
Operating Systems: Three Easy Pieces - reading notes

Contents

About these reading notes 2

Chapter 40: File System Implementation 2
40.1 The way to think . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
40.2 Overall organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
40.3 File organization: the inode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
40.4 Directory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
40.5 Free space management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
40.6 Access paths: reading and writing . . . . . . . . . . . . . . . . . . . . . . . . . . 5
40.7 Caching and buffering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Franklin Bristow 1



Operating Systems: Three Easy Pieces - reading notes

About these reading notes

These aremy ownpersonal reading notes that I took (me, Franklin) as I read the textbook. I’m providing
these to you as an additional resource for you to use while you’re reading chapters from the textbook.
These notes do not stand alone on their own— youmight be able to get the idea of a chapter while
reading these, but you’re definitely not going to get the chapter by reading these alone.

These notes are inconsistently all of the following:

• Me summarizing parts of the text.
• Me commenting on parts of the text.
• Me asking questions to myself about the text.

– …and sometimes answering those questions.

The way that I would expect you to read or use these notes is to effectively permit me to be your inner
monologuewhile you’re reading the textbook. As you’re reading chapters and sectionswithin chapters,
you can take a look at what I’ve written here to get an idea of how I’m thinking about this content.

Chapter 40: File System Implementation

• Haha. AFS to ZFS. Get it?
• As you’re working through this chapter, try to keep the organization that was described in the
previous chapter in mind, specifically this idea of inodes, inode numbers, and the relationship
between files, their names, and directories.

Franklin Bristow 2



Operating Systems: Three Easy Pieces - reading notes

40.1 The way to think

• Though this file system (and FAT and exFAT) are more array/linked structure based than trees.

40.2 Overall organization

• simple file systems use just one block size

A block size is howmany bytes there are in a block.

• They’re calling back to an inode, youmay want to remind yourself about what an inodemight
look like by referring back to chapter 39.

• We’re going to think about this later, but how do you think the authors are choosing the number
of blocks to represent an inode? The number of blocks seems like an arbitrary choice, too.

• Note that a bitmap is not something that youmake inMicrosoft Paint (it is, but not in this context).
In this context, the authors are describing a sequence of bits, where the ith bit being set (it’s a 1)
means that the corresponding ith inode (in that inode region) is used. If the jth bit is unset (it’s a
0), then that means that the jth inode is free (we can put a new file there).

Franklin Bristow 3

https://en.wikipedia.org/wiki/File_Allocation_Table
https://docs.microsoft.com/en-us/windows/win32/fileio/exfat-specification


Operating Systems: Three Easy Pieces - reading notes

• Be able to explain the difference between the superblock and an inode by describing the infor-
mation contained within each, and by describing the level that each applies to.

40.3 File organization: the inode

• The general approach to figuring out where an inode is in an entire block is straightforward;
there are many parts to include, but it’s arithmetic underneath it all.

• The simplified ext2 file node is really good here, it’s giving you an idea of the kinds of things that
should be in an inode, and approximately howmany bytes each one of those takes.

– They’re about to get to this right away, but: if you have a total of 15 disk pointers in an ext2
inode, how big of a file could you ultimately represent?

Themulti-level index

• So yeah, direct pointers are not very scalable (as you just figured out).

• Thinking about programming, how might you distinguish between direct pointers and indi-
rect pointers? Howwould you need to change the struct that would be represented by the
simplified ext2 inode in figure 40.1?

• Then we get to double and triple indirect pointers. Why not quadruple? Using the numbers that
the authors have here, how big of a file could you represent if you logically follow what they’re
describing to having 4 levels of indirection?
• One such finding is thatmost files are small

Do you think this is true on your own system?

40.4 Directory organization

• Such a delete is one reason the record length is used: a new entry may reuse an old, bigger
entry and thus have extra space within.

This seems like a good idea that’s going to come back and bite us.

• The aside on pg 9 is describing how this relates to FAT/exFAT. Pay special attention to this idea,
FAT/exFAT and what’s being described in this chapter are similar to each other.

• Remember how files and directories were treated differently at the API level? How are files and
directories different at the implementation level? Are they both represented by inodes? Do they
have similar or the samemetadata?

Franklin Bristow 4



Operating Systems: Three Easy Pieces - reading notes

40.5 Free spacemanagement

• In short: you have to knowwhat’s currently not used so you can find a place to write stuff.
• Why would ext2 or ext3 pre-allocate blocks? Why would the file system care if blocks in one file
are contiguous with one another? (hint: This is deeply related to how disks work)

40.6 Access paths: reading andwriting

Reading a file from disk

• Why does reading a file require reading directories?
• Why do you think the root inode number is 2 onmost UNIX file systems? Why not 0?
• Be able to convince yourself about what’s happening as a file is being read by both looking at
figure 40.3, but also about what’s happening near the bottom of pg 11, where the authors are
describing how the data pointers are being used from the inode itself.

• On closing a file “No disk I/Os take place.” <– this is a lie, a terrible lie, but… it’s OK to assume
that this is true.

• The authors claim that a directory with lots of files in it will be slow to access. Based on what you
know about files now, and their relationship with a parent directory, can you confirm to yourself
that this is true?

Writing a file to disk

• … is awfully similar to reading a file from disk (at first).
• Why does writing require somuch reading? Why dowe need to read andwrite inodes whenwe’re
writing data to a file? Think back to what inodes are, think back to how inodes keep track of data,
and think back to the structureway back at the beginning of this chapter showing how the disk
is separated into blocks.

40.7 Caching and buffering

• We’re actually going to come back to this idea when we talk about virtual memory; the authors
hint at this when they talk about a “unified page cache”.

• LRU is least recently used (this is explicitly not the same as the oldest). A file might be around for
a long time in a cache, but referred to constantly, where a newer file might have only ever been
referenced once.

• This idea of buffering writes again comes up. Try to think about this from a design perspective:
howmight an OS know that the same block has been written to twice?

Franklin Bristow 5



Operating Systems: Three Easy Pieces - reading notes

• “Some applications (such as databases)”; relational database management systems, the special
snowflakes that they are, effectively re-implement a huge amount of stuff that’s otherwise the
responsibility of an operating system (like file systems).

Franklin Bristow 6


	About these reading notes
	Chapter 40: File System Implementation
	40.1 The way to think
	40.2 Overall organization
	40.3 File organization: the inode
	40.4 Directory organization
	40.5 Free space management
	40.6 Access paths: reading and writing
	40.7 Caching and buffering


