COMP 7720 - Online Algorithms

Caching (Paging) Problem

Shahin Kamali

Lecture 8 - Oct. 3, 2017

University of Manitoba
Review & Plan
Today’s objectives

- Caching Problem
 - Optimal offline algorithm
 - Lower bound for deterministic algorithms
 - Marking algorithms & upper bounds
 - Randomized algorithms
 - Caching anomalies
Caching Problem
Problem Definition

- There are two types of memory: a fast ‘cache’ of size k, and a slow memory of unbounded size.
 - The input is an online sequence of requests to pages of size 1.
- To serve a request to page x, it should be in the cache.
 - In case x is not in the cache, a fault of cost 1 happens.
 - In case x is in the cache, a hit of cost 0 happens.
- The goal is to minimize the total number of faults.
- To bring x to the cache, we might need to evict a page.
 - A caching algorithm is defined through its eviction policy.

Cost (number of faults): 5

$\sigma = a \ b \ c \ b \ a \ d \ c \ e$

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td></td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

"a" is the eviction choice.
Least-Recently-Used (LRU)

- LRU algorithm: if eviction is necessary, evict the least recently used item.

Cost (number of faults):

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \]

```
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>e</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>f</td>
<td>e</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>a</th>
<th>e</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>e</td>
<td>c</td>
<td>a</td>
</tr>
</tbody>
</table>
```
First-In-First-Out (FIFO)

- FIFO algorithm: if eviction is necessary, evict the oldest page in the cache (the one that came earlier).

Cost (number of faults): 7

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \]

\[
\begin{array}{cccc}
a & b & c & d \\
e & b & c & d \\
e & f & c & d \\
e & f & a & d \\
e & b & c & d \\
e & f & c & d \\
e & f & a & d \\end{array}
\]
Flash-When-Full (FWF)

- FWF algorithm: if eviction is necessary, evict all pages in the cache (flash).

Cost (number of faults): 7

$$\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a$$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>f</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>e</th>
<th>f</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>f</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>
An Offline Algorithm

- Furthest-In-Future: Evict the page whose next request is furthest in the future among all pages in the cache.

Cost (number of faults): 6

\[\sigma = a \ b \ c \ b \ a \ d \ c \ e \ f \ a \ c \ d \ c \ f \ a \ b \ a \ e \]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>e</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>f</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>f</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>
Optimal Caching Algorithm

Theorem

Furthest-In-Future (FIF) is the optimal offline algorithm for Caching.

- Idea: we can modify any optimal algorithm \(\text{Off} \) to work similar to FIF without increasing its cost.
- Assume on an access to \(z \), \(\text{Off} \) evicts \(y \) while \(x \) is furthest in future.
- Change \(\text{Off} \) so that instead of \(y \), \(x \) is evicted.
 - We skip the details; a case analysis is required
Caching Algorithms & Competitive Ratio

Theorem

For a cache of size k, no deterministic caching algorithm can have a competitive ratio better than k.

- Consider any online algorithm A
- Create an adversarial sequence of length n on $k + 1$ pages so that A faults on every single request.
 - The cost of A will be n.
- For any such sequence, if FIF misses at one request, it hits in the next $k - 1$ requests.
 - Assume FIF evicts page x for a request to z; so all $k + 1$ pages except x are in the cache.
 - The next fault happens on a request to x.
 - But we know all $k - 1$ pages (all pages in the cache except potentially z) have been request before the next request to x.
 - In FIF, for each fault, there are at least $k - 1$ hits.
So, no **deterministic** algorithm can be better than \(k \)-competitive.

- No algorithm is ‘competitive’ in the sense that the competitive ratio depends on the input.

Yet, a competitive ratio of \(k \) is much better than a ratio that depends on \(n \).

- Why?
Theorem

LRU has a competitive ratio of at most k.

- Use a **phase partitioning** technique.
- Define a phase as a sequence $\sigma_i, \sigma_{i+1}, \ldots, \sigma_{i+m}$ so that requests in this range involve k different pages.
 - The next request σ_{i+m+1} is different from all these k requests.
- What is the cost of LRU per phase?
 - k different pages; LRU incurs at most k faults.
- What is the cost of OPT per phase?
 - Each phase + next item has $k+1$ distinct pages.
 - OPT has to pay a cost of 1 per phase!
- The ratio between LRU and OPT is at most k per phase:

$$c.r.(LRU) = \frac{LRU(\text{phase}_1) + \ldots + LRU(\text{phase}_N)}{OPT(\text{phase}_1) + \ldots + OPT(\text{phase}_N)} \leq \max_i \frac{LRU(\text{phase}_i)}{OPT(\text{phase}_i)} \leq k$$
Other algorithms with c.r. k?

- In the proof, we just used the fact that LRU has a cost of at most k for each phase.
 - For any subsequence formed by requests to k pages, LRU incurs a cost of at most k
- Can we extend this proof to other algorithms?
Marking Algorithms

- A marking algorithm maintains a bit (‘mark’) for each page in the cache.
 - Start with all pages unmarked.
 - Upon a hit, mark the page.
 - Upon a fault, if eviction is required, evict an unmarked page.
 - If all pages in the cache are marked, all of them are unmarked first!

\[\sigma = a \ b \ c \ b \ e \ f \ d \ a \]

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>a</th>
<th>e</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Theorem

Any deterministic marking algorithms M has competitive ratio k.

- What is the cost of M per phase?
 - It starts the phase with all pages unmarked
 - At the end of the phase, all k pages of the phase are marked
 - On the first request to x, it becomes marked
 - x remains in the cache until the end of the phase
 - M incurs a cost of 1 for x throughout the phase
 - **For each phase, M incurs a cost of at most k**
 - Recall that OPT has to pay a cost of 1 per phase!

$$\sigma = \underbrace{a \ b \ c \ b \ a \ d \ c}_{\text{phase1}} \underbrace{e \ f \ a \ c}_{\text{phase2}} \underbrace{d \ c \ d \ f \ a \ b \ a \ e \ \ldots}_{\text{phase3}} \quad k = 4$$
Marking Algorithms & LRU

Theorem

LRU is a marking algorithm

- Assume LRU is not marking
 - So, it evicts a marked page \(x \) at some phase for a request to \(y \)
 - Both \(x \) and \(y \) are among \(k \) pages that define the phase
 - In order to evict \(x \), it should be least-recently used, i.e., there should be \(k - 1 \) pages requested after \(x \) and before \(y \).
 - Adding \(x \) and \(y \), there will be \(k + 1 \) pages in the phase \(\rightarrow \) contradiction
Marking Algorithms Remarks

- LRU and Flash-When-Full are marking algorithms
 - They have competitive ratio k
- FIFO is Not a marking algorithm
 - Yet, it has a competitive ratio of k.
Randomized Paging Algorithms

- Random Algorithm: in case an eviction is necessary, evict a page selected uniformly at random.
- Random has a competitive ratio of k
- Is it good?
MARK Algorithm

- MARK Algorithm is a randomized marking algorithm
- In case an eviction is necessary, evict an unmarked page selected uniformly at random from all unmarked pages.
 - If all pages are marked, unmark all of them.

$$\sigma = a \ b \ c \ b \ e \ f \ d \ a \ c \ e \ b$$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>e ✓</th>
</tr>
</thead>
</table>
Theorem

MARK has a competitive ratio of at most $2H_k$

- H_k is the k'th harmonic number
 \[H_k = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \]

- For any k, we have $ln k < H_k \leq 1 + ln k$.
 - So $H_k \in \Theta(\log k)$

- No randomized algorithm can have a competitive ratio better than H_k
Summary of paging algorithms

- No paging algorithm can have a competitive ratio better than k
 - LRU, FIFI, and FWF all have the optimal competitive ratio of k
- No randomized algorithm can have a competitive ratio better than $H_k \in \Theta(\log k)$.
 - MARK has the optimal competitive ratio of H_k.
Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called **Belady’s anomaly**
- FIFO suffers from Belady’s anomaly

$$\sigma = a \ b \ c \ d \ a \ b \ e \ a \ b \ c \ d \ e$$
Belady’s Anomaly

- Naturally, we expect that having more pages results in less faults.
- In some caching algorithms, the number of page-faults might increase when the number of available pages increases.
 - This is called Belady’s anomaly
- FIFO suffers from Belady’s anomaly

Assume $k = 3$. FIFO Cost is: 9

Assume $k = 4$. FIFO Cost is: 10

<table>
<thead>
<tr>
<th>d</th>
<th>e</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
</table>
Anomaly’s Summary

- We see more anomalies in analysis of online algorithms
- Project topic: make a survey on animality of different caching algorithms
 - Do some experiments, try to find anomaly examples by running algorithms on random inputs!