Review & Plan
Today’s objectives

- Fault-tolerant bin packing
- Renting servers in the cloud
An application of Bin Packing: Fault-tolerant Server Consolidation
Fault-tolerant Bin Packing (Server Consolidation in the Cloud)

- Bins represent servers and items are clients (e.g., databases tenant o a movie on NetFlix).
- Server might fail and it should not interrupt the service (clients be should always available).
- Given a sequence of items, place two replicas of each item in different servers
 - Each replica of an item with load x has a load of $x/2$.
 - Think of load as the number of people who watch a NetFlix movie; so each replica requires half bandwidth
- In case of a server’s failure, the load of each replica is redirected to the server that hosts its partner.
Valid Solutions

- Consider sequence
\[\langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \rangle. \]

- A valid packing:

- An invalid packing:
Mirroring Algorithms

- Consider two types of replicas (blue and red), and apply Best Fit for each type separately
 - Assume a capacity of 1/2 for the bins (why?)
 - The level of a bin should never be more than 0.5 (otherwise there will be an overflow in case of a bin failure)

- Consider sequence:
 \[
 \langle a = 0.6, b = 0.3, c = 0.6, d = 0.8, e = 0.1, f = 0.4 \rangle.
 \]
Mirroring Algorithm

- Mirroring algorithms are not better than 2-competitive
- Consider sequence \(\langle 2\epsilon_1, 2\epsilon_2, \ldots, 2\epsilon_n \rangle \)
- \(\text{OPT} \) can place all items so that all bins are almost full
 - Each two bin share at most one item!
Horizontal Harmonic (HH) Algorithm

- Like Harmonic, define classes for replicas.
 - \((\frac{1}{3}, \frac{1}{2}], (\frac{1}{4}, \frac{1}{3}], \ldots, (\frac{1}{K}, \frac{1}{K-1}], (0, \frac{1}{K}]\) (E.g., \(K = 30\)).

- Treat members of each class separately.
 - No two bins share more than one replica.
Horizontal Harmonic (HH) Algorithm

- Consider sequence \(\langle a_1, a_2, \ldots, a_m \rangle\) of replicas of the same class (E.g., for class 3, replicas lie in the range \((1/5, 1/4]\)).
- Place \(i\) blue replicas of class \(i < K\) in the same bin.
- Place red replicas whose partners are in the same bin in different bins.
 - This ensures a valid packing.
Horizontal Harmonic (HH) in a Nutshell

- Class $i < k$: place i replicas of the range $(\frac{1}{i+2}, \frac{1}{i+1}]$ in the same bin.
 - No two bins share more than one replica
- Use mirroring for items of class k
Analysis of Horizontal Harmonic

- Summary of weighting argument to prove an algorithm has c.r. at most J:
 - Step I: Define a weight function $w(x) \geq x$ for an item of size x
 - Step II: Prove that any bin of the online algorithm has weight 1.
 - Step III: Prove that it is not possible to place a total weight more than J in any empty bin.
Analysis of Horizontal Harmonic

- Define the weight of an item of class \(i \) to be \(1/i \).
 - Weight of the bins of that type in HH packing will be 1
- Define the weight of an item of class \(k \) to be \(\frac{2(k+1)}{k-1} \).
 - Items of class \(k \) are no larger than \(1/(k + 1) \)
 - Level of these bins is at least \(1/2 - 1/(k + 1) = \frac{k-1}{2(k+1)} \)
- Steps I and II are done.
Analysis of Horizontal Harmonic

Step III: how much the weight of an optimal bin can be?

- Similar to the case of Harmonic, it is better to fill the bin with the larger replicas → They have higher density!
- The reserved space should be no less than the largest replica!

Using case analysis we can show the maximum weight for large k is

$$w(1/3+\epsilon)+w(1/4+\epsilon)+w(1/13+\epsilon)+\ldots = 1+1/2+1/12+\ldots \approx 1.597$$
Analysis of Horizontal Harmonic

Theorem

Competitive ratio of Horizontal Harmonic is at most 1.597 for large values of K.

- This bound is tight!
Fault-tolerant Bin Packing Summary

- A ‘real-world’ application of bin packing
- Mirroring algorithms used in practice have c.r. of 2
- Horizontal Harmonic packs replicas more tightly and has a c.r. of at most 1.597
- Real-world implementation of Horizontal-Harmonic shows promising performance (ongoing research).
 - The algorithms works well in both worst-case and average-case.
Application II: Renting Servers in the Cloud
Buying vs. Renting

- When you **buy** servers, the goal is to minimize the total number of opened (purchased) servers.
- When you **rent** servers, the goal is to minimize the total **time** you have rented servers.
 - Each item has an arrival and a departure time.
 - The difference is the **Length** of the item.
First Fit Algorithm

- Apply First Fit algorithm to place items.
- **Release** the bin when all items depart.
- The cost of First Fit is $18 + 20$ (assuming no other item arrives till time 20).

< $a = (0.3, 1, 7), b = (0.4, 2, 7), c = (0.4, 3, 7), d = (0.5, 4, 7), e = (0.3, 5, 20), f = (0.1, 6, 20), \ldots>$

Time: 7
Previous Results

- No Any-Fit algorithm can be better than μ competitive
 - μ is the ratio between the length of the largest and the smallest item LiTang14.
- First Fit is at most $2\mu + 13$-competitive LiTang14.
- Best Fit is not competitive.
Next Fit Algorithm

- Apply Next Fit algorithm to place items.
- **Release** the bin when all items depart.
- The cost of Next Fit is $7 + 5 + 15 = 27$ (assuming no other item arrives till time 20).

\[
< a = (0.3, 1, 7), b = (0.4, 2, 7), c = (0.4, 3, 7), d = (0.5, 4, 7), e = (0.3, 5, 20), f = (0.1, 6, 20), \ldots >
\]

Time: 7

```
< a = (0.3, 1, 7), b = (0.4, 2, 7), c = (0.4, 3, 7), d = (0.5, 4, 7), e = (0.3, 5, 20), f = (0.1, 6, 20), \ldots >
```

Time: 7

```
\text{e} 0.3
f 0.1
```

```
```

```
```
New Results for Renting Servers

- No algorithm can be better than μ-competitive
- Next Fit is at most $2\mu + 1$-competitive.
- If the value of μ is known, one can achieve a $\mu + 2$-competitive algorithm.
Boosting Average-Case Performance

- On average, Best Fit is still better than Next Fit and First Fit
- We introduce a new algorithm Move To Front.
 - An Any Fit algorithm that applies after placing an item, moves the bin to the front.
We introduce a new algorithm Move To Front.

An Any Fit algorithm that applies after placing an item, moves the bin to the front.

Intuitively, items that arrive together are more likely to depart at the same time.

< $a = (0.3, 1, 7), b = (0.4, 2, 7), c = (0.4, 3, 7), d = (0.5, 4, 7), e = (0.3, 5, 20), f = (0.1, 6, 20), \ldots>$

Time: 6
Average-Case Performance of Online Algorithms

- Competitive ratio of Move To Front is at most $6\mu + 7$.
- On average (sequences with uniform size and length), Move To Front outperforms all algorithms.