Online Bin Packing

Shahin Kamali

Lecture 18 - Nov. 9th, 2017
University of Manitoba
Review & Plan
Today’s objectives

- Average-case analysis of Best Fit and other algorithms
- An application of bin packing in Cloud
Analysis Measures

- Compare the performance of an online algorithm A with an optimal offline algorithm OPT:
 - OPT knows the whole sequence in the beginning.
 - OPT can change its packing at any time.

- Competitive ratio of A is the maximum value of $A(\sigma)/OPT(\sigma)$ among all sequences σ.
 - We are interested in the asymptomatic competitive ratio where $OPT(\sigma)$ is arbitrary large.

- Average case ratio of A is the expected value of $A(\sigma)/OPT(\sigma)$.
 - Item sizes are generated randomly and independently, from an identical distribution (typically uniform distribution).

- Expected waste of A is the expected value of $A(\sigma) - OPT(\sigma)$.
Average-Case Analysis

- Consider **upright matching** problem.
 - We are given n points in a 1×1 coordinate.
 - The goal is to match a maximum number of \ominus with \oplus points.
 - Each \ominus point can be matched only to \oplus points on its upright position.
 - Labels and positions of points are i.i.d. random variables.

- **Greedy algorithm**: process *ominus* points one by one from top to bottom.
 - Match each \ominus item with the left-most unmatched \oplus item above it.

- It is known that Greedy matches all points except and expected number of $\Theta(\sqrt{n} \log^{3/4} n)$ points.
Consider a bin packing sequence of length n with item sizes randomly distributed in $(0, 1]$.

Create an instance of upright matching:

- Items are mapped to points in the square.
- An item of size $\alpha > 0.5$ gets an \oplus label and x-coordinate $2(1 - \alpha)$.
- An item of size $\alpha \leq 0.5$ gets an \ominus label and x-coordinate 2α.
- y-coordinate of the item at index i is set randomly in $\lfloor i/n \rfloor$, $\lceil i/n \rceil$

E.g., $\sigma = \langle 0.53, 0.69, 0.21, 0.78, 0.4 \rangle$
Reduction of bin packing to upright matching

- Points receive random labels (with a chance of 0.5 an item is larger than 0.5 \oplus) and with a chance of 0.5 it is ≤ 0.5 \ominus.

- Points x-coordinates are random
 - for an \oplus point, item size x is random in $U(0.5, 1]$ and hence $2(1 - x)$ is random in $U[0, 1)$
 - for an \ominus point, item size x is random in $U(0, 0.5]$ and hence $2(x)$ is random in $U(0, 1]$

- Points y-coordinates are random
 - Exactly one point is located randomly in $U[i/n, (i + 1)/n)$
Reduction of bin packing to upright matching

- What is the equivalent of greedy algorithm?
 - An \oplus point y appears on the right of x if sum of items x and y is less than 1.
 - y is on right of $x \Rightarrow 2(1 - y) \geq 2x \Rightarrow x + y \leq 1$
 - Greedy matches each \ominus point p (item $x \leq 0.5$) with the leftmost \oplus point (largest item y so that $y > 0.5$) that appears above (i.e., y is before x in the sequence) and on the right of p (i.e., $x + y \leq 1$).
Best Fit & upright matching

- Greedy is equivalent to **Almost Best Fit**:
 - If $x > 1/2$, open a new bin for x.
 - If $x \leq 1/2$, place x with an item $y \geq 0.5$ which best fits x (i.e., largest such y so that $x + y \leq 1$).
 - If no such y exists, open a new bin for x.

- Almost Best Fit is similar to Best Fit except that:
 - It closes a bin right after it is opened if the bin is opened by an item of size $\leq 1/2$.
 - It closes a bin as soon as two items are placed in it.

- any sequence, the cost of Best Fit is at most equal to Almost-Best-Fit
Average-case analysis of Best Fit

- Number of unmatched point by greedy is expected to be \(\Theta(\sqrt{n \log^{3/4} n}) \).

- So, the number of bins with 1 item in Almost Best Fit (ABF) is at expected to be
 \((n - \Theta(\sqrt{n \log^{3/4} n})/2) + \Theta(\sqrt{n \log^{3/4} n}) \)

 \[= n/2 + \Theta(\sqrt{n \log^{3/4} n}) \text{ on expectation.} \]

- The cost of ABF is at most \(n/2 + \Theta(\sqrt{n \log^{3/4} n}) \) for a sequence of length \(n \) on expectation.

- The cost of \(\text{OPT} \) is expected to be at least \(n/2 \) (since half items are expected to be larger than 0.5).

- Average case ratio of ABF (and hence BF) is at most
 \(\frac{n/2 + \Theta(\sqrt{n \log^{3/4} n})}{n/2} \approx 1 \) for large values of \(n \)

- Expected waste of ABF (and hence BF) is at most
 \[E(ABF(\sigma) - \text{OPT}(\sigma)) = n/2 + \Theta(\sqrt{n \log^{3/4} n}) - n/2 = \Theta(\sqrt{n \log^{3/4} n}) \]
The average-case analysis for Harmonic Match is similar to Best Fit; we repeat the same analysis for each class separately.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Competitive Ratio</th>
<th>Average Ratio</th>
<th>Expected waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next Fit (NF)</td>
<td>2</td>
<td>1.3 CoHoSY80</td>
<td>$\Omega(n)$</td>
</tr>
<tr>
<td>Best Fit (BF)</td>
<td>1.7 Johnso73</td>
<td>1 BeJLMM84</td>
<td>$\Theta(\sqrt{n} \log^{3/4} n)$ Shor86</td>
</tr>
<tr>
<td>First Fit (FF)</td>
<td>1.7 Johnso73</td>
<td>1 LeiSho89</td>
<td>$\Theta(n^{2/3})$ Shor86 CoJoSW95</td>
</tr>
<tr>
<td>Refined First Fit</td>
<td>1.6 Yao80A</td>
<td>>1</td>
<td>$\Omega(n)$</td>
</tr>
<tr>
<td>Harmonic (HA)</td>
<td>$T_\infty \approx 1.691$ LeeLee85</td>
<td>1.2899 LeeLee85</td>
<td>$\Omega(n)$</td>
</tr>
<tr>
<td>Refined Harmonic</td>
<td>1.635 LeeLee85</td>
<td>1.2824 GuChXu02</td>
<td>$\Omega(n)$</td>
</tr>
<tr>
<td>Modified Harmonic</td>
<td>1.615 RamBrowLeeLee89</td>
<td>1.189 RamaTsuga89</td>
<td>$\Omega(n)$</td>
</tr>
<tr>
<td>Harmonic++</td>
<td>1.5888 Seid02</td>
<td>>1</td>
<td>$\Omega(n)$</td>
</tr>
<tr>
<td>Extreme Harmonic</td>
<td>1.5817 Van15</td>
<td>>1</td>
<td>$\Omega(n)$</td>
</tr>
</tbody>
</table>
Experimental Evaluation

- Experimental average-case performance of online algorithms for different distributions.
Discussion

- In practical scenarios, we should have an eye on both worst-case and average-case performance.
- Harmonic algorithms do well in the worst-case (competitive ratio) but have poor average-case performance.
- Another family of algorithms, e.g., Sum-of-Square algorithm, have a good average-case performance (better than Best Fit) but have a poor competitive ratio.
- There is not necessarily a trade-off between worst-case and average-case performance in bin packing.
- We can devise algorithms that are good in both senses → Harmonic-match
An application of Bin Packing: Fault-tolerant Server Consolidation
Fault-tolerant Bin Packing
(Server Consolidation in the Cloud)

- Bins represent servers and items are clients (e.g., databases tenant on a movie on Netflix).
- Server might fail and it should not interrupt the service (clients should always available).
- Given a sequence of items, place two replicas of each item in different servers
 - Each replica of an item with load x has a load of $x/2$.
 - Think of load as the number of people who watch a Netflix movie; so each replica requires half bandwidth
- In case of a server’s failure, the load of each replica is redirected to the server that hosts its partner.
Valid Solutions

- Consider sequence $\langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \rangle$.

- A valid packing:

- An invalid packing:
Mirroring Algorithms

- Consider two types of replicas (blue and red), and apply Best Fit for each type separately.

- The level of a bin is never more than 0.5 (otherwise there will be an overflow in case of a bin failure).

- Consider sequence
 \[\langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \rangle.\]
Mirroring Algorithm

- Mirroring algorithms are not better than 2-competitive
- Consider sequence $\langle 2\epsilon_1, 2\epsilon_2, \ldots, 2\epsilon_n \rangle$
- OPT can place all items so that all bins are almost full
 - Each two bin share at most one item!
Horizontal Harmonic (HH) Algorithm

- Like Harmonic, define *classes* for replicas.
 - \(\left[\frac{1}{3}, \frac{1}{2} \right], \left[\frac{1}{4}, \frac{1}{3} \right], \ldots, \left[\frac{1}{K}, \frac{1}{K-1} \right], (0, \frac{1}{K}] \) (E.g., \(K = 30\)).
- Treat members of each class separately.
 - No two bins share more than one replica.
Horizontal Harmonic (HH) Algorithm

- Consider sequence \(\langle a_1, a_2, \ldots, a_m \rangle \) of replicas of the same class (E.g., for class 3, replicas lie in the range \((1/5, 1/4]\)).

- Place \(i \) blue replicas of class \(i < K \) in the same bin.

- Place red replicas whose partners are in the same bin in different bins.
 - This ensures a valid packing.

\[\begin{array}{c}
\text{reserved space} \\
\hline
a_1 \\
a_2 \\
a_3 \\
a_4 \\
a_5 \\
a_6 \\
a_7 \\
a_8 \\
\hline
\end{array} \]
Horizontal Harmonic (HH) Algorithm

- Real-world implementation of Horizontal-Harmonic shows promising performance (ongoing research).
- The algorithms work well in both worst-case and average-case.
- In the next class, we use a weighting function to show Horizontal Harmonic has a competitive ratio of at most 1.59.