Welcome to Comp 2140

Helen Cameron

Comp 2140 Fall 2014
General Course and Section Information
Section A02 (CRN 13589) (This one)
When: Monday, Wednesday and Friday 1:30–2:20 p.m.
Where: E2 105 EITC
Instructor: Helen Cameron (course director)
Office: E2 477 EITC
Phone: 474-8466 (voicemail)
Email: Helen.Cameron@cs.umanitoba.ca
Section A01 (CRN 10181)
When: Tuesday and Thursday 2:30–3:45 p.m.
Where: E2 110 EITC
Instructor: Stephane Durocher
Office: E2 412 EITC
Phone: 474-8674 (voicemail)
Email: durocher@cs.umanitoba.ca
We intend to keep the sections roughly together. Attend one slot consistently, but please understand that space is reserved for students registered in that section.
My Office Hours

Time: 10:30–11:30 a.m. and 2:30–3:30 p.m.
Days: Monday, Wednesday and Friday
Office: E2 477 EITC (my office)

You are welcome to make appointments with me by email, if you cannot come to my office hours.
Dr. Durocher’s Office Hours

Time: 3:45–4:30 p.m.
Days: Tuesday and Wednesday
Office: E2 412 EITC (his office)
To ensure we see your email,

- Put “[comp2140]” in the subject and use a meaningful subject.
- Send from your UofM email account (university regulations prevent us from responding to non-UofM email accounts).
No text book is required.

We will not follow any particular book.

We recommend that you have access to a recent textbook on data structures and algorithms.
Here are a few options (but any recent text should do):

Desire2Learn (D2L) is used in this course; please make sure you can access COMP2140 in D2L.

Temporarily, the course outline (ROASS document) and honesty declaration are available at http://www.cs.umanitoba.ca/~hacamero/comp2140/
Prerequisite

- A grade of “C” or better in Comp 1020 (74.102) is required.
- I will be assuming a good working knowledge of programming. Review COMP 1020 before the first lab and the first assignment.
It is your responsibility to ensure that you are entitled to be registered in this course. This means that you:

- have the appropriate prerequisites, as noted in the calendar description, or have permission from the associate department head to waive these prerequisites;

- have not previously taken, or are concurrently registered in, this course and another that has been identified as “not to be held with” in the course description. For example, BIOL 1000 cannot be held for credit with BIOL 1020.

The registration system may have allowed you to register in this course, but it is your responsibility to check. If you are not entitled to be in this course, you will be withdrawn, or the course may not be used in your degree program. There will be no fee adjustment. This is not appealable. Please be sure to read the course description for this and every course in which you are registered.
Students are reminded that there are penalties for academic dishonesty.

Academic dishonesty includes submitting assignments that are not entirely the student’s own work.

See the Faculty of Science’s policy on Academic Dishonesty, to which you are bound, for complete details.
Academic Honesty

You should also read the university course calendar on
- Academic Integrity, and
- Exam Personation.
You may:

- Meet with other students to discuss general concepts away from a computer (but do NOT take any notes during such meetings).
- Help other students with compiler error messages, debugging hints, and so on.
- Use online resources (e.g., Wikipedia) to understand concepts.
You must NOT:

- Give/receive any code for assignments and labs to/from other people.
- Post solution code on the discussion forum in D2L or anywhere else.
- Use the internet to find solutions for assignments or labs.
Academic Honesty

Practical matter: You will need to fill in and sign an honesty form (available on D2L and the temporary website) and hand it to your instructor by 4:30 p.m. on Thursday September 18.
See the separate fire safety slide.
Course Work
Grade Breakdown

Assignments: 15%
Labs: 10%
Midterm Test: 25%
Final Examination: 50%

You will have feedback from your midterm and at least one assignment back before the VW date (November 12).

In general, no late work.
Assignments

Number of assignments: Approximately five assignments, every two weeks.

Purpose of assignments: To design and implement programs requiring the use of data structures and common algorithms performed on data structures.

Individual or teams? Do assignments by yourself.

Programming language: Programming will be done in Java.

Java programming platform: Programming may be done on whatever platform you wish.

Handing in: Electronically, through Desire2Learn.
Motivation for programming standards: In the real world, all your programming will have to be done to precise standards. Standards are designed to encourage quality, readable programs.

Programming standards for this course: The programming standards for this course are available on D2L. Our programming standards build on what you are expected to already know from 1020.
From 1020, you already know the basics of how to write programs.

Now we will be emphasizing making good choices and programming well.

In the real world, writing a program that merely produces the correct output is not sufficient. You now need to practice writing efficient and maintainable programs as well.
First lab: The week of September 22–26.

Lab times: Every second week, in the lab slot in which you are registered.

Lab attendance: Mandatory (in the section you registered for).

Purpose: Small explorations beyond the ideas and code you will see in class.
Midterm

- There will be a 50-minute, closed-book midterm.
- The midterm will be held in class on Friday October 31 (or Thurs Oct 30 for Dr. Durocher’s section).
- You are required to attend the midterm of the section in which you are registered.
A three-hour final examination will be given during the examination period (December 8–19).

You must remain available during the examination period until all your examination obligations have been fulfilled.
What You’ll Learn

- The basic structures used in most programs:
 - linked lists, stacks, queues, hash tables, trees, heaps, and graphs
- The algorithms that manipulate these structures, choices in implementation, efficiency.
Why Take This Course?

- Provides the building blocks for nearly everything in computer science.
- Computer scientists are expected to understand these basic concepts.
- You can’t get a good job (e.g., Google) without understanding them.