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Abstract

B-trees and their variants are efficient data structures for finding records in a large collection (e.g.,
databases). The efficiency of B-trees increases when a number of users can manipulate the tree simulta-
neously. Many algorithms have been developed over the last three decades to achieve both concurrency
and consistency in B-trees. However, current lock-based concurrency-control techniques limit concur-
rency. Moreover, lock-based B-trees suffer from certain negative scheduling anomalies, such as deadlock,
convoying and priority inversion. Lock-free concurrency-control techniques using, for example, Compare
And Swap (CAS) can provide improved concurrent access to data structures including B-trees and other
search structures. Besides this, correctly designed lock-free techniques prevent deadlock, convoying and
priority inversion. Considering the advantages of lock-free techniques for other concurrent data struc-
tures, we develop a lock-free B-tree to support high performance concurrent in-memory searching in a
Non Uniform Memory Access (NUMA) parallel computing environment.

The use and parallelization of B-trees have both been widely explored in the past—primarily for
application to database implementation and, hence, disk-based operations. Moving B-trees into memory
for use in new online searching applications, however, fundamentally changes the characteristics of man-
aging them and will allow us to effectively exploit the use of lock-free techniques, something that has
previously not been applicable to B-trees.

1 Introduction

Historically, memory capacity was limited, so large data collections had to be stored on disk in databases,
which use data structures such as B-trees. With the availability of large memories, this restriction has been
relaxed. Correspondingly, a number of new applications have emerged in such fields as bio-informatics and
computational linguistics that require searching huge collections in memory. A B-tree-like data structure
(built in memory) is still a good solution for such problems.

To achieve concurrency in B-trees, various lock-based algorithms have been designed, but those algorithms
suffer from a number of problems. For example, some algorithms limit efficiency: when a process manipulates
some nodes in a B-tree, all other processes that want to manipulate the same nodes are forced to wait, even
if concurrent access would not cause any inconsistencies. Additionally, the use of locks introduces some
negative side effects related to scheduling. To address these problems, we designed lock-free algorithms for a
B-tree variant, where multiple processes can work on the tree simultaneously. More specifically, we developed
a locality-of-reference-efficient version of Lehman and Yao’s Blink -tree [12] that does not require locking and
exploits memory management ideas from the work of Michael [15].

Our algorithms are also designed to tolerate variation in memory access times present in the increasingly
common Non Uniform Memory Access (NUMA) class of parallel machines. The in-memory support is in
contrast to the existing literature on B-trees, which focuses on operations performed on-disk. Lehman and
Yao’s lock-based Blink -tree achieves better concurrency than our Blist -tree. However, when comparing a
variant of the lock-based Blink -tree that has the same structural complexity in the nodes as our Blist -tree
(see Section 5.1 below), our Blist -tree performs better than the linked-list-based variant of the Blink -tree
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when there is no thread sharing in the same processor. Furthermore, our lock-free Blist -tree is not prone to
deadlock, priority inversions and convoying, unlike the lock-based Blink -trees.

A Non-Uniform Memory Access (NUMA) architecture [9] is a type of shared memory architecture where
the shared memory is divided into segments and each segment is attached to one processor with a connecting
bus. A processor in a NUMA architecture can access its associated memory directly through the bus, but it
has to connect through the interconnection fabric to access the memory attached to other processors. Thus,
a processor has faster access to its associated memory than other memories in the parallel machine.

In a shared memory architecture, if more than one process wants to update the same data at the same
memory location at the same time, the content of the data might become inconsistent.

In pessimistic concurrency control, if there is a vulnerable portion of code (a critical section) where
concurrent execution of that code by different processes might cause inconsistency in the data, then only
one process is permitted to execute that portion of code at a time. The Test-And-Set (TAS) primitive is
commonly used to implement most major pessimistic concurrency-control mechanisms, including locks.

Unlike pessimistic concurrency control, optimistic concurrency-control techniques assume that there will
seldom be conflicts in accessing a shared data object. They allow concurrent accesses in a critical section
without checking whether the access is safe. Instead, after computing the new value of a shared data
object, but before storing it, the value used in computing the new value and the current value of the shared
data object are compared. If both values are the same, the old value may be safely replaced by the new
value since the shared object has not been changed. Otherwise, the computation must be redone using the
changed value. Comparing the values of the shared object and then possibly updating the object must be
done atomically1. The most common examples of optimistic concurrency control are the so-called lock-free
techniques. Lock-free techniques use universal primitives [8] like CAS and DCAS to build other lock-free
objects like lock-free linked lists [15], queues [16], and different types of trees [10, 13].

Non-blocking techniques and wait-free techniques are two types of widely-used lock-free techniques. If a
lock-free technique guarantees that some processes will complete their operations in a finite number of steps,
then that lock-free technique is non-blocking. If the lock-free technique guarantees that every process will
complete its operations in a finite number of steps, regardless of the execution speeds of the other processes,
then that lock-free technique is wait-free.

Optimistic concurrency-control algorithms have some advantages over pessimistic concurrency-control
algorithms in the absence of frequent access conflicts between concurrent processes. Algorithms based on
CAS (and similar primitives) have almost no overhead when compared to lock-based algorithms. Using
lock-based algorithms, whether there are conflicts or not, a process needs to invoke the operating system to
test the lock of the critical section. Further, other processes cannot access the critical section concurrently.
Therefore, if no conflict occurs between processes, optimistic algorithms can accommodate more concurrency
with less overhead than lock-based algorithms.

However, in the presence of frequent conflicts, optimistic algorithms may take more time than lock-based
algorithms, since processes will need to recompute new values when other processes have changed the shared
data objects. Designing an intelligent, cost-effective lock-free algorithm can, however, keep the cost at an
acceptable level.

2 Related Work

Several concurrent B-tree algorithms were designed for use in databases in the mid 70’s, but others are more
recent. All of the algorithms presented here are pessimistic lock-based algorithms, where a process locks
anywhere between a single node to a portion of the tree while performing an operation on that tree.

The first concurrent B-tree algorithm was developed by Samadi [19], whose approach was very simple.
When a process needs to perform an insertion or deletion, Samadi’s algorithm locks the entire subtree rooted
at the node being manipulated. Bayer and Schkolnick [1] improved Samadi’s algorithm by introducing write-
exclusion and exclusive locks, where a concurrent process is allowed to read, but not write on a node (or

1An indivisible or atomic segment of code is guaranteed to execute in its entirety without any other process interfering.
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Figure 1: An example of a Blink -tree.

leaf) with write-exclusion locks, and a process is allowed neither to read nor to write on a node with an
exclusive lock. The write-exclusion locks increase the concurrency compared to the regular locks used in
Samadi’s algorithm, but only by a limited amount.

Some other concurrent B-tree algorithms were developed by Miller and Snyder [17], Ellis [5], and Guibas
and Sedgwick [6], but none of them make significant enough improvements to the algorithms described above
to warrant detailed discussion.

Lehman and Yao [12] came up with an algorithm that introduced a bottom-up restructuring method for
B-trees. Most later algorithms, such as the overtaking algorithm of Sagiv [18], the symmetric concurrent
algorithm of Lanin and Shasha [11], the operation-specific lock algorithm of Biliris [2], the improved over-
taking algorithm by de Jonge and Schijf [4], and the Bmad -tree algorithm of Das and Demuynck [3] were
influenced by Lehman and Yao’s algorithm.

2.1 Lehman and Yao’s Blink -tree

The Blink -tree of Lehman and Yao [12], like B∗-trees, has pointers to records in leaf nodes only. Non-leaf
nodes contain only routing values to guide searches to the appropriate leaf. Each Blink -tree node has an
extra pointer, known as the link pointer, that points to the node immediately to its right at the same level
in the tree. The link pointers of the rightmost nodes at each level are null pointers. When a node is split,
the new node is made the sibling immediately to the right of the splitting node, so keys only move to the
right in a split. Therefore, as a result of any manipulation in the Blink -tree, if any key is moved to a node to
the right, the link pointers can be used to find that key. Also, each node in a Blink -tree has a highkey field
that contains the value of the highest key in the subtree rooted at that node. Figure 1 shows an example
Blink -tree.

The Blink -tree has parallel search, insert and delete operations that are similar to the basic non-parallel
B∗-tree search, insert and delete operations. The update (insert and delete) operations in a Blink -tree use
locks to conduct concurrent operations. However, no locking is required during searching in a Blink -tree.
Use of the right-link pointers and comparison of the desired key with the highkey of a node or a leaf ensures
the concurrency control in the search operations. When the search process encounters a node (or a leaf) N ,
the search process compares the key, k, to be searched for with the highkey, hkN , of node N . If hkN < k,
then the search process knows that a concurrent insert process has split N and moved half of the keys to its
right-sibling node. In that case, the search process follows right-link pointers starting from N until it finds
a node whose high-key is greater than the desired key k.

The Blink -tree insert algorithm locks the entire node or a leaf when it inserts a key in that node or leaf.
Also, when an insert process gets a parent node, F , of a node, N , from the stack (where a search stores its
search path through the tree), due to concurrent splits of F , the node on the stack might no longer be the
current parent of the node N . To solve this problem, an insertion process compares the highkey, hkF , of
F with the highkey, hkN , of N . If hkF happens to be less than hkN , then the insert process has to follow
right-link pointers from F to find the appropriate sibling of F that is the current parent of N .

The Blink -tree delete algorithm also uses locks to accommodate concurrency. Moreover, the Blink -tree
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Figure 2: Michael’s lock-free linked list.

delete algorithm allows a leaf to have fewer than !m/2" keys, whereas, in a standard B-tree and its variants,
an underfull node is merged with a sibling. Allowing fewer than !m/2" keys in a node in Lehman and Yao’s
Blink -tree maximizes efficiency since no further locks are required for further merges (as merges are not
required). Hence, more concurrency is achieved as other processes can access those unlocked nodes. This
enhanced concurrency is useful when different processes perform frequent deletes on a Blink -tree. Overall
space efficiency may, however, suffer.

2.2 Michael’s Lock-free Linked List

Michael [14] designed a safe wait-free memory reclamation technique for lock-free linked lists, queues, stacks
and hash tables. His memory reclamation technique assures that a process can safely return a cell to a free
list so that other concurrent processes can reuse the same cell in the future. We describe only Michael’s
lock-free linked list [15], which uses his safe memory reclamation technique.

Like Valois’ lock-free linked list, Michael’s lock-free linked list has two dummy cells named head and
tail at the beginning and the end of the linked list, respectively. Moreover, it maintains a free list as
Valois’ linked list does. However, Michael’s linked list does not contain any auxiliary nodes. Figure 2 shows
Michael’s lock-free linked-list structure.

In his safe memory reclamation technique, Michael introduces k (k is usually not more than three)
pointers named hazard pointers for each process. If a process is working on some cells of a linked list, the
hazard pointers of that process point to those cells. These hazard pointers can be read by other concurrent
processes, but can only be written by the associated process. Besides the hazard pointers, each process has its
own stack that is used to store the cells it has deleted. These stacks are known as the retired-cell-stack.
A retired-cell-stack is private to its associated process. Therefore, after the deletion of a cell, when the
cell is stored in the retired-cell-stack, no process other than the deleter process can access that deleted
cell.

The insert algorithm of Michael’s lock-free linked list is straightforward. First, an insert process finds the
correct (ordered) position in the linked list, and then it inserts the new cell in the linked list using a CAS
operation. During these operations, the hazard pointers point to those cells being accessed so that other
concurrent deletion processes cannot delete and return those cells to the free list.

The deletion algorithm also works in a similar way. First, it finds the cell to be deleted from the linked
list. Then, it must delete and return that cell to the free list, assuming that no other processes are currently
pointing their hazard pointers to that cell. To avoid deleting a cell that is pointed to by one or more hazard
pointers, the deletion algorithm does not completely delete a cell from the linked list. Instead, a delete
process first marks the cell as deleted. To mark a cell as deleted, a delete process adds 1 to the address
stored in the cell’s next field using a CAS operation. Since the least significant bit of any cell address is
always 0, adding 1 sets the least significant bit of the next field to 1. Thus, the marking distinguishes a
deleted cell from a cell that is not deleted.

After marking a cell as deleted, the delete process stores that cell in its associated retired-cell-stack.
If the number of deleted cells in the retired-cells-stack reaches a previously set threshold level, R,
where R = 2 × k × number of processes, the delete process calls a scan routine to return the cells from
the retired-cell-stack to the free list of the linked list. The scan routine takes a copy of all the hazard

4



class cell{
int key; // contains the key
int thread-id; // contains the id of the process (thread) that has deleted this cell
node *left-child; // contains the left child of the key
node *right-child; // contains the right child of the key
cell *next; // contains the address of the next cell

};

Figure 3: The cell class in a Blist -tree.

pointers of each process. The copies of the hazard pointers are stored in a list named the p-list. Once all
hazard pointers have been copied by the scan routine, it sorts the p-list. Then, the scan routine moves
the cells stored in the retired-cell-stack into a temporary-stack. Then, the scan routine compares the
address of each cell in the temporary-stack with the addresses stored in the p-list. If there is a match,
then a concurrent process’s hazard pointer is pointing to that deleted cell. In this case, the scan routine
re-stores the deleted cell on the retired-cell-stack. If there is no match found in the p-list, the scan
routine returns the deleted cell to the free list of the linked list for further use.

When an insert or delete process finishes its insert or delete operations, it sets all of its hazard pointers
to null.

3 The Blist Tree

We named our tree structure the Blist -tree (a Blink -tree with a list-based node structure). We based our
Blist -tree algorithms on Lehman and Yao’s Blink -tree algorithms [12]. We chose the Blink -tree because the
link pointers in each node support fast searching, which is the primary operation of the applications we are
targeting. Though nodes on the same level of our Blist -tree are linked with each other as in the Blink -tree,
we significantly modified the node structure on our Blist -tree to reflect the fact that the tree will be stored
in memory, not on disk like a Blink -tree.

A Blist -tree consists of nodes, both leaf and non-leaf. Each node of a Blist -tree has a lock-free key-list
to store the keys. Each key-list consists of a collection of cells where each cell stores a key and descendent
nodes with lesser and greater keys, respectively. A Blist -tree consists of a root pointer that points to the
root node of the tree.

Besides the nodes in the Blist -tree, there are some additional structures that help make the tree lock-
free and concurrent. Like the Blink -tree structure, our Blist -tree algorithms use a path stack to store the
path taken by a process from the root to a leaf of the tree. Besides this, like Michael’s lock-free linked-list
algorithms [15], our Blist -tree algorithms use hazard pointers and a retired-cell stack. In addition to these
data structures, the Blist -tree algorithms use a please-scan array with one entry per process to establish
communication between the concurrent processes. We describe the data structures that are used in the
Blist -tree in the following subsections.

3.1 Cell

In each node of our Blist -tree, the keys are stored as a linked list known as the key-list of the node. Each
key-list consists of cells, where each cell contains a key, two children (a left-child and a right-child)
associated with the key, a thread-id to indicate which process (if any) has deleted the cell from the key-list,
and a next field to point to the next cell in the key-list. Figure 3 show the cell structure, and Figure 4
shows an example of two consecutive cells in a Blist -tree node.
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Figure 4: An example of two consecutive cells in a Blist -tree.

class key-list{
cell *head; // the address of the first cell (dummy cell) in the key-list
cell *tail; // the address of the last cell (dummy cell) in the key-list
cell *free-head; // the address of the first cell in the free cell list
cell cells[m+2]; // array of [m+2] cells to store the keys

};

Figure 5: The key-list class in a Blist -tree.

3.2 Key-List

Unlike Lehman and Yao’s array-based key-list structure in their Blink -tree [12], our Blist -tree’s key-list
is a lock-free linked list, where keys are stored in sorted order. To design our key-list, we followed the
concurrent lock-free linked-list structure of Michael [15] (see Section 2.2). However, unlike Michael’s lock-free
linked list, our key-list starts and ends with two dummy cells named head and tail. These dummy cells
do not contain any keys. The next field of head points to the cell that contains the smallest key in the
key-list, and the next field of the cell that contains the largest key in the key-list points to the tail of
the key list.

Each key-list contains m + 2 cells, where m is the maximum number of children of a node in the
Blist -tree. So that cells within a node are allocated from the same chunk of memory, and therefore have
good locality of reference. These cells are implemented as an array of size m+ 2 (pointers between cells are
still used to provide the flexibility of a list).

The cells that are not currently being used are referred to as free cells, and are stored as a linked list
called the free-list. The free-head pointer points to the first cell of the free-list. Figure 5 show the
key-list structure in a Blist -tree node. Figure 6 shows an example of a key-list in a leaf of a Blist -tree.

3.3 Node

Besides the key-list, each node of a Blist -tree contains an is-leaf field (to indicate whether the node is a
leaf or a non-leaf node), a key-counter field (to indicate the number of keys currently stored in the node),
a high-key field (to store the largest key in the descendants of the node), a split-bit (to indicate if the
node is currently being split by some process), and a right field (which points to the node immediately
to the right of the node). Moreover, each node of the Blist -tree contains a finally-linked-in-tree field.
When a node is created by a process in a Blist -tree, only the process that created the node has authority to
access and work on the node. When the creator process turns the node’s finally-linked-in-tree field on,
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Figure 6: An example of a key-list in a leaf of a Blist -tree.

class node{
k-list *key-list; // contains the key-list
bool is-leaf; // indicates whether the node is a leaf or a non-leaf node
int key-counter; // contains the number of keys in the node
int high-key; // contains the high-key of the node
int split-bit; // indicates an ongoing splitting process
bool finally-linked-in-tree; // indicates whether the node is linked or not in the tree
node *right; // contains the address of the immediately right node

};

Figure 7: The node class in a Blist -tree.

other concurrent processes working in the tree can access the node. Figure 7 show the structure of a node
in a Blist -tree.

3.4 The Hazard Pointers Array

Since our Blist -tree uses a lock-free linked-list structure to store the keys in each node, we needed to implement
hazard pointers [15] to allow each process to safely perform concurrent operations including deletion on the
key-list. Two globally-accessible hazard pointers are assigned to each process that may perform operations
on the Blist -tree. These pointers are use to prevent hazardous concurrent operations (see Section 2.2 for a
detailed description of how hazard pointers do this). Our Blist -tree algorithms use two hazard pointers (hp1
and hp2) for each process. A process points its hazard pointers at cells on which the process is currently
performing an operation. Hazards pointers keep on pointing to those cells until the the process completes
its operation so that any concurrent delete process can be prevented from completely deleting a cell (that is
in use) from the key-list of the corresponding node.

3.5 The Path Stack

Like the Blink -tree, each process in a Blist -tree has its own path stack that stores the path it has followed
from the root to some leaf. Any operation in the Blist -tree starts at the root. Until it finds the appropriate
leaf, each process stores the rightmost node it encounters on each level of the tree during it search on its
path stack (see Section 4.1.1). The stack is later used to find the parent of a node. In an insert operation,
when a process is splitting a node, it needs to find and modify the node’s parent. An inserting process may
also need to find and modify a parent’s high-key (see Section 4.1.2). Since the path stack stores the path
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from the root to a node (or leaf), the parent of that node is stored on the top of the path stack. Therefore,
whenever it is necessary to find the parent of a node, a process gets it from the process’s path stack. Due to
concurrent splits during the insert operations, however, the stored parent may no longer be the parent of a
particular node. In this case, the right-link pointer of the stored parent can be followed to find the current
parent of that node.

3.6 The Retired-Cell Stack

The Blist -tree delete algorithm uses a retired-cell stack like the lock-free linked-list delete algorithm of
Michael [15] (See Section 2.2 to know how Michael’s retired-cell stack works). Each process has its own
retired-cell stack, which cannot be viewed or accessed by other concurrent processes. After the deletion
of a cell, instead of returning that deleted cell to the free-list, a process stores the address of the deleted
cell in its retired-cell stack. The cell remains in the retired-cell stack until the process performs the
scan algorithm, which returns the cell to the free-list if it is safe to do so.

Unlike Michael’s lock-free linked list, if a process wants to return a cell from its retired-cell stack to
the free-list in a Blist -tree, it has to return the cell to the free-list of the node to which the cell belongs.
To get the address of the appropriate node, the Blist -tree’s retired-cell stack stores the node address in
addition to the cell address.

Like Michael’s algorithm, when the number of cells retired by a process reaches a threshold level (for
Blist -tree algorithms, the threshold level, R, is m/5), the process performs a scan routine that examines
the retired cells in the process’s retired-cell stack, and sees if any hazard pointers of any concurrent
processes are pointing to those cells. If no hazard pointers are pointing to a cell, the scan routine retrieves
the associated node address, and returns the cell to that node’s free-list. Otherwise, the cell is returned
to the process’s retired-cell stack.

3.7 The Please-Scan Array

Every Blist -tree has a please-scan array shared by all processes. The please-scan array contains a
scan-bit for every process. If a process’s scan-bit is on, that process is requested to perform a scan by
some other concurrent process(es).

In Michael’s lock-free linked-list algorithms, only the delete processes check the threshold level, and, if
necessary, call the scan routine to return the cells retired by these processes. Similarly, in Section 3.6, we
saw that delete processes return a deleted cell to the free-list by calling the scan routine in Blist -trees.
Unlike Michael’s lock-free linked-list algorithms, which assume that there is only one shared linked list, in
Blist -trees, each node has its own linked list, which contains a free-list of its own. If a process deletes
some cells from the same node and stores them in the retired-cells stack, but does not perform a scan to
return them in the near future, then the node’s free-list could become empty. Any update process that
is looking for a free cell from the list will then have to wait until that delete process returns the retired
cells to the free-list (see Sections 4.1.2 and 4.1.3). If many processes have to wait for a long time to get
a free cell from a particular node, there will be a bottleneck. Furthermore, for example, if process P1 is
waiting for a free cell that can only be returned by process P2, process P2 is waiting for a free cell that
can only be returned by process P3, and process P3 is waiting for a free cell that can only be returned by
process P1, then all three processes will be in a deadlock.

To solve this problem, we added the please-scan array to our list -tree. If a process P1 is waiting for a
free cell in a node, N , but the free list is empty, the process P1 checks its associated scan-bit immediately
in the please-scan array. If that scan-bit is on, the process P1 calls the scan routine to return the retired
cells to their (the cells’) associated free lists. If the scan returns some free cells in the free-list of the
node, N , where the process P1 is waiting, some waiting processes (perhaps P1) can get free cells.

If the scan performed by process P1 does not return a free cell to the free-list of node N , process
P1 needs to request other processes to scan so that they can return some cells to the free-list of node
N where P1 is waiting for a cell. To send the request, process P1 goes through each cell of the key-list
of node N , and looks for a retired cell. If there is a retired cell, then the process P1 finds the thread-id
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(see Section 3.1) of the process that retired the cell to identify which process (say, P2) has retired this cell.
Then, process P1 turns on process P2’s scan-bit in the please-scan array. When process P2 sees that its
scan-bit is on, it immediately performs a scan and returns some cells to their associated free lists. This
action will eventually provide some free cells to the processes that are waiting for the free cells.

3.8 Benefits of Blist-trees

Compared to the Blink -tree algorithms and their variants described in Section 2, our Blist -tree algorithms
have some advantages in terms of potential performance. By storing the tree in the main memory of the
parallel machine, using a custom linked-list structure to ensure memory locality while maintaining flexibility,
and using lock-free operations in the nodes, our Blist -tree will potentially be more efficient than concurrent
Blink -trees.

3.8.1 Benefits of an In-Memory Structure

Access to an in-memory structure will always be faster than one stored on secondary storage. This speed is
necessary for the types of applications we are targeting.

3.8.2 Benefits of the List Structure

In Blist -trees, a process does not have to shift the keys in a list-based key-list after an update operation,
as is required in an array-based key-list used in Blink -trees. Furthermore, in our Blist -tree algorithms, we
designed the cells of the key-list to be allocated from an array of cells. The benefit of the array of cells
implementation is that, when a process accesses one cell in a node, many adjacent cells in the array of that
node will also be put in the cache (due to locality of reference since the cells are stored in consecutive memory
locations). Hence, searching in the nodes should be fast. Ou Blist -tree algorithms are therefore suitable for
shared memory parallel machines. Further, for Non Uniform Memory Access (NUMA) machines, with
additional effort to localize operations on tree nodes to specific processors, additional locality benefit could
be realized at the level of main memory access. In the NUMA architecture, each processor has its own local
memory. For a processor, accessing local memory is always faster than accessing non-local memory. By
using localized access, NUMA machines can be faster in parallel computations than other parallel machines.

3.8.3 Benefits of Lock-free Concurrency-Control Techniques

All the B-trees and their variants described in Section 2 use lock-based pessimistic concurrency-control
techniques. Unlike those algorithms, our Blist -tree algorithms use lock-free techniques to handle concurrency.
Lock-free concurrency control gives our Blist -tree a finer granularity of concurrent access, compared to lock-
based B-trees and their variants. In Blist -trees, each process accesses and manipulates data in smaller chunks
(i.e., a cell in a node), whereas a process in a Blink -tree accesses and manipulates data in bigger chunks (i.e.,
a node in the tree). Moreover, in a Blink -tree, a process acquires the locks of nodes one at a time. Any
concurrent process that wants to work on the same node has to wait until the process that holds the lock of
the node finishes its job, and releases the lock. However, in a Blist -tree, more than one process can operate
on a single node (also, with restrictions, on a single cell) simultaneously. If the result of an operation of
one process affects the results of the operation of other concurrent processes, the other concurrent processes
either have to redo the work in that cell or the processes have to go to the beginning of the key-list of
that node and restart their work within that node, yet all processes can redo their work simultaneously.
If the concurrent operations have no effect on each other, all processes can continue with their operations
simultaneously without any interruption. In a Blist -tree, if N processes want to operate in the same node
and each operation takes time t, if there is no interference between them, all processes will finish in time t.
In a Blink -tree, however, all processes will finish in time N× t (since only one process can work in the node at
a time), even if there is no interference between concurrent processes. Therefore, if there is high data access
contention in both trees (i.e., many processes want to concurrently access the same node), the Blist -tree
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algorithms should take comparatively less running time to complete an operation than the lock-based B-tree
algorithms and their variants.

Besides this, lock-free concurrency-control techniques assure that our Blist -tree algorithms will be free
from convoying [22] and priority inversions [20].

Lock-based concurrency-control techniques are prone to deadlocks [7], but the lock-free concurrency-
control techniques are not. To prevent deadlocks, our lock-free Blist -tree uses a please-scan array where
every process has a scan-bit that is associated with their process identification number (see Section 3.7). In
the Blist -tree update algorithms, if a process P1 needs a free cell, then P1 scans its own retired-cell stack
to get a free cell for itself. If the scan cannot provide any free cell for P1, then P1 requests other process(es)
(say process P2) that can reclaim a free cell for the process P1. To send a scan request to process P2, process
P1 sets the associated scan-bit of process P2 in the please-scan array. In a Blist -tree, before starting
an operation, each process checks their associated scan-bit in the please-scan array. If the associated
scan-bit of a process is set, then the process scans its retired-cell stack to reclaim free cells.

Without the use of the please-scan array in a Blist -tree, if process P1 waits for a cell that can only be
reclaimed to the free-list by process P2, and process P2 is waiting for a cell that can only be reclaimed to
the free-list by process P1, then both P1 and P2 have to wait forever to get a free cell for themselves. This
waiting for free cells will ultimately cause a deadlock in the tree. However, in Blist -trees with a please-scan
array, when both processes P1 and P2 are waiting for a free cell, both processes scan their own retired-cell
stacks for free cells. If the scans cannot release a free cell for themselves, then process P1 sends a scan request
to process P2 through the please-scan array, and vice versa. When both processes see the scan requests,
both processes scan their retired-cell stacks and reclaim a free cell (if the cell is not in use by other
concurrent processes) for the requested process (i.e., P1 reclaims a free cell for P2, and P2 reclaims a free cell
for P1). This free cell reclamation prevents the potential deadlocks in the Blist -tree, and makes the Blist -tree
algorithms to be deadlock-free.

4 Algorithms

4.1 Algorithm Overview and Discussion

Our Blist -tree algorithms can perform three major operations: search, insert, and delete on a Blist -tree. The
search operation looks for a particular key in the Blist -tree, the insert operation inserts a new key in the tree
if that key is not already in the Blist -tree, and the delete operation deletes a desired key from the Blist -tree,
if it exists in the tree.

Sections 4.1.1, 4.1.2 and 4.1.3 describe the search, insert and delete algorithms for a Blist -tree, respec-
tively. Section 4.2 discusses the concurrent correctness of the algorithms.

4.1.1 Search Algorithm

The search algorithm works in two major steps. First, the algorithm finds the leaf in the Blist -tree where
the desired key should reside. Next, the algorithm looks for the desired key in that leaf.

Step 1: Find the Appropriate Leaf

The search process finds the appropriate leaf in several steps. If the search process searches for the desired
key in an empty Blist -tree, then the search process terminates right away, and knows that the desired key is
not found in the Blist -tree. Otherwise, the search process starts looking for the appropriate leaf by looking
at the root first, and then, by examining one node at each level, the process propagates to the leaf level.
In each level where the node to be examined is a non-leaf node, the search process examines the keys from
the key list of the selected node, and tries to find the appropriate child to move to, that is, the root of the
sub-tree containing the appropriate leaf and the desired key.

Before starting the key comparisons within a node N , a search process sets one hazard pointer (hp1) to
point to the head of the node’s key-list, and then sets another hazard pointer (hp2) to point to the cell
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immediately after head (see Sections 2.2 and 3.4 for a description of hazard pointers). The cell pointed to
by hp2 is the leftmost cell in the key-list, and contains the smallest key in the key-list. (From this point
on, we refer to the cell pointed to by hp1 as the previous cell, and we refer to the key stored in the previous
cell as the previous key. Furthermore, we call the cell pointed to by hp2 the current cell, and the key stored
in that current cell as the current key.)

After setting the hazard pointers to their initial locations, the search process first compares the key to
be searched for with the high-key of the node N in case other concurrent processes have split this node.
If the high-key of the node N is less than the key to be searched for, a split has occurred, so the process
follows the right link pointer of N to examine the node, R, that is immediately to the right of N . If the
high-key of the node N is less than the key being searched for, then the search process compares the key
to be searched for with the current key. If the current key is less than the desired key, the search process
knows that the desired key might be in any of the following cells of the key-list. Therefore, it moves hp1
and hp2 to the immediately following pair of cells in the key-list. Before moving the hazard pointers,
the search process examines whether the previous cell has been marked as deleted by another concurrent
process, or if the current cell is not the immediate next cell of the previous cell. Both cases prevent the
search process from moving to the cells immediately to the right of the previous cell and the current cell.
To avoid such inconsistencies, some concurrency-control techniques are applied during the search operation.
Please see Section 4.2 for a description of the concurrency-control techniques used in the search operations.

Each time the search process moves the hazard pointers to the next cells, it compares the desired key
with the current key. It keeps on moving the hazard pointers until it finds a current key that is greater
than or equal to the desired key. After finding such a key, the search process knows that the left-child of
the current cell is the root of the sub-tree that contains the leaf for which it is searching. Thus, the search
process chooses the left-child of the current cell to examine next in the search for the appropriate leaf
containing the desired key.

If the search process cannot find any current key in the key-list that is greater than the desired key and
reaches the end of the key-list (i.e., hp1 points to the cell that contains the largest key in the key-list, and
hp2 points to the tail of the key-list), the search process knows that the right-child of the previous cell
(pointed to by hp1) points to the correct child of this node in which to find the appropriate leaf. Thus, the
search process looks in the right-child of the previous cell in the search for the appropriate leaf containing
the desired key. Before navigating to the selected child, the search process stores the currently examined
node in the path stack (see Section 3.5) for further use. The search process continues to move from each
node to a child node until it finds a leaf node.

Step 2: Find the Desired Key in the Leaf

When the search process finds the appropriate leaf for a desired key, it compares the keys from that leaf’s
key-list, one by one, with the desired key. The initial locations of the hazard pointers and the movement
of the hazard pointers follows the same rule as followed in step 1 of the search algorithm.

The search process keeps on moving hp1 and hp2, and comparing the current key with the desired key,
until it finds a current key that is greater than or equal to the desired key. If the search process finds a
current key that is equal to the desired key, then it has found the key in the leaf, and returns success. Since
the keys in the key-list in a node of a Blist -tree are stored in sorted order, if the search process finds a
current key that is greater than the desired key, then it knows that the desired key does not exist in the leaf.
In this case, the search process empties the path stack and terminates with a failure result. If the search
process examines all keys from the key-list but cannot find the desired key, then, again, it knows that the
key is not in the leaf

4.1.2 Insert Algorithm

The insert algorithm for a Blist -tree is the most complicated algorithm, compared to the search and the
delete algorithms. An insertion in a Blist -tree works in the following steps.
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Step 1: Create a Root

Inserting a key in an empty tree is different than inserting a key in a non-empty tree. If an insert process
wants to insert a key in a non-empty Blist -tree, the insert process does not execute step 1, it goes directly to
step 2 to find the appropriate leaf. Otherwise, if the tree is empty, the process creates a new leaf node for
the tree. Then, it allocates a cell from that leaf’s free-list, and copies the new key into the key field (see
Section 3.1) of that cell. After that, the insert process inserts that cell between the head and the tail of
the leaf’s key-list. Then, it increases the key-counter of the leaf, and updates the high-key of the leaf
with the new key. In the last step, the insert process uses CAS to assign the newly-created leaf’s address to
the root of the Blist -tree. If other processes already have created another root for the Blist -tree, the CAS
fails, and the insert process goes to step 2. Otherwise, the CAS successfully assigns the new leaf as the root
of the Blist -tree. Finally, the insert process makes the new root of the tree accessible to other processes by
setting the finally-linked-in-tree bit (see Section 3.3) of that leaf. From this point on, the new root is
available to other concurrent processes.

Step 2: Find the Appropriate Leaf

In the case of inserting a key into a non-empty tree, the insert process needs to find the appropriate leaf for
the key insertion. The search for the appropriate leaf in an insert algorithm in a Blist -tree is identical to the
search for the appropriate leaf in the search algorithm. See step 1 of the search algorithm in Section 4.1.1
for details.

Step 3: Allocate a Cell for the New Key

The insert process needs to allocate a cell from the free-list of the leaf to store the new key. Before it
allocates the new cell, it checks the status of the split-bit (see Section 3.3) of that leaf. If the split-bit
is on, another concurrent insertion process is splitting the same leaf. Therefore, this insert process has to
busy wait until the other inserter completes the split process and turns off the leaf’s split-bit.

Once the split-bit is off, the insert process checks whether the leaf is still the appropriate leaf in which
to insert the new key after the split operation (see Section 4.2 for a description of how the insert process
handles concurrent splits while allocating a new cell for the new key). Once the insert process is in the
correct node, it looks for an empty cell in the free-list of that leaf’s key-list. If there is no cell in
the free-list, the insert process checks the status of the split-bit, and the finally-linked-bit (see
Section 3.3) of that leaf. It has to busy wait until the split-bit is off, or the finally-linked-bit is
on. If both conditions are satisfied, but there are no cells available in the free-list, the insert process
has to communicate with all concurrent processes, including itself, to try to get a free cell reclaimed in the
free-list. Section 3.7 describes how a process communicates with other processes using the please-scan
array.

The insert process keeps on requesting a free cell from all concurrent processes until it gets one. Once
it finds a free cell in the free-list, it stores the new key in that cell, and goes to step 4 to search for the
correct position to insert the cell containing the new key in the leaf’s key-list.

Step 4: The Search for the New Key’s Position

The search for the new key’s position in a particular leaf is similar to searching for the desired key in a leaf
in the search algorithm. While comparing the keys, if the insert process finds the key in the key-list, it
knows that the key already exists in the Blist -tree, and cannot be inserted in the tree again. So, the insert
process returns the allocated cell to the free-list, empties the path stack that was filled during the search
for the appropriate leaf, and then terminates. Otherwise, the insert process goes to step 5 to insert the
allocated cell containing the new key between the cells pointed to by hp1 and hp2.
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Figure 8: CAS swings the next field of the previous cell to point the new cell.

Step 5: Try to Insert the Key in the Leaf

From this point on, we refer to the cell pointed to by hp1 as the previous cell, the cell pointed to by hp2 as
the current cell, and the cell containing the new key as the new cell. To insert the new cell in the key list
of the leaf, the insert process sets the next pointer (see Section 3.1) of the new cell to point to the current
cell. Then, the insert process uses CAS to update the next field of the previous cell to point to the new
cell. Here, CAS takes the address of the next field of the previous cell as the shared variable, the address
of the current cell as the old value, and the address of the new cell as the new value. If the current cell is
still the cell immediately after the previous cell, the CAS operation succeeds and sets the next pointer of
the previous cell to point to the new cell, thereby linking the new cell into the list (Figure 8). If the CAS
fails, then the insert process has to try again and has to repeat steps 4 and 5 until it succeeds in inserting
the new cell in the key-list.

After the insert process inserts the new cell in the key-list of the leaf, it increments the key-counter
of the leaf. If the key-counter of the leaf is incremented to m (the maximum number of children that a
node of a Blist -tree can have), then the insert process knows that the leaf is overflowing, and must split the
leaf. Therefore, the process executes step 6. Otherwise, the process skips steps 6–9, and goes to step 10
to fix the high-key of the parent node, if the leaf’s high-key became greater than the parent’s high-key
because of the insertion. Otherwise, the insert process empties the path stack that was created during the
search for the appropriate leaf, and terminates.

Step 6: Split the Leaf

To split a leaf (or node), the insert process has to set the split-bit of that leaf. Before it tries to turn
the split-bit on, it has to check whether the leaf is accessible to all concurrent processes by checking the
finally-linked-in-tree bit of the leaf (see Section 3.3). Even though an insert or delete process is allowed
to insert or delete a key in a leaf (or a node) that is not linked into the tree yet, it is not allowed to split
that leaf until the leaf is linked into the tree. If the leaf is not yet linked into the tree, the process needs to
busy wait until the leaf is completely linked into the tree and accessible to any concurrent process.

Once the leaf’s finally-linked-in-tree bit is set, the insert process again checks the key-counter of
the leaf. This check is necessary because, when the insert process was busy waiting for the leaf to be linked
into the tree, the key-counter might have gone below m due to some concurrent key deletion(s) or node
split(s). In that case, there is no longer an overflow in the leaf, and, hence, there is no need to split the leaf.
In this case, the insert process goes to step 10 to fix the high-key of this leaf’s parent, if necessary.

The insert process uses CAS to safely set the split-bit of the leaf. The CAS uses the split-bit field as
the shared variable, 0 as the old value, and 1 as the new value of the split-bit. If the CAS fails, the insert
process busy waits until the CAS succeeds. When the busy wait is over, the insert process again checks the
key-counter of the leaf, and tries to set the split-bit again, if the leaf is still overflowing.

The insert process creates a new leaf for the Blist -tree after it sets the split-bit. After creating the
new leaf, the insert process finds the middle cell containing the middle key (the !m/2"th key) from the leaf’s
key-list. Then, it copies the cells that contain keys larger than the middle key from the original leaf’s
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key-list to the new leaf’s key-list. Next, the insert process updates the key-counter of the new leaf with
the number of cells copied to the new leaf, then updates the high-key of the new leaf with the high-key of
the original leaf, and, finally, sets the new leaf’s right pointer to point to the leaf currently pointed to by
the original leaf’s right pointer.

After updating the fields of the new leaf, the insert process changes the necessary fields of the original
leaf. First, it sets the right pointer of the original leaf to point to the new leaf. Then, it updates the
high-key of the original leaf to be its middle key. Next, it decreases the key-counter of the original node
to !m/2". Finally, the insert process reclaims the cells that were copied to the new leaf adding them to the
original leaf’s free-list for reuse.

Step 7: Find the Parent

When the insert process completes the split operation, it needs to find the parent of the original leaf to insert
a copy of the original leaf’s middle key into its parent. Furthermore, a child pointer to the new leaf from
the parent is also required. To find the parent of the original leaf, the insert process gets the topmost node
from the path stack (see Section 3.5) that was created during the search for the appropriate leaf in step 2.

When the insert process has a non-empty path stack, it gets the topmost node of the path stack, which
should be the parent of the original leaf. However, due to the possibility of concurrent splits on the parent,
the parent node popped off the path stack might no longer be the parent of the original leaf. In that case,
the insert process finds a node to the right of the node stored on the path stack as the parent, a node that
has a high-key greater than or equal to the high-key in the original leaf (see Section 4.2 for details). After
the split process finds the correct parent for the original leaf, it goes to step 9 for the middle key insertion
into the parent.

If the insert process split the root of the Blist -tree in step 6, the path stack is supposed to be empty
(since, the root has no parent), and there is no way to return any node from the empty path stack. In that
case, the insert process goes to step 8 to add an extra level to the tree.

Concurrent operations can also cause an empty path stack, even if the insert process did not split the
root of the Blist -tree in step 6. This case can happen if, during the operations in step 2, the original leaf was
the root of the tree, but due to other concurrent operations, the tree has had a new root added (and has
added levels between the current root and the original leaf). The only way to get the parent of the original
leaf is to now re-fill the path stack with the visited nodes in the path from the root to the original leaf. In
this case, the insert process re-fills the path stack in the same way that it filled the path stack in step 2.
After completing the re-filling of the path stack, the insert process gets the address of the parent node from
the topmost node stored in the path stack, and goes to step 9 to insert the middle key in the parent node.

Step 8: Make the Tree Taller

In step 6 of the insert algorithm, if an insert process splits the root of the tree, it needs to add an extra
level to the tree by creating a new root for the tree. This step is similar to step 1 (create a new root) of this
algorithm. For making the tree taller, by creating a root for a non-empty tree, the insert process copies the
middle key of the original node (or leaf) in the allocated new cell from the key-list of the new root. Then,
the left-child pointer of that new cell is set to point to the original node (or leaf), and the right-child
pointer of the same cell is set to point to the new node (or leaf) that was created by the split operation in
step 6. Additionally, the insert process updates the high-key with the new node’s high-key, then sets the
finally-linked-in-tree bit (see Section 3.3) of the new node, and clears the split-bit of the original
node. Finally, it sets the root pointer of the Blist -tree to point to the new root, followed by setting the
finally-linked-in-tree bit of the new root.

Step 9: Insert the Middle Key into the Parent

Once the insert process finds the parent of the original node (or leaf), it allocates a new cell from the
free-list of the parent, similar to the way it allocates a new cell from a leaf’s free-list in step 3. The
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only difference here is that after allocating the new cell from the parent’s free-list, besides copying the
middle key to that cell, it copies the address of the original leaf to the left-child pointer of the new cell,
and the address of the new leaf to the right-child pointer of the new cell.

The next step is to search for the middle key in the parent. This search is identical to step 4 of the
insert algorithm. If the insert process does not find the middle key in the parent, it tries to insert the new
cell between the cells pointed to by its hazard pointers, hp1 (the previous cell) and hp2 (the current cell).
Insertion of the new cell between the previous and the current cell is identical to step 5.

During a middle key insertion, the insert process needs to fix the child pointers of the previous and
current cells after the insertion of the new cell in the key-list. If the middle key is not the largest key in
the parent node, after the insertion, the left-child pointer of the current cell points to the original leaf.
The insert process changes the current cell’s left-child pointer to point to the new leaf. If the middle key
is the largest key in the parent, and the new cell becomes the rightmost cell in the key-list, then the insert
process sets the high-key of the parent to be the high-key of the new leaf.

If this insertion creates an overflow in the parent, then the parent needs to be split. In that case, the
insert process repeats step 6 to 9. A node split is very similar to a leaf split as described in step 6. The only
difference is that when the insert process reclaims the copied cells to the original node’s free-list, along
with the copied cells it also reclaims the middle cell to the free-list, since Blist -trees store the keys only
in their leaves. Furthermore, the key-counter is decremented to !m/2" − 1, instead of decrementing it to
!m/2".

Step 10: Fix the Parent’s High-key

After the key is inserted into a leaf or a non-leaf node, if the high-key of that node becomes greater than
its parent’s high-key, then the insert process updates the parent’s high-key with that node’s high-key. If,
the parent’s high-key becomes greater than the high-key of the parent’s parent, then the high-key of the
parent’s parent is updated with the high-key of the parent. These high-key updates continued until the
insertion process finds a node whose high-key is less than or equal to its parent’s high-key, or the node
has no parent (i.e., the node is the root of the tree). Once the parent’s high-key is fixed, the insert process
empties the path stack and terminates.

4.1.3 Delete Algorithm

The delete algorithm uses multiple steps to delete a key from a Blist -tree. Those steps are described bellow:

Step 1: Find the Appropriate Leaf

Finding the appropriate leaf in a deletion is identical to finding the appropriate leaf in a search. See step 1
in the search algorithm (Section 4.1.1) for details.

Step 2: Search for the Desired Key

The search for the desired key in an insertion and the search for the desired key in a delete algorithm are
identical. See step 4 of the insert algorithm (Section 4.1.2) for details.

Step 3: Delete the Requested Key from the Leaf

If the delete process does not find the desired key in the appropriate leaf, the process knows that the key
does not exist in the Blist -tree, so the desired key cannot be deleted, and the deletion process terminates.
Before the termination of the deletion process, the path stack is emptied.

When the delete process finds the desired key in step 3, the hazard pointer hp2 of the delete process
points to the cell that contains the desired key. Let us call this cell the current-cell. The other haz-
ard pointer, hp1, points to the cell immediately to the left of the current cell. Let us call this cell the
previous-cell. Before deleting the current-cell, the delete process marks (see Section 2.2) the next
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Figure 9: The CAS operation swings the next field of the previous-cell (pointed to by hp1) from the
current-cell (pointed to by hp2) to the new-current cell.

field of the current-cell to be deleted. Marking a cell protects that cell from manipulated by other concur-
rent process(es). Before marking a cell, the delete process has to deal with some concurrency-control issues
that are described later in Section 4.2.

After marking the cell to be deleted, the delete process uses CAS to update the next pointer of the
previous-cell to point to the cell, new-current, immediately following the current-cell. The CAS takes
the next field of the previous-cell as the shared variable, the address of the current-cell as the old value,
and the address of new-current as the new value to be stored in the next field of the previous-cell. If the
CAS succeeds, the next field of the previous-cell points to the new-current cell (see Figure 9). Then,
the delete process decrements the key counter of the leaf, and stores the process identification number of the
deletion process in the current-cell’s thread-id field. This identification number is used later to reclaim
the current-cell to the free-list of the leaf. In case of an unsuccessful CAS (due to some concurrent
updates), the delete process unmarks the current-cell, and repeats steps 2 and 3 until the CAS operation
succeeds.

Step 4: Retire the Deleted Cell

Since a Blist -tree does not use locks for any operation, returning a deleted cell to the free-list of a leaf
after a deletion is unsafe in a concurrent environment. For example, if a deleter returns a deleted cell to the
free-list while other concurrent processes are concurrently working on that cell, it may create incorrect
results (see Section 2.2). Therefore, instead of returning a cell directly to the free-list of the leaf, our
deletion algorithm marks the deleted cell as retired, and stores the address of the cell, along with the address
of the associated leaf, in the retired-cell stack (see Section 3.6). Each process in a Blist -tree has its own
retired-cell stack from which only that process can later reclaim the cells to the free-list of the cell’s
corresponding leaf.

Every Blist -tree is assigned a threshold level R (as described by Michael [15]) that is usually related to
m. If the size of a process’s retired-cell stack reaches the given threshold, R, the delete process calls for
a scan and goes to the next step. Otherwise, the delete process empties the path stack and terminates.

Step 5: Scan the Retired-cell Stack

The scan routine returns retired cells to their free lists, if they are not currently pointed to by the haz-
ard pointers of any process. First, the scan routine clears the scan-bit of the deletion process in the
please-scan array (see Section 3.7). In the next step, it copies the global list of cell addresses, along with
their corresponding leaf addresses, of all cells that are currently pointed to by the hazard pointers of any
process. These copies are stored in a local list, p-list. Then, the scan routine sorts the p-list according
the cell addresses. Next, the scan routine empties the retired-cell stack and stores all the cells, along
with their associated leaves, in a temporary stack. The scan routine then compares the cells from the p-list
with the cells stored in the temporary stack. Any cells that appear in the p-list are being used by some
process, so they are returned to the retired-cell stack. Any cells that do not appear in the p-list are
not being used by other processes, and can be safely returned to their free lists as described in step 6.
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Step 6: Reclaim the Retired Cells

In this step, the delete process uses CAS to return each safe cell to its corresponding leaf’s free-list. First,
the delete algorithm links the cell to be reclaimed (new-free) with the free-list. Then, CAS takes the
address of the free-head (see Section 3.2) of the key-list as the shared variable, a copy of the free-head
(copy-free) as the old value, and the new-free as the new value. If no concurrent process(es) changes
the free-head, then CAS swings the free-head pointer to point to new-free. If the CAS fails, the delete
process repeats this step until the CAS succeeds.

4.2 Concurrency Correctness of the Algorithms

Unlike the Blink -tree algorithms, the Blist -tree algorithms do not lock a node for an update or a split
operation. Therefore, when a process performs an operation in a node, other concurrent processes can
search, insert, or delete some keys in the same node, or can even split the entire node into two nodes. To
avoid any inconsistency, our Blist -tree algorithms need to handle these concurrent operations without locking
the node. In the following subsections, we describe where and how we dealt with the concurrency issues in
our Blist -tree algorithms.

Consider the three major types of operations in our Blist -tree. They are the search operations, where
the processes just read, but do not write, any data in the tree; the update operations (insert and delete),
where the processes write data in the tree, and finally, the split operations, where the processes split a node
into two different nodes. We ensure that none of these types of operations interfere with each other while
operating concurrently in a Blist -tree.

4.2.1 Concurrency Control in Search Operations

Selecting the correct child to follow to get to the appropriate leaf, and searching for the desired key in the leaf
are the key tasks in any search operation in a Blist -tree. Since the search tasks do not change any contents
of the Blist -tree, concurrent search operations in a node (both leaf and non-leaf) do not create conflicts with
each other. Conflicts can, however, arise when one or more concurrent update and/or split operations are
performed simultaneously with a search operation.

Conflicts with Concurrent Update Operations

When a searcher compares a desired key with the keys of a node’s key list, concurrency control is required
if a concurrent inserter is inserting a new cell between the cells pointed to by the searcher’s hp1 and hp2, or
a concurrent deleter is deleting the cell pointed to by searcher’s hp1 or hp2.

In case of a concurrent insert operation, the hp1s of both searcher and inserter point to the same cell
and hp2s of both searcher and inserter point to the same cell. If the key to be inserted is equal to the key
to be searched for, then without concurrency control (when a concurrent inserter completes the insertion
during the search operation), the search operation would see that its hazard pointer hp2 points to a cell that
contains a key that is greater than the key to be searched for. Even though the key to be searched for is
now in the key-list, the searcher would conclude that the desired key is not in the key-list of the node.
To avoid this inconsistency, before comparing the desired key with the key in the cell pointed to by hp2, and
before moving the hp1 and hp2 pointers one cell ahead in the key-list, the search operation always tests
whether the cell pointed to by hp2 is still the next cell immediately to the right of the cell pointed to by hp1
in the key-list. If the test fails, the search operation must re-assign hp2 to point to the cell immediately
following the cell pointed to by hp1, and continue the search for the desired key.

Similarly, if a concurrent delete operation tried to delete any of the cells pointed to by the searcher’s
hazard pointers hp1 or hp2, the searcher needs to handle the potential inconsistency caused by the concurrent
deletion. To handle these situations, before comparing each key in the key-list, and before moving to the
next cell, the searcher checks whether the next fields of the cell pointed to by hp1 or hp2 are marked as
deleted by the deleter. If the cell pointed to by the searcher’s hp1 is marked as deleted, then the next
field of that cell no longer points to a valid cell address, and following the next pointer will generate an
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invalid operation for the search operation. To avoid the invalid operation, the search operation moves back
to the beginning of the key-list, and starts searching for the desired key again, from the beginning of
the key-list. If the search operation sees that the cell pointed to by hp2 is marked as deleted, it checks
whether the concurrent deleter has completely removed the cell pointed to by the searcher’s hp2 from the
key-list. If that cell is removed from the key-list, the search operation re-assigns its hazard pointer hp2
to the immediate next cell of the cell pointed to by hp1. Otherwise, the search operation moves back to the
beginning of the key-list and starts search for the desired key again.

Conflicts with Concurrent Split Operations

Handling conflicts between a search operation and a concurrent split operation is more difficult than handling
conflicts between a search and a concurrent update operation. This difficulty arises because a search operation
can start searching for a desired key in the middle of an ongoing split operation. Moreover, a search process
allows a split operation to split the node while the process searches for the desired key. While searching for
a key in a node, if the node gets split by a concurrent split process, and the desired key no longer remains
in the examined node, then the search operation would conclude that the desired key does not exist in
the tree, which is incorrect. The situation gets worse when a cell that is currently being examined by the
search process now belongs to the free-list of the node due to the split operation (see step 6 of the insert
algorithm in Section 4.1.2).

A search operation handles the concurrency issues with split operations in different ways. A search
operation compares the desired key with the high-key of a node before it starts looking for the key to be
searched for in that node, and before comparing each key of the key-list with the key to be searched for.
As a result of a split operation, if the desired key now resides in the node created by the split operation,
then the high-key of the original node will be less than the desired key. Therefore, if the search operation
finds that the desired key is greater than the high-key of the original node (the node it is now looking for
the desired key in), it must move right to the immediately following node to search for the desired key. In a
split operation (described in Section 4.1.2), as we saw, a splitter copies half the keys from the original node’s
key-list to the new node’s key-list, then it links the original node to the new node, and finally, it changes
the high-key of the original node. Therefore, once a concurrent split operation changes the high-key of
the original node, it has already created the new node, has copied the keys from the original node to the
new node, and has linked the original node to the new node. Furthermore, the split operation moves the
right-half of the original node to the free-list after it changes the high-key. Thus, it is safe for the search
operation to go to the new node after noticing the change in the high-key, and start searching for the
desired key in that node.

If the split operation changes the high-key of the node after the search operation compares the desired
key with the high-key, that does not create a problem between the searcher and the splitter because, before
comparing the next key in the key-list with the desired key, the searcher will do the same comparison
again, and will be able to detect the change in the high-key of the original node. If the search process is
looking at the rightmost key in the key-list of the original node, and the concurrent split operation changes
the high-key after the comparison, that also does not affect the search operation (even though there is no
next turn to compare the desired key with the high-key of the original node). If the last key is the search
key, this key has already been copied to the new node, which is now linked to the tree. Thus, if the search
operation correctly concludes that the desired key exists in the tree. Conversely, if the last key is not the
desired key being searched for, then its copy in the new node is also the last key in the new node’s key-list
and the desired key does not exist in the tree. In that case, the search process knows that the key being
searched for does not exist in the tree, which is again a correct conclusion.

4.2.2 Concurrency Control in Update Operations

There are two types of update operations in a Blist -tree. The first is the insert operation, where an insert
process inserts a new cell containing the key to be inserted in the key-list of a node or a leaf. The second
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is the delete operation, where a delete process deletes the cell containing the key to be deleted from the
key-list of a leaf.

Conflicts with Other Concurrent Update Operations

The most common conflicts that update operations face are conflicts with other concurrent update operations.
There can be conflicts between two concurrent insert operations, or between two concurrent delete operations,
or between one insert operation and one delete operation. Use of CAS (see Section 1) in the Blist -trees
prevents these conflicts between more than one concurrent update operation.

Handling conflicts between two concurrent insert operation is straightforward. When two insert opera-
tions want to insert two new cells, each containing the same key2, in the same position of the key-list of a
node. Both inserters have their hp1 pointing to the same cell (this cell will be referred to as previous-cell)
and both inserters have their hp2 pointing to the same cell (this cell will be referred to as following-cell),
respectively. Before swinging the next pointer of previous-cell from following-cell to the cell to be
inserted, both inserters use CAS to check whether following-cell still immediately follows previous-cell
in the key-list. Here, if both inserters want to swing the next pointer of previous-cell at the same time,
because of the atomicity property of CAS, one will succeed, and the other will fail. The inserter with a
successful CAS operation will complete the insertion of the cell to be inserted, and the other unsuccessful
concurrent insert operations have to re-do the insert operation.

In the case of concurrent delete operations, two different types of conflicts can occur. In the first type,
both delete operations want to delete the same cell, and in the other case, two delete operations want to
delete two consecutive cells.

Let us consider the situation where both delete operations want to delete the same cell. Both of their
hp1 pointers point to the same cell (this cell will be referred to as previous-cell), and both of their hp2
pointers point to the same cell (the cell to be deleted, this cell will be referred to as current-cell). In the
first step of the deletion operation, both delete operations will try to mark current-cell as being deleted.
A CAS operation is used to add 1 to the next field of the current-cell to mark that cell (see Section 2.2).
Use of CAS operation prevents multiple marking operations (adding 1 to the next field) that might change
the least significant bit of the next field back to 0. Once the cell is marked by one of the concurrent deleter,
both deleter processes will try to swing the next pointer of previous-cell from pointing to current-cell
to point to the cell immediately following current-cell, using a CAS operation. Here also, because of the
nature of the CAS primitive, only one delete operation will succeed in swinging the previous-cell->next
pointer to point to the cell immediately following current-cell, and the other will fail. Whichever deleter
fails will have to re-do the deletion operation.

The second type of conflict between two concurrent delete operations will occur if they want to delete
two consecutive cells from the key list of the same node (Figure 10). From Figure 10, current-cell-1 and
previous-cell-2 point to the same cell, and following-cell-1 and current-cell-2 point to the same
cell. Now, if the second deleter can complete the deletion of current-cell-2 before the first deleter marks
current-cell-1 for deletion, there will be no conflicts among the concurrent delete operations since the
deleted cell from the second deleter is not involved in the first deleter’s delete operation. However, once the
first deleter marks current-cell-1 (and assuming the second deleter did not delete current-cell-2 from
the key-list, yet), the next pointer of current-cell-1 no longer points to following-cell-1. For the
second deleter, then, previous-cell-2->next no longer points to current-cell-2. Therefore, the CAS
operation performed by the second deleter to remove current-cell-2 from the key list will fail, and the
second deleter will unmark current-cell-2 and re-do the delete operation.

In addition to the concurrency-handling techniques discussed above, using hazard pointers (see Sec-
tion 3.4) avoids conflicts related to memory reuse between concurrent operations in a Blist -tree. When a
delete operation deletes a cell from the key-list of a leaf, instead of reclaiming that cell to the free-list
immediately, the delete process stores the address of the cell in its retired-cell stack until no hazard

2The inserters’ keys do not have to be the same to cause a conflict. The keys just have to both fall between the same two
keys already in the tree.
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Figure 10: Two concurrent deleter operations want to delete two consecutive cells.

pointers of any process point to that cell (see step 4 of the delete algorithm in Section 4.1.3). Since the
address of a deleted cell is kept in the retired-cell stack, other concurrent operations can finish their
jobs on that cell without facing any conflicts. If there are more than two concurrent update operations in
the same node that have potential conflicts, the conflicts are handled in the same way as they are handled
between two concurrent update operations in the same node.

Conflicts with Concurrent Split Operations

The Blist algorithms do not have any concurrency-control techniques for concurrent update and split since
it is impossible to start a split operation in a node (or in a leaf) when there are ongoing concurrent insert
or delete operations.

Every update process in a node of a Blist -tree, whether an insert or delete process, gets a cell from the
node’s free-list before it starts the update operation. After inserting the key to be inserted along with the
allocated cell, the insert process increments the key-counter of the node (or leaf). An insert process calls a
split operation if and only if the key-counter is incremented to m, and there are no cell in the free-list of
the node. If more than one concurrent insert operations are happening in the same node so that there are no
free cells left in the free-list, and other update processes are waiting to get a free cell, none of the ongoing
insert processes can request a split operation until each of them succeeds in inserting their new key, and the
key-counter incremented to m. Once the last successful insert process increments the key-counter, and
the key-counter hits m, only that insert process will invoke a split operation on that node. Therefore, a
split operation cannot start when there is another concurrent insert is going on in the same node.

Similarly, if there is a delete process deleting a key from a leaf, no concurrent inserter can perform a split
operation. Like the insert processes, a delete process also holds a free cell from the free-list before it starts
a deletion operation. Suppose a delete process wants to delete a key (and its cell) from a node, and currently
the key-counter of that node is m− 1. Since the key-counter is m− 1, we can conclude that there is only
one free cell left in the free-list (to be allocated for the delete operation), and no concurrent inserter is
trying to insert a key in the key-list. If there are any concurrent inserters in the same leaf, all of them have
already inserted their keys in the key-list, and also have finished incrementing the key-counter of the
leaf. When the delete process grabs the last cell from the free-list, the free-list becomes empty. Hence,
if any update process wants to insert or delete any key in the same node, it has to wait until this deleter
process returns that cell to the free-list. The deleter process will return the cell only after it decrements
the key-counter of the node. Whether the deletion takes place or not, when the delete process returns the
allocated cell to the free cell in the free-list, the key-counter of the leaf will be not more than m − 1.
As a result, no inserter will perform a split operation until the deletion is finished. As it is impossible to
have concurrent delete and split operations in the same leaf, there is no need to design concurrency-control
techniques for concurrent split and delete operations.
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4.2.3 Concurrency Control in Split Operations

The Blist algorithms do not need any concurrency-control techniques for a split operation, since it gets the
highest preference among all operations in a Blist -tree, with respect to concurrency. All update and split
operations in a node have to wait until an active split operation splits the node completely (see the insert
and delete algorithms in Section 4.1.2 and Section 4.1.3, respectively, for details). A search operation can
be done concurrently with a split operation, however, since the search operations only read data from the
nodes, they do not create any conflict with the split operations. Techniques for handling the concurrency
effects of a split operation on search operations were described in Section 4.2.1, and on update operations
were described in Section 4.2.2.

5 Assessment

5.1 Experimental Setup

To assess the implementation of our Blist -tree, we compared its performance with Lehman and Yao’s Blink -
trees [12]. The Blist -tree algorithms are designed for in-memory applications that run efficiently on shared
memory machines including Non-Uniform Memory Access-time (NUMA) machines, rather than for the tra-
ditional disk-based applications for which Lehman and Yao’s Blink -tree algorithms were originally designed.

To achieve a fair comparison between Blink and Blist -trees, we made some modifications to the Blink -
trees. We implemented an in-memory version of Lehman and Yao’s Blink -tree algorithms. In the Blink -tree
implementation, the keys in the nodes are stored in an array, whereas in our lock-free Blist -tree the keys
in each node are stored in a localized linked list. Furthermore, in Blink -trees, the keys residing in a node
(both leaf and non-leaf) and the child pointers pointing to the children of a node are implemented separately
as an array of keys and an array of child pointers, respectively. The child pointers and their associated
key separators are distinguished using the array indexes (e.g., key[0] separates child[0] and child[1]).
However, in our Blist -trees, each key and its associated child pointers are stored in a cell object that is a
part of the localized linked list of a node (see Section 3). The complex node structure of Blist -trees makes
the nodes of the trees noticeably larger than the nodes in Blink -trees. Because of the larger size and the
complex structure of the nodes, the Blist -tree algorithms take significantly higher time to access a key in a
node compared to the key access time in a node of the Blink -tree algorithms.

In B-trees and their variants, major operations like searches, inserts and deletes take place in a node
(or a leaf). To more directly compare the lock-based and lock-free performances within a node, we also
implemented a variant of Lehman and Yao’s Blink -tree in which the keys in a node (both leaf and non-leaf)
are stored in a localized linked-list instead of being stored in an array. To distinguish the two different
variants of Lehman and Yao’s Blink -tree, we refer to the Blink -tree using the array-based node structure as
the Blink -array, and to the Blink -tree using the linked-list-based node structure as the Blink -linked-list. The
Blist -tree will, of course, be referred to by its own name.

5.2 Test-bed Environment

We did a complete set of experiments using the Sun Fire x4600 shared memory machines available in the
Department of Computer Science at the University of Manitoba. Each test-bed machine, Helium-01 through
Helium-05, has eight processors with dual cores so that, in total, the machine can work with 16 different
threads concurrently. Due to the memory architecture (where each processor has its own DIMMS) the Sun
Fire has NUMA behavior but is not optimized for this. In addition to the Sun Fire machines, we also
conducted some of our experiments on an SGI origin 3000 SMP machine, helios, provided by Westgrid [21].
Helios has 32 MIPS R14000 CPUs and offers highly optimized cache-coherent (CC-NUMA) memory system.
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5.3 Programming Language

To implement the two variants of Blink -tree (the Blink -array and the Blink -linked list) and the Blist -tree, we
used C++ as our programming language. Additionally, we used the POSIX threads (pthreads) libraries to
create multiple simultaneous threads so that our program can concurrently run on the different processors
of the Sun and SGI machines.

5.4 Parameters Varied

In our experiments, we recorded the running time of the Blink -array, the Blink -linked-list, and the Blist -tree
algorithms for different mixes of operations (search, insert, and delete), different values of m, different key
ranges, and different numbers of concurrent processes3.

5.4.1 Different Operation Types

To begin each experiment on the Blink -array, the Blink -linked-list, and the Blist -tree, we populated the
tree with keys inserted by one million uniformly distributed random sequential insert operations. Then,
over multiple identical runs, we measured the average execution time for one million concurrent operations
consisting of different proportions of search, insert and delete operations. We divided our experiments into
five categories according to the ratio of the search, insert, and the delete operations. The first experiment
considered only concurrent search operations. In the second, third, and fourth experiments, we included
concurrent insert operations along with the search operations. In those three experiments, we decreased
the number of the concurrent search operations, and increased the number of concurrent insert operations
gradually to see the effect of concurrent insertions in the trees. In the fifth experiment, we examined the
running time for equal numbers of concurrent search, insert, and delete operations in all types of trees.

5.4.2 Different Values for m

For each of our five experiments, we also assessed the performance for different values of m for both Blink -
trees and the Blist -tree. In any B-tree variant, using a smaller m, like 100, creates a taller tree than using
a larger m, like 1000, assuming the number of keys in the tree is the same. If the tree is taller, then the
algorithms should take more time to find the correct leaf to perform the search, insert and delete operations.
Conversely, in a shorter tree, with larger m, the algorithms should take more time to find the correct place
within a leaf (or node) for the various operations. Moreover, a largerm might introduce more data contention
in the same node. To see the effect of the value of m in the trees, we experimented with 100, 200, 500, 700,
and 1000 as the values of m.

5.4.3 Different Key Ranges

The key range affects the number of nodes in the initial tree constructed by the serial insertions and also
by any concurrent update operations performed after the initial tree is constructed. If the key range is
small compared to the number of serial insertions, for example, a key range of 1–250,000 and 1,000,000
serial insertions, then the initial tree will likely contain nearly all the keys in the range. Since the range is
1–250,000, the tree will never be very large because there are only 250,000 keys. Furthermore, concurrent
insertions performed after initial construction will fail because the keys are all already in the tree, so the
insertions degenerate to searches. Therefore, a mix of searches and insertions with no deletions will be similar
to 100% searches except that the insertions allocate a free cell in the appropriate leaf, whereas searches do
not. Most concurrent deletions performed after the initial construction will succeed because all keys are in
the tree initially. Of course, as the number of deletions increases, more insertions will succeed.

Alternatively, if the key range is large compared to the number of serial insertions, for example, a key
range of 1–10,000,000 and 1,000,000 serial insertions, then the number of keys in the tree will be close to the

3Although we used pthreads in our implementation, we will continue to use the term process.
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number of serial insertions. Furthermore, concurrent insertions after the initial construction are more likely
to succeed and concurrent deletions are more likely to fail.

To assess the effect of key range on algorithm performance, we used the following different key ranges:
1–250,000, 1–1,000,000, 1–2,000,000, and 1–10,000,000. In all cases, we did 1,000,000 initial serial insertions
to populate the tree and then 1,000,000 concurrent operations with mixes, as described earlier.

5.4.4 Different Numbers of Processes

In addition to assessing the effect of operation mix, m and the key range on the algorithms, we also measured
the running time of one million concurrent operations on each tree performed by different numbers of
processes. As the number of concurrent processes increases, chances of conflicts also increase. Since the
one million concurrent operations are divided among the processes, the number of operations per process
decreases as the number of processes increases. Consequently, the overall running time is expected to
decrease, subject to concurrency overhead.

To determine the trade-off between the number of processes and the performance gain, we ran all of our
experiments for 1, 2, 4, 6, 8, 12, 14, and 16 processes on the Sun machines, and for 1, 2, 4, 8, 16 and 32
processes on the SGI machines. These experiments used all values of m, all key ranges, and all concurrent
operation mixes.

5.4.5 Memory Affinity

Instead of sequentially building the tree, we also built all three types of trees using eight concurrent processes.
Thus, each process should have built its own part of the tree in its associated memory. We expected
that, during the concurrent operations, accessing the leaves (or nodes) in each process’s associated memory
would be less time consuming than accessing nodes in another process’s associated memory. However, the
experimental results did not show any significant effect of exploiting memory affinity. This lack of effect was
likely due to efficient caching because of the design for locality in our algorithm. Therefore, we decided to
simply build the tree with a single process running on a single core for the reported experiments.

5.5 Results

In our experiments, we recorded the running times of the Blink -array, Blink -linked-list, and Blist -tree for 10
runs per experiment, and then calculated their average running time to compare their performances. In
the next sections, we describe the results of the various experiments on the Sun machines first. Then we
describe the results of a subset of the experiments run on the SGI machines4. To have a fair comparison in
all experiments, we maintained the same scale for all result graphs.

5.6 Sun Machine with Eight Processors

The Sun machines are NUMA-style machines with eight dual-core processors. In our experiments, we created
threads only on the second core of each processor to ensure that no processes shared the same data bus to
access the shared memory until the number of processes was more than eight. (When there are more than
eight processes, two processes simultaneously share the second core of each processor of the Sun machines.)
More precisely, if there are 10 processes, process 1 and 9 share the second core of the first processor, and
process 2 and 10 share the second core of the second processor. We chose this creation pattern because,
during early experimentation on the Sun Fire machines, we discovered that the memory access path shared
by the cores on a single processor quickly became saturated and resulted in a performance bottleneck. This
phenomenon was not observed on the SGI machines.

4Not all experiments could be run on the shared SGI machines due to long waiting times to access them. Hence, a
representative subset of the experiments were chosen.
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Table 1: Percentage of performance gain in Blist -trees compared to the Blink -linked-list trees with eight
concurrent processes.

m Key Experiment Experiment Experiment Experiment
Range 2 3 4 5

500 1–250,000 25.09 21.93 8.17 17.54
1–1,000,000 25.11 23.51 3.14 16.57
1–2,000,000 25.96 20.39 0.98 16.59
1–10,000,000 25.65 22.45 2.79 16.73

700 1–250,000 0.01 22.90 3.42 22.46
1–1,000,000 0.14 20.28 6.03 21.79
1–2,000,000 0.64 24.17 5.83 6.18
1–10,000,000 1.44 22.34 4.73 12.57

1000 1–250,000 0.64 23.99 2.53 22.90
1–1,000,000 0.65 24.51 4.35 23.56
1–2,000,000 0.67 21.25 1.08 13.67
1–10,000,000 0.02 22.38 4.74 7.36

5.6.1 Summary of the Experiments on the Sun Fire Machines

After conducting our experiments, we observed that the Blink -array tree always performs the best compared
to the Blink -linked-list and Blist -tree. Furthermore, depending on the values of our tested parameters,
the Blist -tree has noticeable to significant performance gain compared to the Blink -linked-list trees. We
summarized the results from experiment 2 to experiment 5 in table 1. We did not include the results of
the experiment with 100% search operations, since no lock-free or lock-based concurrency-control techniques
were used in this experiment. Furthermore, with smaller m like 100 or 200, there were not much performance
gain in the Blist -trees. Therefore, we did not include the summary of the running time, when m is 100 or
200.

From the experimental results on the Sun machines, it can be concluded that, regardless of the operation
type, value of m, and key range, the Blink -array trees perform the best compared to the Blink -linked-list trees
and the Blist -trees. This result is expected because of the structural difference between the nodes among
the array-based Blink -array trees, and the localized linked-list-based Blink -linked-list trees, and Blist -trees
(as described in Section 5.1).

When we compare the lock-based Blink -linked-list trees and the Blist -trees, there are no structural dif-
ferences between these two types of tree. The only difference between them is the concurrency-control
techniques used—more precisely, the difference between lock-based techniques and the lock-free techniques
used in the update operations.

In the first experiment, when only search operations were conducted on both types of trees, none of the
trees use any concurrency-control techniques since there were no updates on the trees. The results of this
experiment show that when there is no conflict in the trees, the Blist -tree algorithms perform slightly better
than the Blink -linked-list tree algorithms.

When update operations were introduced in both types of trees (experiments 2–5), the Blink -linked-list
tree algorithms had to acquire locks to handle concurrency among concurrent update operations, whereas
the Blist -tree algorithm used lock-free CAS as a concurrency-control technique to enable concurrent update
operations. In these experiments where there was no thread-switching overhead (the experiments conducted
with eight or fewer threads), the Blist -trees always performed better than the Blink -linked-list trees. Thus, in
these experiments, the lock-free concurrency-control techniques outperformed the lock-based concurrency-
control techniques. Because of the lock-based properties of the Blink -linked-list trees, a process acquires the
lock of a node for an update operation when the process finds the appropriate node to be updated. Once the
node is locked, the rest of the processes must wait (typically be blocked) if they want to update the same
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node. Conversely, in lock-free Blist -trees, there is no need of such waiting. No matter how high the data
contention is in a node, all processes can simultaneously work on the same node, if necessary. A process
in a Blist -tree needs to re-do its computation only if more than one process wants to update the same cell
in that node. As long as the concurrent operations do not manipulate the same cell, greater parallelism is
achieved. Therefore, as we see the performance analysis of experiment 2–5, the ratio of the running time of
the Blink -linked-list trees and the Blist -trees goes higher when m grows larger. The ratio increases because,
when m is 500 or more, the overhead to acquire the lock of a node becomes higher (in the Blink -linked-list
trees) than the overhead of re-doing the work of updating a cell in the node (in the Blist -trees). From the
analysis of the results, it can be concluded that when m is relatively larger, the lock-free Blist -trees perform
noticeably better than the lock-based Blink -linked-list trees.

5.7 SGI Machines

In our experiments on the Sun Fire machines, up to sixteen processes performed their operations on eight
processors. Therefore, when there were more than eight processes used on the Sun Fire machines simulta-
neously, more than one process had to share the same processor. As a result of thread-sharing by the same
processors, the running time for the experiments with update operations (experiments 2–5 in Section 5.6)
on Blist -trees were sometimes significantly higher than the running time for the Blink -array and the Blink -
linked-list tree algorithms. To see if this problem is specific to the Sun Fire machines, we did some of our
experiments on the SGI machines hosted by WestGrid.

The SGI machines are also NUMA-style Symmetric Multiprocessors (SMP) machines. In our experiments
on the SGI machines, we recorded the average running times of ten runs for the Blink -array, Blink -linked-list,
and Blist -trees with 1, 2, 4, 8, 16, and 32 parallel processors and with m values of 100, 500, and 1000. With
no thread sharing in the SGI machines, the running time of the Blist -trees was never greater than the running
time of the Blink -linked-list trees, suggesting a limitation in the memory system of the Sun Fire machines.

Like the experiments on the Sun Fire machines, in the experiments on the SGI machines, we also popu-
lated the tree with one million random keys from different key ranges (as in Section 5.6), and then we process
different mixes of search, insert and delete operations on the trees. We tested with 100% search operations
(experiment 1 of Section 5.6), 50% search and 50% insert operations (experiment 3 of Section 5.6) and equal
mix of search, insert and delete operations (experiment 5 of Section 5.6) on the SGI machines.

5.7.1 Summary of the Experiments on the SGI Machines

With the experiments on the SGI machines, we observed due to the cache-coherent nature of the NUMA-style
parallel architecture in the SGI machines, sometime our Blist -tree outperforms the Blink -array tree. With
50% search and 50% insert operations, the performance gain is observed highes. We summarized the result
of the performance gain in Blist -tree compared to the Blink -array and Blink–linked-list tree in table 2.

6 Conclusion and Future Work

6.1 Conclusions

B-trees are ideal for large-scale searching since their search, insert and delete operations take only logarithmic
time. If a B-tree can be used concurrently by many users, the efficiency of the system increases. Many lock-
based algorithms were designed for concurrent B-trees on disk. These algorithms lock some portion of the
tree to allow some concurrency while maintaining consistency. However, these lock-based algorithms may
offer limited concurrency in certain cases and have negative side-effects such as deadlock, convoying and
priority inversion.

We presented algorithms for a Blist -tree that attempt to provide more concurrency for in-memory ap-
plications using lock-free techniques, applying Michael’s hazard-pointer techniques to efficiently manage
intra-node updates in such a way that memory locality is maintained. Furthermore, after designing the
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Table 2: Percentage of performance gain in Blist -trees compared to the Blink -array Blink -linked-list trees
with 50% search and 50% insert operations on 32 concurrent processes.

m Key Blink -array tree Blink -linked-list
Range VS Blist -trees tree VS Blist -trees

100 1–250,000 0 0
1–1,000,000 10.47 26.69
1–2,000,000 0 50.48
1–10,000,000 9.82 44.39

500 1–250,000 16.02 11.706
1–1,000,000 7.33 64.68
1–2,000,000 37.52 56.05
1–10,000,000 36.83 64.10

1000 1–250,000 36.09 41.16
1–1,000,000 11.84 44.31
1–2,000,000 6.00 17.20
1–10,000,000 30.71 57.57

algorithms, we assessed the performance relative to two variants of Lehman and Yao’s Blink -tree (where one
variant stores the keys in an array and another variant stores the keys in a linked list). We performed all of
our assessments on the NUMA-style Sun Fire and SGI machines. The results of our experiments show that
Blink -trees with simple array-based key lists perform better than both Blink and Blist -trees with complex
linked-list-based key list in their nodes. The lock-free concurrency-control techniques achieve better perfor-
mance when the node structure of the trees being compared is similar (i.e., object-oriented linked-list-based
key list structure), and when thread-switching overhead is comparable. However, some of the experimen-
tal results on the SGI machines show that lock-free Blist -tree concurrent insertions are more efficient than
insertions in both types of lock-based Blink -trees.

Our contributions include:

• Introducing a lock-free locality-of-reference-oriented linked list to store keys in the nodes of Blist -trees.

• Implementing atomic CAS operations for both Sun Fire and SGI machines to perform an update
operation.

• Introducing a split bit to each node to avoid unsafe concurrent update and split operations.

• Introducing a cell allocation in the beginning of an update operation to avoid unsafe concurrent update
and split operations.

• Introducing a finally-linked-in-tree bit to each node to allow search processes to search in a newly-
created node that is not currently accessible from the parent node.

• Designing a please-scan array to send requests to other concurrent processes to release some free cells
for reuse.

• Revising the scan algorithm to return the retired cells to their associated nodes for reuse.

• Identifying a threshold level R as m/5 to trigger a scan operation.

• Presenting a comparative assessment on Blink and Blist -trees experimenting with different parameters.
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6.2 Future Work

Some additional work could improve the performance of the Blist -tree. For example, a lock-free array-based
Blist -tree on a non object-oriented key-list implementation could be designed. Also, maintaining more empty
cells in the nodes might limit delays during updates. Furthermore, avoiding unnecessary rollbacks due to
concurrent deletions could improve experiment results. Finally, careful work assignment on the processors
might improve locality.

Lehman and Yao’s array-based Blink -trees give the best performance compared to the linked-list-based
Blink -trees and lock-free Blist -trees. The complex linked-list-based node structure has some overhead (as
described in Section 5.1) on intra-node operations (i.e., search, insert and delete operations within a node)
and causes delay. We could build Blist -trees with lock-free arrays and without using objects, to assess their
performance.

Another possibility for short-term future work might be to add extra free-space in each node of the Blist -
trees. In the experiments on the Sun Fire machines, when more than one thread share the same core, if the
nodes are nearly full, the processes require more time to complete the update operations. In our Blist -trees,
we designed the nodes to have exactly m cells to store the keys. With high data contention, the free list of
a node might be empty and any process that wants to do an update operation on the node has to wait until
there is a free cell in the node’s free list. If a node is split after the node is 75% full, instead of 100% full,
the probability of getting an empty cell will increase. Since memory is cheap, this might be an attractive
option. The threshold level for node splitting might also be altered to see the effect of the fullness of nodes
on overall performance.

On SGI machines, in particular, performance degradation due to deletes was obvious. This performance
degradation was likely due to processes being rolled back when they find a cell that is marked for deletion.
To minimize the overhead of such rollbacks, we might maintain pointers to a number of preceding cells while
searching. Rather than rolling back to the beginning of the key list, we could then restart our search from
a nearby safe position.

In NUMA-style machines, updating a piece of memory is most efficient when the update is performed by
the processor associated with the memory segment containing the piece of memory to be updated. Therefore,
when a node of a Blist -tree needs to be updated, the work could be assigned to the process associated with
the piece of memory where the node resides. It would be very interesting to see whether the overhead of this
work assignment could be made small enough to benefit from improved performance due to better locality.
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