Review & Plan
Today’s objectives

- Review of work-function algorithm
- Randomized algorithms for k-server
- Techniques for advice lower bounds
Work-function Review
Consider a fixed initial configuration C_0, input sequence σ

For a given configuration X and time t work-function is defined as the cost of Opt for serving the first t requests of σ and ending up at configuration X

$$w_t(X) = \min_Z \{w_{t-1}(Z) + d(X, Z)\} \text{ so that } x_t \in Z;$$
$$w_0(X) = d(X, C_0)$$

Work-function can be computed in an online manner using dynamic programming
Assume we want to serve the t'th request and we are at configuration C.

- Values of $w_{t-1}(X)$ are computed when serving previous request
- Step I: compute the values of $w_t(X)$ using the recursive formula
- Step II: for any configuration X, find $w_t(X) + d(C, X)$.
- Step III: move servers to form the configuration which minimizes this value
Work Function Algorithm Examples

- Assume $\sigma = \langle B \ A \ B \ A \ B \ A \ldots \rangle$
 - Current config.: (A, D), Current request: B

- Step I: calculate new work-function values (recall $w_t(X) = \min_Z \{w_{t-1}(Z) + d(X, Z)\}$ so that $x_t \in Z$)
 - e.g., $w(A, B) = \min_{Z \in \{(A,B),(B,C),(B,D)\}} \langle w_0(Z) + d((A, B), Z) \rangle = min\{2 + 0, 2 + 2, 1 + 1\} = 2$

- Step II: find config. with $\min w_t(X) + d(C, X)$
 - $\min_{X \in \{(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)\}} w_1(X) + d((A, D), X) = \arg\min\{2 + 2, 3 + 1, 2 + 0, 2 + 2, 1 + 1, 2 + 2\} \rightarrow (B, D)$

- Step III: Move servers to config. (B, D)!
Work Function Algorithm Examples

- Assume $\sigma = \langle B \ A \ B \ A \ B \ A \ldots \rangle$
 - Current config.: (B, D), Current request: A

- Step I: calculate new work-function values (recall $w_t(X) = \min_Z \{w_{t-1}(Z) + d(X, Z)\}$ so that $x_t \in Z$
 - e.g., $w(A, B) = \min_{Z \in \{(A, B), (A, C), (A, D)\}} \langle w_1(Z) + d((A, B), Z) \rangle$
 $\quad = min\{2 + 0, 3 + 1, 2 + 2\} = 2$

- Step II: find config. with min $w_t(X) + d(C, X)$
 - $\min_{X \in \{(A, B), (A, C), (A, D), (B, C), (B, D), (C, D)\}} \langle w_2(X) + d((B, D), X) \rangle$
 $\quad = \min\{2 + 3, 3 + 2, 2 + 1, 4 + 1, 3 + 0, 4 + 1\} \rightarrow (A, D)$

- Step III: Move servers to config. (A, D)!

```
<table>
<thead>
<tr>
<th>conf\input</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A, B)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A, C)</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A, D)</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B, C)</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B, D)</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C, D)</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
General graphs

- Work-function algorithm:
 - has a competitive ratio of $2k - 1$ competitive for general metrics.
 - k-competitive for line, star, and graphs with $m \leq k + 2$.
 - Trees and general graphs?

- Work-function algorithm is conjectured to be k-competitive for any metric
 - It might answer the k-server conjecture in affirmative (but we are not sure)
Work-function Framework

- Define a ‘configuration’ as the state of an algorithm
 - locations of servers or state of the linked-list (list update), etc.
- Define the ‘distance’ between two configurations based on the cost model
 - distance moved by servers or number of paid exchanges to change the state of the list from one config. to another
- Define the work function $w_t(X)$ as the cost of OPT for serving t requests and ending up at config. X
 - Maintain the work-function in an online manner.
- Work-function algorithm: assume we are at configuration C; switch to a configuration Y that minimizes $w_t(Y) + d(C, Y)$
k-Server & Randomization
Randomized algorithms

Theorem

For any metric space, no algorithm can be better than $\log k$ *competitive*

- Randomized k-server conjecture: For any metric space there is a randomized $\log k$-competitive algorithm
- Only verified for a class of ‘hierarchical binary trees’
- For general graphs, there is a $O(\log^3 m \log^2 k)$-competitive algorithm
Randomized Algorithm CIRC for Cycle

- Select a point P, uniformly at random, from the cycle of length C.
- Think of P as a ‘road-block’ and apply DCA for the resulting segment L

Theorem

CIRC is a $2k$-competitive algorithm for cycle

Observation: P appears in the shortest path between (A, B) with probability $d(A, B)/C$.

![Diagram of cycle with points A, B, and P]
Randomized Algorithm CIRC for Cycle

- Let OPT-Line be the optimal offline algorithm when restricted to \(L \).
- We have \(\text{Cost}(CIRC) \leq k \cdot \text{Cost}(\text{OPT-Line}) \) (double-coverage algorithm on line).
- \(\text{Cost}(\text{OPT-Line}) \leq 2\text{Cost}(\text{OPT}) \)
 - Assume \(\text{OPT} \) makes moves of lengths \(d_1, d_2, \ldots, d_n \).
 - \(\text{cost}(\text{opt}) = d_1 + d_2 + \ldots + d_n \)
 - Apply the same moves as \(\text{OPT} \); with additional penalty of at most \(C \) if a server passes \(P \) (the penalty means you go all the way through other side).
 - The chance of passing \(P \) on a move of length \(d_i \) is \(d_i / C \).
 - The whole penalty is expected to be \(d_1 / C \cdot C + d_2 / c \cdot C + \ldots + d_n / C \cdot C = \text{Cost}(\text{OPT}) \).
 - The expected cost of OPT-Line is at most \(d_1 + d_2 + \ldots + d_n + \text{Cost}(\text{OPT}) = 2\text{Cost}(\text{OPT}) \).
Randomized Algorithm CIRC for Cycle

- In summary, we have $\text{cost}(CIRC) \leq k \cdot \text{cost}(\text{OPT-Line})$ and $\text{cost}(\text{OPT-Line}) \leq 2\text{cost}(\text{OPT})$.

Theorem

CIRC is a $2k$-competitive algorithm for cycle

- Is it good?
 - Yes (it is the best existing algorithm) and No (we hope to get something around $\log k$).

- Here, we reduced a cycle to a line segment

- This type of reduction is the main tool for analysis of randomized k-server
 - Reduce an arbitrary graph to a ‘hierarchical binary tree’
k-Server & Advice
How many bits of advice are sufficient to achieve an optimal solution for \(k \)-server on a sequence of length \(n \)?

What is advice? For each request \(x \), encode the server that a lazy optimal algorithm uses to serve \(x \).

What is the size of advice? You can indicate a server using \(O(\log k) \) bits; so it is \(n \cdot O(\log k) = O(n \log k) \).

How does the algorithm work? For each request, it uses the server indicated by the advice for that request.

Why the algorithm is optimal? It works exactly like the lazy optimal algorithm.
k-server & advice

- How many bits of advice are sufficient to achieve an optimal solution when the input is a path?
- What is advice? For each request x, a lazy optimal uses the left or right server.
- What is the size of advice? For each request, you can indicate the left/right server using 1 bits; so it is $n \cdot 1 = n$ bits.
- How does the algorithm work? For each request, it uses the server on the side indicated by the advice for that request.
- Why the algorithm is optimal? It works exactly like the lazy optimal algorithm.

![Diagram of a path with labeled nodes](image)
Can we achieve an optimal solution for paths using asymptotically less than $O(n)$ bits?

- The answer is NO!

To prove it, we use a general framework for devising lower bounds!
Binary Guessing Problem

- Assume an online sequence of binary bits such as \(\sigma = \langle 0100101 \ldots \rangle \)
- Before the next bit is revealed, an online algorithm ‘guesses’ whether it is ‘0’ or ‘1’.
- If no advice, adversary makes algorithm wrongly guess all the time.
- If there is one bit of advice, an algorithm can guess at least half of all bits correctly.
 - The bit indicates whether ‘0’s are more than ‘1’s; the algorithm always guesses the more frequent bit to be the next bit.
- To guess more than half correctly, \(\Omega(n) \) bits of advice are required.

Lemma

On an input of length \(m \), any deterministic algorithm that guesses correctly on more than \(\alpha m \) bits, for \(1/2 < \alpha < 1 \), requires at least
\[
(1 + (1 - \alpha) \log(1 - \alpha) + \alpha \log \alpha) \cdot m \text{ bits of advice}
\]
The binary guessing problem can be **reduced** to many online problems.

- I.e., a linear number of bits of advice are required to achieve close-to-optimal solutions.

- Let’s see an example in terms of k-server on line metric.
Consider a line graph formed by 5 nodes and assume \(k = 2 \) servers are initially located at nodes 2 and 4.

Assume the input is formed by phases of two types

- Type 0: \((3,1,3,2,4,2,4) \)
- Type 1: \((3,5,3,2,4,2,4) \)

At the beginning of each phase servers are at 2 and 4

- The last requests to 2, 4 in previous phase ensure that any reasonable algorithm has servers at 2, 4.

An optimal algorithm incurs a cost of 4 for each phase

The online algorithm should ‘guess’ the type of the phase

- A cost of 4 for a right guess
- A cost of at least 6 for a wrong guess
Lower Bound for 2-server with Advice

- Consider an input of $n = 7m$ requests formed by m phases
 - The cost of OPT is at most $4m$

- If the algorithm guesses half of phases correctly, its cost will be at least $m/2 \cdot 4 + m/2 \cdot 6 = 5m$.
 - Guessing half items correctly \rightarrow competitive ratio of $5/4$

- Use the k-server algorithm for binary guessing
 - For each phase, if the algorithm moves server at 2 (resp. (4)) for serving the first request at 3, guess the next bit (phase type) to be 0 (resp. 1).

- We know that no binary guessing can guess more than half of phases correctly with $O(m) = O(n)$ advice \rightarrow no k-server algorithm can be better than $5/4$ competitive
Lower Bound for 2-server with Advice

Theorem

In order to achieve any algorithm with competitive ratio less than 5/4, $\Omega(n)$ bits of advice are required.

- Recall that $O(n)$ bits of advice were sufficient to achieve an optimal solution!
- We see another example of this type of lower bound in the next class