Review & Plan
Today’s objectives

- Competitive ratio of Next Fit (Review)
- Competitive ratio of Harmonic
 - Weighting technique for upper bound
 - Lower bound!
- A sketch of competitive ratio of Best Fit and First Fit
Competitive Analysis of Next Fit

- Competitive ratio of NextFit is at most 2.
 - In the final packing, total size of items in each two consecutive bins is larger than 1.
 - The cost of NextFit for serving σ is smaller than $2S(\sigma)$ where $S(\sigma)$ is the total size of items in σ.
 - Assume $\text{cost}(\text{NextFit}) = k$
 - Each two consecutive bins have total size $> 1 \rightarrow$ total-size $S(\sigma)$ of items in σ is more than $k/2$
 - $\text{OPT}(\sigma) \geq S(\sigma)$: Even when OPT packs items tightly (with no wasted space), $S(\sigma)$ bins are required.

![Diagram](image_url)

- Competitive ratio of NextFit is at most 2.
Competitive Analysis of Next Fit

- Competitive ratio of NextFit is at least 2.
 - Consider sequence $\sigma = <0.5, \epsilon, 0.5, \epsilon, \ldots >$.
 - The cost of NextFit for serving σ is roughly $n/2$ (n is the length of σ).
 - The cost of OPT is roughly $n/4$.

\[
\begin{array}{ccccccc}
\epsilon & \epsilon & \epsilon & \epsilon & \epsilon & \epsilon \\
5 & 5 & 5 & 5 & 5 & 5 \\
\end{array}
\]

\[
\begin{array}{cccc}
5 & 5 & 5 \\
5 & 5 & 5 \\
\end{array}
\]

Theorem

Competitive ratio of NextFit is exactly 2.
Weighting Argument for Harmonic Algorithm
Harmonic Algorithm

- Harmonic Algorithm classes: \((\frac{1}{2}, 1], (\frac{1}{3}, \frac{1}{2}], \ldots, (\frac{1}{K}, \frac{1}{K-1}], (0, \frac{1}{K}]\).
- Place members of each class separately from others.

\[
\text{Harmonic } K = 4
\]

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

\[
x > \frac{1}{2}
\]

\[
\frac{1}{3} < x \leq \frac{1}{2}
\]

\[
\frac{1}{4} < x \leq \frac{1}{3}
\]

\[
x \leq \frac{1}{4}
\]
Weighting Technique in a Nutshell

- Assume we want to prove an algorithm Alg is competitive
- Define a **weight** $w(x)$ for each item x based on its size
 - General rule: for an item of size x, we should have $w(x) \geq x$
- Weight should be defined so that total weight of items in any bin B of the algorithm (denoted by $w(B)$) is at least 1
 - By ‘any bin’ we mean all bins except possibly a constant number.
 - Assume algorithm opens k bins; we have $k \cdot 1 \leq W$ where W is the total weight of items in the sequence
 - So, we have $\text{Cost}(\text{Alg}) \leq W$ (ignoring a constant no. of bins)
- Find the maximum weight of items that fit in any bin
 - Let J denote that number
 - OPT has to place items with total weight of W into bins each taking weight J out of it
 - So, we have $\text{Cost}(\text{Opt}) \geq W/J$
- The competitive ratio of the algorithm will be at most J
Weighting Technique in a Nutshell

- Step I: Define a weight function $w(x)$ for item sizes
- Step II: Prove that any bin of the online algorithm has weight 1.
- Step III: Prove that it is not possible to place a total weight more than J in any empty bin
- The competitive ratio will be J
Weighting Technique

- Define a weight for each item based on its size
- The weight of an item in class \(i \) is \(\frac{1}{i} \) when \(i < k \)
- The weight of an item of size \(x \) in class \(k \) is \(\frac{k}{k-1}x \)

Harmonic \(K = 4 \)

\[
\begin{align*}
&< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 \ldots > \\
\end{align*}
\]

\[
\begin{array}{cccc}
0.9 & 0.8 & 0.8 & 0.6 \\
0.5 & 0.4 & 0.5 & 0.5 \\
0.3 & 0.3 & 0.2 & 0.2 \\
0.2 & 0.2 & 0.1 & 0.1 \\
\end{array}
\]

- \(x > \frac{1}{2} \) weight = 1
- \(\frac{1}{3} < x \leq \frac{1}{2} \) weight = \(\frac{1}{2} \)
- \(\frac{1}{4} < x \leq \frac{1}{3} \) weight = \(\frac{1}{3} \)
- \(x \leq \frac{1}{4} \) weight = \(\frac{4}{3}x \)
Weighting Technique for Harmonic

- Total weight of items in each bin of Harmonic is at least 1
 - Except possibly the current open bin of each class → k bins
 - Bins of type $i < k$ include i items, each of weight $\frac{1}{i}$ → total weight $i \cdot \frac{1}{i} = 1$
 - Any bin B of type k (except the open bin) has level $> \frac{k-1}{k}$
 - let y be the first item in the next bin opened → y did not fit in the previous bin → level of the bin + size of $y > 1$ \Rightarrow level of $B > \frac{k-1}{k}$.
 - $(\text{Level of } B) > \frac{k-1}{k} \cdot \frac{\text{weight of } x = \frac{k-1}{k} \cdot x}{(\text{total weight of items in } B)} > 1$

\begin{align*}
\text{weight} = 1 & \quad \text{weight} = \frac{1}{2} & \quad \text{weight} = \frac{1}{3} & \quad \text{weight} = \frac{4}{3} x \\
\frac{1}{2} < x & \leq \frac{1}{2} & \frac{1}{3} < x \leq \frac{1}{2} & \frac{1}{4} < x \leq \frac{1}{3} & x & \leq \frac{1}{4}
\end{align*}
Weighting Technique for Harmonic

How much is the maximum total weight of items in a bin of Opt?

- Define density of an item of size x as $\frac{w(x)}{x}$
- Fill the bin with smallest items of classes.
- Use a greedy algorithm that places items with a preference for items of higher density (i.e., larger)!

\[
\begin{array}{cccc}
0.9 & 0.8 & 0.8 & 0.6 \\
x > \frac{1}{2} & & & \\
0.5 & 0.4 & 0.5 & 0.4 \\
\frac{1}{3} < x \leq \frac{1}{2} & & & \\
0.3 & 0.2 & 0.2 & 0.3 \\
\frac{1}{4} < x \leq \frac{1}{3} & & & \\
0.3 & 0.2 & 0.1 & 0.1 \\
x \leq \frac{1}{4} & & & \\
\end{array}
\]

weight = 1 \quad weight = \frac{1}{2} \quad weight = \frac{1}{3} \quad weight = \frac{4}{3} x
\begin{align*}
\rho & \leq 2 \\
\rho & \leq \frac{3}{2} \\
\rho & \leq \frac{4}{3} \\
\rho & = \frac{(k + 1)}{k} = \frac{4}{3} \\
\end{align*}
Weighting Technique for Harmonic

How much is the maximum total weight of items in a bin of Opt?

- Next largest item that fits: $1/2 + \epsilon$; weight = 1; size = $1/2 + \epsilon$
- Next item that fits: $1/3 + \epsilon$; weight = $1 + 1/2 + 1/6$; size = $5/6 + 1/7 + 3\epsilon = 41/42 + 3\epsilon$
- Next item that fits: $1/7 + \epsilon$; weight = $1 + 1/2 + 1/6 + 1/42$; size = $41/42 + 1/43 + 4\epsilon$

$$
\begin{align*}
\text{weight} &= 1 \\
\rho &\leq 2 \\
\text{weight} &= 1/2 \\
\rho &\leq 3/2 \\
\text{weight} &= 1/3 \\
\rho &\leq 4/3 \\
\text{weight} &= 4 \times x \\
\rho &= (k + 1)/k = 4/3
\end{align*}
$$
Weighting Technique for Harmonic

How much is the maximum total weight of items in a bin of Opt?

- So, the greedy approach fills a bin with total weight
 \[1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{42} + \frac{1}{(42 \cdot 43)} \ldots \approx 1.691 \]

- It turns out that it is not possible to achieve higher weight
 - E.g., if there is no item of class 1, the density and hence total weight will be less than \(\frac{3}{2} \) → there is an item of size \(\frac{1}{2} + \epsilon \)
 - If there is an item of size \(\frac{1}{2} + \epsilon \) and no item of class 2, there can be at most one item \(\frac{1}{4} + \epsilon \) of class 3, and density of the rest is less than \(\frac{5}{4} \). Weight will be \(1 + \frac{1}{3} + \frac{5}{4} \cdot \frac{1}{4} \approx 1.64 \) → there is an item of size \(\frac{1}{3} + \epsilon \)

<table>
<thead>
<tr>
<th>(x > \frac{1}{2})</th>
<th>(\frac{1}{3} < x \leq \frac{1}{2})</th>
<th>(\frac{1}{4} < x \leq \frac{1}{3})</th>
<th>(x \leq \frac{1}{4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight = 1</td>
<td>weight = (\frac{1}{2})</td>
<td>weight = (\frac{1}{3})</td>
<td>weight = (\frac{4}{3} x)</td>
</tr>
<tr>
<td>(\rho \leq 2)</td>
<td>(\rho \leq \frac{3}{2})</td>
<td>(\rho \leq \frac{4}{3})</td>
<td>(\rho = \frac{k+1}{k} = \frac{4}{3})</td>
</tr>
</tbody>
</table>
Summary of Weighting Technique for Harmonic

- We define a weight of an item of class $i < k$ to be $1/i$ and the weight of an item of class k to be $\frac{k}{k-1} \cdot x$

- We showed that the weight of all bins (except at most k of them) is at least 1 in Harmonic’s packing.

- We showed that the maximum weight of any bin is at most $J = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{42} + \ldots$ when k is large enough.
 - We often assume k is a constant around 20.

- The competitive ratio of the algorithm will be at most J
Lower Bound: a Nasty Sequence

- Consider the following sequence

\[
\langle 1/43 + \epsilon, \ldots, 1/43 + \epsilon, 1/7 + \epsilon, \ldots, 1/7 + \epsilon, 1/3 + \epsilon, \ldots, 1/3 + \epsilon, 1/2 + \epsilon, \ldots, 1/2 + \epsilon, \rangle
\]

- Harmonic opens \(m(1/42 + 1/6 + 1/2 + 1) \approx 1.691m \) bins

- OPT places one item of each class in each bin \(\rightarrow m \) bins
Lower Bound: a Nasty Sequence

- Consider the following sequence

\[
\langle \frac{1}{43} + \epsilon, \ldots, \frac{1}{43} + \epsilon, \frac{1}{7} + \epsilon, \ldots, \frac{1}{7} + \epsilon, \frac{1}{3} + \epsilon, \ldots, \frac{1}{3} + \epsilon, \frac{1}{2} + \epsilon, \ldots, \frac{1}{2} + \epsilon, \rangle
\]

- What about First Fit and Best Fit?
- Both create the same packing as Harmonic!
Summary

- Competitive ratio Harmonic is $j = 1.691$.
- Competitive ratios of Best Fit and First Fit is at least J
- Indeed their ratio is 1.7
- We see a sketch of the proof in the next class