow 5

https://www.youtube.com/watch?v=u6RNtjYxiNw

Operating Systems: Three Easy Pieces - reading notes

39.12 Reading directories

• Note that there are different system calls for working with directories. Is this consistent with how
you work with directories in other higher level languages like Java or Python?

• How does struct dirent differ from the corresponding struct that represents files?

39.13 Deleting directories.

• Why do you think we don’t use unlink to delete a directory?

39.14 Hard links

• OK, the authors are about to reveal the magic of link and unlink! Hooray!
• Try running the code that the authors show here to confirm what what they’re doing actually
works on your own systems.

39.15 Symbolic links

• What’s the difference between a symbolic link and a hard link? Why would you use one over the
other?

39.16 Permission bits and access control lists

• Here’s where we need to lookway way back at the open system call, in terms of the way that
permissions are passed to it for creating a new file.

• Make sure you see the relationship here between the octal values (they are base 8) and the read
(r), write (w), and execute (x) bits for each class of users (owner, group, world).

– We saw this before when looking at FIFOs, when you got the chance to write to my FIFO on
aviary.

39.17 Making andmounting a file system

• Note that what follows is not something you can do on aviary. You can run mkfs on an empty
file, but you cannot run it on a device like /dev/sdX.

– You can, of course, do this in a virtual machine or on amachine that you control.

Franklin Bristow 6

Operating Systems: Three Easy Pieces - reading notes

– If you want to try making your own file system, you can quickly make an empty file with
the truncate command (see man truncate), then you can run mkfs on that file. So,
for example, if you wanted to make a new ext2 file system, you could do something like:
truncate --size=5M my_file_system # make an empty 5MB file
mkfs.ext2 my_file_system # format the file with ext2
file my_file_system # ask `file` to tell you about

what's in this file

You unfortunately can’t do aything with that file system now, but youmade it!

Franklin Bristow 7

	About these reading notes
	Chapter 39: Interlude: files and directories
	39.1 files and directories
	39.2 The file system interface
	39.3 Creating files
	39.4 Reading and writing files
	39.5 Reading and writing, but not sequentially
	39.6 Shared file table entries
	39.7 Writing immediately with fsync()
	39.8 Renaming files
	39.9 Getting information about files
	39.10 Removing files
	39.11 Making directories
	39.12 Reading directories
	39.13 Deleting directories.
	39.14 Hard links
	39.15 Symbolic links
	39.16 Permission bits and access control lists
	39.17 Making and mounting a file system

