Review & Plan
Today’s objectives

- k-server problem
 - Paths & trees
 - Balancing algorithms
 - Offline algorithms
 - Work-function algorithm
k-Server Problem
\textit{k}-sever problem

- We have a metric space of size m
 - $k < m$ servers in the graph
- A sequence of \textit{n requests} to the vertices of the graph
 - Each request should be served by a server
- Minimize the total distance moved by servers

\[
\sigma = \langle S, M, K, A, D, B, D, B, D \rangle \\
\text{costs} = \begin{array}{cccccccc}
2 & 0 & 2 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
\]
Major Results

Theorem
For any metric G, no deterministic k-server algorithm Alg can have a competitive ratio smaller than k.

Conjecture
Conjecture: for any metric space, there is a deterministic algorithm with competitive ratio of k.

- k-server conjecture is one of the big open problems in the context of online algorithms.
 - Verified for $k = 2$, $m = k + 1$, $m = k + 2$, paths and trees.
Double Coverage Algorithm (DCA) for Paths

On a request to x:
- Move the closest server on left and closest server on right at the same ‘speed’ toward x until one meets x.
 - If the closest server is at distance d, the algorithm incurs a cost of $2d$.
- If there is no server on left (or right), just move the closest server!

Cost: $4 + 2 + 1 + 2$
The double coverage algorithm (DCA) has a competitive ratio of k for paths. So, it is the optimal deterministic algorithm for paths. For the proof, we used the potential function method 😊.
Lazy Algorithms

- An algorithm is called **lazy** if it moves at most one server to serve each request.
- Is DCA a lazy algorithm?
 - No, it might move two servers.
Lazy Algorithms

Theorem

Any non-lazy algorithm A can be converted to a lazy algorithm A' without increasing its cost.

- In A', for each server, maintain a real position and a virtual position.
- Virtual positions are maintained similar to A.
- When A moves p servers for a request to node x:
 - Only update the real position of one server that arrives to x.
 - We ‘delay’ moving other servers.

A' saved a distance of 2 on moves of server 3!
Double Coverage Algorithm for Trees

- Move servers that have no other serve between them and the request
 - Move servers with equal speed to the requested sequence
 - Stop when any server arrives to the requested vertex

Theorem

Double-Coverage algorithm (DCA) has a competitive ratio of k for trees.

- Same potential & proof as in paths!
- The k-server conjecture is true (via DCA) for paths & trees
Revisiting Paging

- Recall that k-server becomes equal to caching problem when the metric is **uniform**
 - When distance between vertices associated with pages (yellow vertices) is the same.
- We can **embed** a complete graph into a **star tree**
 - So that the distances remain the same between pages (yellow vertices)
- What is the double-coverage algorithm for star? (paging)
 - It will be Flash-When-Full (FWF)
 - Another proof that FWF has competitive ratio k.
 - Note that FWF can be implemented in a lazy fashion!
Double Coverage Algorithm for $k = 2$

- When we have $k = 2$, we can use a version of double-coverage algorithm.

- On a request to x, consider the shortest paths between the servers and x
 - Selects shortest paths with maximum shared edges!
 - When both servers move, they should get closer [for potential to work] (why)?

- Move servers at the same ‘speed’ on the selected paths
 - In case server s_1 ‘blocks’ s_2, stop moving s_2.

Theorem

DCA has a competitive ratio of k when $k = 2$.

Similar proof & potential (exercise)
Double Coverage Algorithm for $k = 3$?

Theorem

When $k = 3$, double coverage algorithm is not k-competitive even for cycles.

- For $\sigma = \sigma = (B\ D\ E)^n$, we have $\text{cost}(DCA) > n$.
- Cost of OPT for σ is 2.
 - OPT moves server 3 to B and makes no further move.
- The competitive ratio of DCA when $k = 3$ is more than $\frac{n}{2}$ for a cycle graph.
 - This is much worse than k (why?)
Double Coverage Algorithm (DCA) for $k = 2$ & $k = 3$

- Why DCA has a competitive ratio of k when $k = 2$ and unbounded competitive ratio for $k = 3$? (intuition)
- When $k = 2$, the triangle formed by the two servers & the requested node can be embedded into a tree.
- When $k = 3$, the graph formed by the three vertices & the requested node cannot be necessarily embedded into a tree.
 - E.g., a cycle cannot be embedded into a tree

![Diagram of triangle and square with labels and equations](image-url)
Double Coverage Algorithm (DCA) Summary

- DCA is k-competitive (optimal) for paths, trees, and any metric that can be embedded in trees (e.g., complete graph).
- DCA is k-competitive (optimal) for $k = 2$.
- DCA is not useful for $k \geq 3$ even if the metric is a cycle.
Balancing Algorithms

- Move the server which after (potentially) serving the request, has moved less than other servers

- Is it a good algorithm?
 - For \(n \) requests, \(\text{cost}(\text{Balance}) = n \cdot d \)
 - \(\text{cost}(\text{OPT}) = d + n \) (why?)
 - The competitive ratio of the Balance algorithm is at least \(\frac{nd}{n+d} \approx d \), which is much more than the optimal ratio of \(k = 2 \).

- Balance is \(k \)-competitive for metrics with \(k + 1 \) nodes

\[\sigma = (D \ C \ B \ A)^n \]
Randomized algorithms

- Compare against *oblivious adversary*
 - For any metric space, no algorithm can be better than $\log k$ competitive

- Randomized k-server conjecture
 - For any metric space there is a randomized $\log k$-competitive algorithm

- Verified for hierarchical binary trees
- For general graphs, there is a $O(\log^3 m \log^2 k)$-competitive graph
 - Better than $2k - 1$ when m is sub-exponential of k
Assignment 1
Grade distribution

- If your mark is under or close to 75%, you should reconsider your approach to this course.