All problems are written problems; submit your solutions electronically as a PDF files via UMlearn. There are 92 marks available. The assignment will be marked out of 90. Please read http://www.cs.umanitoba.ca/~kamalis/comp3170/info.pdf for guidelines on academic integrity.

Problem 1 Special Stack Variant [10 marks]

In the class, we saw a special type of stacks in which each operation involves popping \(n \geq 0 \) items followed by pushing exactly one item. Consider a variant in which each operation involves popping one item followed by pushing \(n \geq 0 \) items. Assume the stack is implemented using an array of fixed size \(C \) and the number of items in the stack is never more than \(C \).

Use the potential function method to show the amortized cost of each operation is at most 2.

Answer: Define the potential to be the number of empty cells in the array. For an operation involving \(n \) pushes, the actual cost is \(n + 1 \) and for each push, the potential is decreased by 1. So, the difference in potential will be \(-n \) for pushed items and +1 for the pop, i.e., a total difference of \(-n + 1 \). The amortized cost will be \((n + 1) + (-n + 1) = 2 \).

Scheme: 5 marks for the right potential function and 5 marks for finding the right amortized cost. You get the full mark as long as you show the amortized cost is constant via a potential function argument.

Problem 2 Kruskal’s MST Algorithm [15 marks]

In the class, we saw that disjoint sets are used to keep track of the connected components in the Kruskal’s MST algorithm. For the graph of Figure[1] trace the algorithm by showing the connected components after processing each edge. You do not to draw any graph (just indicate the sets). Initially, the components are \(\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\} \), which form Line 0 of your answer. In each of the following lines, indicate the sets associated associated with connected components after processing the subsequent edge. So, the \(i \)’th line of your solution might looks like:

\[
\text{processing edge } (x,y) \rightarrow \{u,v\}, \{w,x,y\}, \{z\}
\]

Answer: \(\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\} \)

\[
\text{processing edge } (a,d) \rightarrow \{a,d\}, \{b\}, \{c\}, \{e\}, \{f\}, \{g\}
\]
processing edge (b,g) → \{a, d\}, \{b, g\}, \{c\}, \{e\}, \{f\}
processing edge (e,f) → \{a, d\}, \{b, g\}, \{c\}, \{e, f\}
processing edge (a,b) → \{a, d, b, g\}, \{c\}, \{e, f\}
processing edge (c,d) → \{a, d, b, g, c\}, \{e, f\}
processing edge (b,c) → [no change] \{a, d, b, g, c\}, \{e, f\}
processing edge (c,g) → [no change] \{a, d, b, g, c\}, \{e, f\}
processing edge (d,e) → \{a, d, b, g, c, e, f\}

Scheme: You lose 3 marks for each mistake at any given step.

Problem 3 Union by Weight Analysis [10 marks]

In this problem, we would like to show the amortized time of a union operation when union-by-weight on linked-lists is used is \(\Omega(\log n)\). For that, we need to come up with a sequence of \(\Theta(n)\) operations for which the amortized cost per operation is \(\Omega(\log n)\). We start with \(\text{make-set}(x_i)\) for \(i \in \{1, 2, \ldots, n\}\) where \(n\) is a power of 2. Provide a consequent sequence of \(\Theta(n)\) union operations so that the total number of updated pointers for all operations is \(\Omega(n \log n)\).

Answer: Here are the sequence of operations and their respective number of pointer-updates:

- **Step 1:** \(\text{union}(x_i, x_{i+n/2})\) for \(i \in \{1, \ldots, n/2\}\). There will be 1 pointer-update per operation, which sums to \(n/2\) total updates in this step.

- **Step 2:** \(\text{union}(x_i, x_{i+n/4})\) for \(i \in \{1, \ldots, n/4\}\). There will be 2 pointer-update per operation, which sums to \(n/4 \times 2 = n/2\) total updates in this step.

- **Step 3:** \(\text{union}(x_i, x_{i+n/8})\) for \(i \in \{1, \ldots, n/8\}\). There will be 4 pointer-update per operation, which sums to \(n/8 \times 4 = n/4\) total updates in this step.

- ...
• Step k: union($x_i, x_{i+n/2^k}$) for $i \in \{1, \ldots, n/2^k\}$. There will be 2^{k-1} pointer-update per operation, which sums to $n/2^k \times 2^{k-1} = n/2$ total updates in this step.

After $k = \lceil \log n \rceil$ steps, there will be most two sets, which are united with union(x_1, x_2), with $n/2$ pointer updates. In summary, there will be roughly $\log n$ steps, each involving update of $n/2$ pointers. The total number of pointer-updates will be $\Omega(n \log n)$.

Scheme: 7 marks for showing a sequence of operations with $\log n$ steps each involving $\Theta(n)$ pointer-updates. 3 marks for the right conclusion about the amortized cost.

Problem 4 Union-Find Operations [10+10 marks]

• Consider a union-find structure based on union-by-rank and path-compression which is formed by T_1 and T_2 in the following figure. Draw the result after the following operations: union(T_1, T_2), find(h).

![Diagram of T1 and T2](image1.png)

• Consider a similar structure formed by T_3 and T_4 in the following figure. Draw the result after the following operations: union(T_3, T_4), find(k). For the union operation, as both trees have the same rank, assume x becomes the parent of the united tree.

![Diagram of T3 and T4](image2.png)

Answer: See the following figure: