Review & Plan
Today’s objectives

- Review of list-update with a focus on advice
- An introduction to bin packing
How many bits of advice are sufficient to achieve an optimal solution for a sequence σ of length n?

We show $\text{OPT}(\sigma) - n$ bits are sufficient.
Optimal Solution with Advice

- We learned earlier that an optimal algorithm only needs to make paid exchanges
 - We can be more specific.
- There is an optimal solution which only uses **subset transfers**
 - Before accessing an item x, use paid exchanges to move a subset of preceding items to just after x (we skip the proof).

![Diagram](image)

- Guide an algorithm to maintain the same lists as OPT by encoding the subset to be transferred after each access.
Optimal Solution with Advice

- **What is the advice?** Before each access to an item \(x \) at index \(i \), we use one bit of advice for each item \(y \) preceding \(x \) to indicate whether \(y \) should be transferred to after \(x \).

- **What is the size of advice?** \(\text{OPT} \) incurs a cost of at least \(i \) for accessing \(x \) (it might be more).
 - There will be \(i - 1 \) bits of advice.
 - The total advice size is no more than the cost of \(\text{cost}(\text{OPT}) - n \).
 - For a list of length \(m \), we have \(\text{cost}(\text{OPT}) - n > n \cdot m/2 \) (static offline), so for lists of constant length \(\text{cost}(\text{OPT}) \in O(n) \).

- **How the algorithm uses advice?** For each request to item \(x \), it transfers the indicated subsets in the advice to right after \(x \).

- **Why it is optimal?** the algorithm mimic \(\text{OPT} \).

Theorem

For lists of constant length, advice of size \(O(n) \) bits is sufficient to achieve an optimal algorithm for any sequence of length \(n \).
Optimal Solution with Advice

- How many bits of advice are **required** to achieve an optimal solution for a sequence σ of length n?
 - We show advice of linear size is required.
Optimal Solution with Advice

Consider a sequence of phases of requests to items a, b which form a list of length 2.

- Each phase involves 6 requests and has type 0 or 1.
- A type 0 phase has requests → bbbaaa and a type 1 phase has requests baabaa.

\[< bbbaaa \ baabaa \ bbbaaa \ bbbaaa \ bbbaaa \ baabaa >\]

- At the beginning of each phase, the list of any reasonable algorithm looks like $a \rightarrow b$
 - Otherwise, the algorithm can be improved to have that without increasing its cost.

- At the first request to b in each phase, depending on its type, an optimal algorithm should move b to front (type 0) or keep it at second position (type 1).
 - The algorithm should guess the type of each phase at the first request.
Optimal Solution with Advice

< b b b a a a b a a b a a b b b a a a b b b a a a b a a b a a >

- phases of type 0 (b b b a a a):
 - The cost of OPT is 2 + 1 + 1 + 2 + 1 + 1 = 8.
 - The cost of Alg is 8 if it guesses the type correctly, and 9 otherwise

- phases of type 2 (b a a b a a):
 - The cost of OPT is 2 + 1 + 1 + 2 + 1 + 1 = 8.
 - The cost of Alg is 8 if it guesses the type correctly, and 9 otherwise

- Assume there are k phases and the algorithm correctly guesses half of them:
 - From binary guessing lemma, we know that requires advice of size $O(k) = O(n)$
 - the cost of the algorithm will be at least $(k/2) \cdot 8 + (k/2) \cdot 9 = 8.5k$
 - the cost of OPT will be $k \cdot 8$.
 - the competitive ratio will be $\frac{8.5}{8} = 17/16$.
We showed that, in order to achieve a competitive ratio better than 17/16, advice of size $\Omega(n)$ is required.

Theorem

For lists of small sizes, advice of linear size is required and sufficient to achieve an optimal solution.
Bin Packing Problem
Bin Packing Problem

- The input is a sequence of items of various sizes which are revealed in a sequential, online manner.
 - E.g., \(<9, 3, 8, 5, 1, 1, 3, 2, 4, 2, 4, 5, 5, 8, 6, 4, 5, ... >\).

- The goal is to pack these items into a minimum number of bins of uniform capacity.
Bin Packing Application

- Bins can be servers (with uniform capacity in terms of memory, bandwidth, cpu, etc.) & items can be jobs/files/data assigned to servers.

- Cutting stock: bins can be ‘cakes’ and ‘items’ can be kids with different amount of requests.
 - or ‘bottles of water’ with different amount of water requests

- Bins can be trucks of uniform weight capacity and items can be commodities of different weights to be moved between two cities
Next Fit Algorithm

- Keep one open bin at each time:
 - If the open bin has enough space, use it; otherwise, close it and open a new bin
 - A closed bin is never referred again.

\[< 9 \ 3 \ 8 \ 5 \ 1 \ 1 \ 3 \ 2 \ 4 \ 2 \ 4 \ 5 \ 5 \ 8 \ 6 \ 4 \ 5 >\]
First Fit Algorithm

- Find the first bin which has enough space for the item, and place the item there.
- Open a new bin if such bin does not exist.

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >
Best Fit Algorithm

- Find the bin with minimum left capacity which has enough space for the item, and place the item there

\[
< 9 \ 3 \ 8 \ 5 \ 1 \ 1 \ 3 \ 2 \ 4 \ 2 \ 4 \ 5 \ 5 \ 8 \ 6 \ 4 \ 5 >
\]

- The opposite of Best Fit is Worst Fit which places the item in the bin with maximum left capacity.
Competitive Analysis

- Compare the performance of an online algorithm A with an optimal offline algorithm OPT:
 - OPT knows the whole sequence in the beginning.
- Competitive ratio of A is the maximum value of $A(\sigma)/\text{OPT}(\sigma)$ among all sequences σ.
 - We are interested in the asymptomatic competitive ratio where $\text{OPT}(\sigma)$ is arbitrary large.
- $\text{OPT}(\sigma) \geq S(\sigma)$, where $S(\sigma)$ is the total size of items in σ.
Competitive Analysis

- In the next class, we see that Next Fit is 2-competitive (again, with respect to asymptotic competitive ratio)
- We also visit an ‘easy’ lower bound argument that shows no online algorithm can achieve a competitive ratio better than 4/3
 - This bound can be greatly improved