Operating Systems: Three Easy Pieces - reading notes

Contents

About these reading notes

Chapter 4: The Abstraction: The Process
The Abstraction: A Process

Process APl L e e e e e e e e e e

Process Creation: A Little More Detail
Process states

Datastructures L e e e e e e e e e e e e e e

Franklin Bristow

Operating Systems: Three Easy Pieces - reading notes

About these reading notes

These are my own personal reading notes that | took (me, Franklin) as | read the textbook. I’'m providing
these to you as an additional resource for you to use while you’re reading chapters from the textbook.
These notes do not stand alone on their own — you might be able to get the idea of a chapter while
reading these, but you’re definitely not going to get the chapter by reading these alone.

These notes are inconsistently all of the following:

+ Me summarizing parts of the text.
+ Me commenting on parts of the text.
+ Me asking questions to myself about the text.

- ...and sometimes answering those questions.

The way that | would expect you to read or use these notes is to effectively permit me to be your inner
monologue while you’re reading the textbook. As you’re reading chapters and sections within chapters,
you can take a look at what I've written here to get an idea of how I’'m thinking about this content.

Chapter 4: The Abstraction: The Process

Process A running program.
“waiting to spring into action” — sproing.

It’s the operating system’s responsibility to take code that’s just sitting on the hard drive and then
actually do something with it.

Given what you know about writing programs, what kinds of things do you think an operating system
has to do when it’s starting a program? I’'m thinking about things like reading files and populating data
structures.

Most modern systems have many CPUs available, but, take a look at your task manager: how many
processes are currently running? While I’m writing this, | have 238 running processes. As far as each of
those processes is concerned, it has full, unfettered access to one (or more) CPUs. | definitely don’t
have hundreds of CPUs on my system.

Open up your task manager (on Windows 10/11, hit Ctrl+Alt+Delete and choose “Task Manager”, then
switch to the “Performance” tab). How many processes you have running right now? Do you have that
many CPUs on your system?

Franklin Bristow 2

Operating Systems: Three Easy Pieces - reading notes

A basic technique for virtualizing the CPU (giving every process the illusion that it’s got a processor to
itself) is time sharing, give A a bit of time, then switch to B, then switch to C, then switch back to A,
really quickly.

They use the term “context switch”, but don’t go into detail in this chapter.

They do, however, say that time sharing is a mechanism that’s used by all modern operating systems.

The Abstraction: A Process

The entire idea of a process is an abstraction.

The operating system needs to keep track of the state of a process while it’s running (the machine
state).

There’s a tip here that sums up to: separate the implementation from the interface. The tip is about
separating policy and mechanism.

Process API

This is listing some of the kinds of operations that an OS needs to expose in terms of how it deals with
processes.

Create (makes sense, we need to be able to create a new process)

Destroy (also makes sense, we need to be able to get rid of a process and everything that’s
associated with it).

« Wait (sometimes it’s useful to wait for a process to finish? Why???)

Miscellaneous control (“most operating systems provide some kind of method to suspend a

process (stop it from running for a while) and then resume it (continue running it)”)

Status (basically: “tell me about yourself”)

In terms of destroying a process: what kinds of things do you think an OS has to do to destroy a

process?

When do you think an OS might need to suspend a process? What kinds of things could a process be
doing where the OS might want to tell it to stop? When might you want to tell a process to “stop”, then
continue again later?

You can spend some time spelunking in the /proc file system on a Linux machine, if you’re inter-
ested.

Franklin Bristow 3

https://en.wikipedia.org/wiki/Procfs#Linux

Operating Systems: Three Easy Pieces - reading notes

Process Creation: A Little More Detail

An OS has to load a program into memory. The program itself is in some kind of executable format
(e.g., ELF).

It’s more complicated than just reading the binary directly into memory (beyond “lazy loading”, the
0S has to set up its own internal data structures), but we’re just hand-waving it here. The ultimate
description of what they’re doing here is that they need to load code and “static” data, the data that’s
encoded in the program itself.

The OS does allocate memory for the stack (but note that this is the entire stack, not individual stack
frames). The one stack frame that the OS is responsible for setting up is the frame for main, with argv
and argc.

The OS may also allocate memory for the heap.

In terms of “allocating” memory, what do you think the OS is actually doing here? Note that the OS
does not call functions like malloc, those functions live in standard libraries.

The last thing the OS does is set up some 1/0 stuff, specifically giving the process access to things like
I/O (standard input, standard output, and standard error).

Process states

Processes can be in a state, and in the simplified book version, processes can be in 3 different states:

+ Running (the instructions for this process are currently running on a processor).
+ Ready (the process is ready to be run, but it’s not actually running on the processor).
+ Blocked (the process should not be run, it’s waiting for something to happen).

Looking back at the Process API section, do you think that this description of “blocked” as a status
here is related to what was described in miscellaneous control?

They’ve got some nice tables here showing how processes can move between ready, running, and
blocked.

There’s a reasonable question here under figure 4.4: “it is not clear if this is a good decision or not.
What do you think?”

Data structures

I really like this section because it shows “real” data structures that an OS might use to represent a
running process.

Franklin Bristow 4

Operating Systems: Three Easy Pieces - reading notes

Take a look at Figure 4.5, there are more states than just running, ready, and blocked. What do you
think each of these states represent? This is covered later, but still might be worth looking at.

How much do you think the OS has to know about the CPU it’s running on? This diagram shows a
bunch of registers in this thing called a “register context”, is this going to be the same for every CPU?

They refer to “context switch”, but say that it’s for later, that’s OK. You should actually have the basic
idea of what’s happening (we’re switching contexts).

Let’simagine, for a second, thata machine has exactly 1 CPU init. Once an OS starts runninginstructions
for a process, it’s effectively given up control of the processor to that process (the OS can’t also be
executing instructions, there’s only one CPU!). How do you think the OS might get control of the CPU
again?

Task list as an idea (a list!), and the term “PCB process control block” is used here to describe the data
structures that represent a process.

Franklin Bristow 5

	About these reading notes
	Chapter 4: The Abstraction: The Process
	The Abstraction: A Process
	Process API
	Process Creation: A Little More Detail
	Process states
	Data structures

