Outline

- Kitchen domain
- Planning bias and strategy
- Multi-strategy planning example (Case-, macro, and abstraction-based planning)
- DoLittle design
- Results
- Conclusion

Strategical Planning

- Early, popular research area in AI
- Problem
 - Input: initial state, set of actions, goal
 - Output: sequence of actions
- Intractable even for simple domains (blocksworld)
- No general problem solver (GPS)
Kitchen Domain

- One-armed mobile robot
- Simulation
- Low-level behaviors can be implemented
- Tasks: prepare hot/cold beverages:
 - Tea with milk
 - (Instant) coffee with sugar
 - Milk with honey

Make Tea (Part 1)

1. Open-door(cupboard)
2. Pick-up-from-cupboard(cup1)
3. Move-robot(at-table-at-sink)
4. Put-in-sink(cup1)
5. Fill-with-water(cup1)
6. Turn-water-off
7. Pick-up-from-sink(cup1)
8. Move-robot(at-sink-at-table)
9. Put-on-table(cup1)
Make Tea (Part 2)

10. Move-robot(above-table at-stove) ; open microwave door
11. Open-door(microwave)
12. Move-robot(above-table at-stove)
13. Pick-up-from-table(cup1) ; put cup1 in microwave
14. Move-robot(above-table at-stove)
15. Put-in-microwave(cup1)
16. Close-door(microwave)
17. Heat-water-in-microwave(cup1) ; heat water
18. Open-door(microwave)
19. Pick-up-from-microwave(cup1)
20. Move-robot(above-table at-stove)

Make Tea (Part 3)

21. Put-on-table(cup1) ; get a tea-bag and
22. Move-robot(above-table at-sink) ; put it in the cup
23. Pick-up-from-shelf(tea-box)
24. Move-robot(above-sink at-table)
25. Put-on-table(tea-box)
26. Open-container(tea-box)
27. Get-tea-bag
28. Make-tea(cup1)
29. Move-robot(above-table at-sink) ; dispose of it afterwards
30. Put-in-garbage-can(old-tea-bag)

Planning Bias

- Practical planning (Kitchen domain)
 - 45 Objects, 50 Operators
 - 3.5 Branching factor, 30 Steps
- Must reduce search space
- Planning bias = Assumptions about
 - Structure of Plans (no knife)
 - Order of plans (simple -> complex)
Planning Strategy

- Method of exploiting a planning bias
- Several biases -> single strategy
 - Different methods for macros
 - Serial decomposability (Korf)
 - Peak to peak (Iba, James)
- Single bias -> several strategies
 - Plan order bias -> Case-based, Macro-based

Cases, Macros, Abstraction

- Comparison of three popular strategies
 - Search depth only
- Very different strategies
- Problem: Make a cup of instant coffee with sugar
- 42 Operators

Case-Based Planning

- Retrieve similar plan
- Adapt old plan to new situation
- Insert, remove, reorder, replace, change var.
 Binding, move current operator
- Adapt “Make-Tea” for Inst. Coff. W/ sugar
- Change var-binding, add ops, remove ops
- Add suffix plan to add sugar (14 steps)
Case-Based Example

22 Move-robot(at-table at-sink) ; identical to make-tea
23 Pick-up-from-shelf(instant-coffee-jar) ; replace tea-box with
24 Move-robot(at-sink at-table) ; instant-coffee-jar
25 Put-on-table(instant-coffee-jar)
26 Open-container(instant-coffee-jar)
27 Open-door(drawer) ; add steps to use spoon
28 Pick-up-from-shelf(spoon)
29 Scoop-instant-coffee
30 Pour-instant-coffee(1cup)
31 Stir(1cup) ; stir instant coffee \).
32 Put-down-on-table(spoon)

Case-Based Example

33 Move-robot(at-table at-sink) ; add sugar to instant coffee
34 Pick-up-from-shelf(sugar-box)
35 Move-robot(at-sink at-table)
36 Put-on-table(sugar-box)
37 Open-container(sugar-box)
38 Pick-up-from-table(spoon)
39 Scoop-sugar
40 Add-sugar(1cup)
41 Stir(1cup)
42 Put-on-table(spoon) ; Aaaa, remember that waiter ...
\textit{Jacques}...

Macros

\begin{itemize}
 \item Compile short, general
 \item Reduce solution length
 \item Balance with increase
 \begin{itemize}
 \item Branching factor
 \item Matching cost
 \end{itemize}
 \item 10 Steps
 \item Example
 \begin{itemize}
 \item Put-In-Sink(Cup)
 \item Fill-With-Water(Cup)
 \item Turn-Water-Off
 \item Pick-Up-From-Sink(Cup)
 \end{itemize}
\end{itemize}
Example: Macros

- DoLittle macro learner (23 macros)
- Minton: extract difficult subsequences
- Dynamic utility evaluation
- Learned macros (# 4 operators)
 - Fill a cup with water
 - Get a container (sugar, instant coffee, tea)
 - Scoop and stir

Abstraction-Based Planning

- Tyranny of details
- Ignore low level details
- Relaxed abstractions (Sacerdoti), reduced abstractions (Knoblock)
 - Example
 - Fetch cup
 - Fill Cup with water
 - Heat Cup
 - Add instant coffee
 - Add sugar
 - Fetch cup
 - open-door(cupboard)
 - pu-from-cupboard(cup1)
Example: Abstraction

- DoLittle abstraction learner (16 operators)
- Low level predicates removed
 - Position of robot
 - Container open
- Refinement of add sugar operator
 - 10 Steps
 - position, container at lower level

Comparison of search depths

- 42 Operators MEA
- Macros: 42/4 = 10
- Cases: Suffix plan is 14 steps
- Abstraction: Refinement search of add sugar is 10 ops

Motivation

- Use a case (Make-Tea) as first approx.
- Abstraction add-sugar
- Macros
 - Get a container
 - Add an ingredient
- Search depth 2
- Similar branching factor
Multi-strategy planning

- Reduce solution length
 - Break a problem into "subproblems"
 - Different or same abstraction level
 - Choose a planning strategy for each "subproblem"
 - Solve each subproblem
 - Combine solutions
- Interactions between strat. (EBL + cache)

Multi-strategy planning

- Uniform framework for strategies
 - Search through plan space
 - Plan language
 - Set of transformations
- Applicability conditions
 - Control branching factor
- Emulate search method

Plan Space Search Paradigm

- Plan space search (non-linear planning)
 - Nodes = partial plans
 - Edges = transformations on plans
- Planner is defined by
 - Plan language (totally/partially ordered)
 - Set of plan transformation
Example: Means Ends Analysis

Plan language:

Add operator to head:

Add operator to tail:

Advance current operator:

Example: Case-based planning

- Same plan language
- Plan transformations
 - Move active operator (forward/backward)
 - Insert, remove operator
 - Reorder operators
 - Change variable bindings
 - ...

Example: Reduced abstraction

- Plan language:
 - Similar to MEA (Plan head, plan tail)
 - Abstract search space
- Plan transformations:
 - MEA
 - Create abstract search space
 - Insert solution to abstract search space
DoLittle’s plan language

- Plan language:
 - Totally ordered
 - Instantiated variables
 - Plan head, plan tail
 - Trees of problem spaces
 - (abstract, serial, general)

DoLittle: Plan transformations

- Move active operator
- Insert operator sequence
- Remove, reorder, replace op. sequence
- Change variable binding
- Create problem space

DoLittle representation

- General operators:
 - STRIPS syntax
 - Very different semantics
- Representation of different strategies
 - Not just representation, but
 - Emulate effect on search space
 - e.g., macros vs. cases
General Operators

- When to apply a strategy?
 - Planner state description
 - Current world state
 - Set of open goals
 - Implicit representation
 - Explicit: Relevance lists (Prodigy)
 - Implicit: Similarity measure (Case-based)

Example: general operator

Operator{gen-pick-up-from-cupboard}
Variables Subject

- Preconds: (arm-empty) ; no subgoaling
 - (is-at robby at-table)
 - (is-in Subject cupboard)
- Open goals: (holding Subject) ; achieve this
- Effects: (holding Subject)
 - ~ (is-in Subject cupboard)
 - ~ (arm-empty)

What Strategy to Apply?

- Associated with a general op is a set of refinements
- Different refinement modes
 - Case - Abstract subgoal
 - Macro - Serial subgoal
 - Abstract op - Subgoal
Refinements

- Cupboard open or not?
 - Refine. 1
 - (pick-up-from-cupboard Subject)
 - Refine. 2
 - Abstract Subgoal
 - (pick-up-from-cupboard Subject)
- Refine. 2 Must not change any precond. literal (e.g., arm-empty)

Evaluation

- MEA, Case, Macro, Abstraction, PC-MSP-O Dolittle
- Two toy domains (Blocksworld, tohanoi)
- Kitchen domain
- No one single strategy planner superior
- Multi-strategy improved by a factor of 3.8
- Combination on a single problem

Time in the Kitchen Domain
Conclusion

- Uniform framework for strategies
 - plan language
 - set of transformations
- Representation for different strategies
 - General operators
- Combination of different planning strategies on a single problem improves performance